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ABSTRACT

A novel framework for music tagging is proposed. First,
each music recording is represented by bio-inspired audi-
tory temporal modulations. Then, a multilinear subspace
learning algorithm based on sparse label coding is devel-
oped to effectively harness the multi-label information for
dimensionality reduction. The proposed algorithm is re-
ferred to as Sparse Multi-label Linear Embedding Non-
negative Tensor Factorization, whose convergence to a sta-
tionary point is guaranteed. Finally, a recently proposed
method is employed to propagate the multiple labels of
training auditory temporal modulations to auditory tem-
poral modulations extracted from a test music recording
by means of the sparse ℓ1 reconstruction coefficients. The
overall framework, that is described here, outperforms both
humans and state-of-the-art computer audition systems in
the music tagging task, when applied to the CAL500 dataset.

1. INTRODUCTION

The emergence of Web 2.0 and the success of music ori-
ented social network websites, such as last.fm, has revealed
the concept of music tagging. Tags are text-based labels
that encode semantic information related to music (i.e., in-
strumentation, genres, emotions, etc.). They result into a
semantic representation of music, which can be used as
input to collaborative filtering systems assisting users to
search for music content. However, a drawback of such
approach is that a newly added music recording must be
tagged manually first, before it can be retrieved [18, 19],
which is a time consuming and expensive process. There-
fore, an emerging problem in Music Information Retrieval
(MIR) aims to automate the process of music tagging. This
problem is referred to as automatic music tagging or auto-
matic multi-label music annotation.

MIR has mainly focused on content-based classification
of music by genre [11–13] and emotion [14]. These clas-
sification systems effectively annotate music with class la-
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bels, such as “rock”, “happy”, etc., by assuming a prede-
fined taxonomy and an explicit mapping of a music record-
ing onto mutually exclusive classes. However, such as-
sumptions are unrealistic and result into a number of prob-
lems, since music perception is inherently subjective [19].
The latter problems can be overcome by the less restrictive
approach of annotating the audio content with more than
one labels in order to reflect more aspects of music. Rel-
atively little work has been made on multi-label automatic
music annotation compared to the work made on multi-
label automatic image annotation (cf. [3, 20] and the ref-
erences therein). However, various automatic music tag-
ging algorithms have been proposed [2, 6, 8, 17, 19]. For
instance, audio tag prediction is treated as a set of binary
classification problems where standard classifiers, such as
the Support Vector Machines [17] or Ada-Boost [2] can be
applied. Furthermore, methods that resort to probabilis-
tic modeling have been proposed [6, 19]. These methods
attempt to infer the correlations or joint probabilities be-
tween the tags and the low-level acoustic features extracted
from audio.

In this paper, the problem of automatic music tagging is
addressed as a multi-label multi-class classification prob-
lem by employing a novel multilinear subspace learning
algorithm and sparse representations. Motivated by the
robustness of the auditory representations in music genre
classification [11–13], each audio recording is represented
in terms of its slow temporal modulations by a two di-
mensional (2D) auditory representation as in [13]. Con-
sequently, an ensemble of audio recordings is represented
by a third-order tensor. The auditory temporal modulations
do not explicitly utilize the label set (i.e., the tags) of music
recordings. Due to the semantic gap, it is unclear how to
exploit the semantic similarity between the label sets asso-
ciated to two music recordings for efficient feature extrac-
tion within multi-label music tagging. Motivated by the au-
tomatic multi-label image annotation framework proposed
in [20], the semantic similarities between two music record-
ings with overlapped labels are measured in a sparse rep-
resentation based way rather than in one-to-one way as
in [2, 6, 17, 19]. There is substantial evidence in the liter-
ature that the multilinear subspace learning algorithms are
more appropriate for reducing the dimensionality of tensor
objects [13, 16]. To this end, a novel multilinear subspace
learning algorithm is developed here to efficiently harness
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the multi-label information for feature extraction. In par-
ticular, the proposed method incorporates the Multi-label
Linear Embedding (MLE) [20] into the Nonnegative Ten-
sor Factorization (NTF) [11] by formulating an optimiza-
tion problem, which is then solved by the Projected Gra-
dient method [1, 9]. The proposed method is referred to
as Sparse Multi-label Linear Embedding Nonnegative Ten-
sor Factorization (SMLENTF). The SMLENTF reduces
the high-dimensional feature space, where the high-order
data (i.e. the auditory temporal modulations) lie, into a
lower-dimensional semantic space dominated by the label
information. Features extracted by the SMLENTF form
an overcomplete dictionary for the semantic space of mu-
sic. If sufficient training music recordings are available,
it is possible to express any test representation of auditory
temporal modulations as a compact linear combination of
the dictionary atoms, which are semantically close. This
representation is designed to be sparse, because it involves
only a small fraction of the dictionary atoms and can be
computed efficiently via ℓ1 optimization. Finally, tags are
propagated from the training atoms to a test music record-
ing with the coefficients of sparse ℓ1 representation.

The performance of the proposed automatic music tag-
ging framework is assessed by conducting experiments on
the CAL500 dataset [18,19]. For comparison purposes, the
MLE [20] is also tested in this task. The reported experi-
mental results demonstrate the superiority of the proposed
SMLENTF over the MLE, the human performance as well
as that of state-of-the-art computer audition systems in mu-
sic tagging on the CAL500 dataset.

The paper is organized as follows. In Section 2, basic
multilinear algebra concepts and notations are defined. In
Section 3, the bio-inspired auditory representation derived
by a computational auditory model is briefly described.
The SMLENTF is introduced in Section 4. The multi-label
annotation framework, that is based on the sparse repre-
sentations, is detailed in Section 5. Experimental results
are demonstrated in Section 6 and conclusions are drawn
in Section 7.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent
of matrices (i.e., second-order tensors) and vectors (i.e.,
first-order tensors) [7]. Throughout the paper, tensors are
denoted by boldface Euler script calligraphic letters (e.g.
X, A), matrices are denoted by uppercase boldface letters
(e.g. U), vectors are denoted by lowercase boldface letters
(e.g. u), and scalars are denoted by lowercase letters (e.g.
u). The ith row of U is denoted as ui: while its jth column
is denoted as u:j .

Let Z and R denote the set of integer and real numbers,
respectively. A high-order real valued tensor X of order N
is defined over the tensor space RI1×I2×...×IN , where In ∈
Z and n = 1, 2, . . . , N . Each element of X is addressed
by N indices, i.e., xi1i2i3...iN . Mode-n unfolding of tensor
X yields the matrix X(n) ∈ RIn×(I1...In−1In+1...IN ). In
the following, the operations on tensors are expressed in

matricized form [7].
An N -order tensor X has rank-1, when it is decom-

posed as the outer product of N vectors u(1),u(2), . . . ,u(N),
i.e. X = u(1)◦u(2)◦. . .◦u(N). That is, each element of the
tensor is the product of the corresponding vector elements,
xi1i2...iN = u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

for in = 1, 2, . . . , In. The
rank of an arbitrary N -order tensor X is the minimal num-
ber of rank-1 tensors that yield X when linearly combined.
Next, several products between matrices will be used, such
as the Khatri-Rao product denoted by⊙ and the Hadamard
product (i.e. element-wise product) denoted by ∗, whose
definitions can be found in [7] for example.

3. AUDITORY REPRESENTATION OF
TEMPORAL MODULATIONS

A key step for representing music signals in a psycho-
physiologically consistent manner is to resort on how the
audio is encoded in the human primary auditory cortex.
The primary auditory cortex is the first stage of the cen-
tral auditory system, where higher level mental processes
take place, such as perception and cognition [10]. To this
end the auditory representation of temporal modulations
is employed [13]. The auditory representation is a joint
acoustic and modulation frequency representation that dis-
cards much of the spectro-temporal details and focuses on
the underlying slow temporal modulations of the music
signal [15]. Such a representation has been proven very
robust in representing music signals for music genre clas-
sification [12, 13].

The 2D representation of auditory temporal modula-
tions can be obtained by modeling the path of auditory
processing as detailed in [13]. The computational model
of human auditory system consists of two basic process-
ing stages. The first stage models the early auditory sys-
tem. It converts the acoustic signal into an auditory repre-
sentation, the so-called auditory spectrogram, i.e. a time-
frequency distribution along a tonotopic (logarithmic fre-
quency) axis. At the second stage, the temporal modula-
tion content of the auditory spectrogram is estimated by
wavelets applied to each channel of the auditory spectro-
gram. Psychophysiological evidence justifies the discrete
rate r ∈ {2, 4, 8, 16, 32, 64, 128, 256} (Hz) in order to rep-
resent the temporal modulation content of sound [13]. The
cochlear model, employed in the first stage, has 96 filters
covering 4 octaves along the tonotopic axis (i.e. 24 fil-
ters per octave). Accordingly, the auditory temporal mod-
ulations of a music recording are represented by a real-
valued nonnegative second-order tensor (i.e. a matrix) X ∈
RI1×I2

+ , where I1 = If = 96 and I2 = Ir = 8. Hereafter,
let x = vec(X) ∈ RI1·I2

+ = R768
+ denote the lexicographi-

cally ordered vectorial representation of the auditory tem-
poral modulations.

4. SPARSE MULTI-LABEL LINEAR EMBEDDING
NONNEGATIVE TENSOR FACTORIZATION

Multilinear subspace learning algorithms are required in
order to map the high-dimensional original tensor space
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onto a lower-dimensional semantic space defined by the
labels. In conventional supervised multilinear subspace
learning algorithms, such as the General Tensor Discrim-
ininant Analysis [16], it is assumed that data points anno-
tated by the same label should be close to each other in the
feature space, while data bearing different labels should
be far away. However, this assumption is not valid in a
multi-label task, as discussed in [20]. Accordingly, such
subspace learning algorithms will fail to derive a lower-
dimensional semantic space based on multiple labels.

Let {Xi|Ii=1} be a set of I training nonnegative tensors
Xi ∈ RI1

+
×I2×...×IN of order N . We can represent such

a set by a (N + 1)-order tensor Y ∈ RI1×I2×...×IN×IN+1

+

with IN+1 = I . Furthermore, let us assume that the multi-
labels of the training tensor Y are represented by the matrix
C ∈ RV×I

+ , where V indicates the cardinality of the tag
vocabulary. Obviously, cki = 1 if the ith tensor is labeled
with the kth tag in the vocabulary and 0 otherwise. Since,
every tensor object (music recording here) can be labeled
by multiple labels, there may exist more than one non-zero
elements in a label vector (i.e. c:i).

To overcome the limitation of conventional multilinear
subspace learning algorithms, the MLE [20] is incorpo-
rated into the NTF. To this end, two methods exploit the
multi-label information in order to drive semantically ori-
ented feature extraction from tensor objects. First, the ten-
sor objects with the same label set, that is c:i = c:j , are
considered to be fully semantically related and thus the
similarity graph W1 has elements w1

ij = w1
ji = 1 and

0 otherwise. However, in real-world datasets, data sam-
ples with exactly the same label set are rare. In such a
case, the semantic relationship between the data samples
can be inferred via the ℓ1 semantic graph as proposed in
[20]. Let us denote by W2 the ℓ1 semantic graph. W2

contains the coefficients that represent each label vector
c:i as a compact linear combination of the remaining se-
mantically related label vectors. Formally, let us define
Ĉi = [c:1|c:2| . . . |c:i−1|c:i+1| . . . |c:I ]. If V ≪ I the lin-
ear combination coefficients a can be obtained by seeking
the sparsest solution to the undetermined system of equa-
tions c:i = Ĉia. That is, solving the following optimiza-
tion problem:

argmin
a
∥a∥0 subject to Ĉia = c:i, (1)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of
the non-zero entries of a vector. Finding the solution to the
optimization problem (1) is NP-hard due to the nature of
the underlying combinational optimization. In [5], it has
been proved that if the solution is sparse enough, then the
solution of (1) is equivalent to the solution of the following
optimization problem:

argmin
a
∥a∥1 subject to Ĉi a = c:i, (2)

where ∥.∥1 denotes the ℓ1 norm of a vector. (2) can be
solved in polynomial time by standard linear programming
methods [4].

The ℓ1 semantic graph W2 is derived as follows. For
each label vector, Ĉi is constructed and then it is normal-

ized so as its column vectors have unit norm. Then, (2) is
solved by replacing Ĉi with its normalized variant and the
sparse representation vector a is obtained. Next, w2

ij = aj
for 1 ≤ j ≤ i− 1; w2

ij = aj−1 for i+ 1 ≤ j ≤ I . Clearly,
the diagonal elements of W2 are equal to zero.

Let d1ii =
∑

i̸=j w
1
ij be the diagonal elements of the

diagonal matrix D1. Given {Xi|Ii=1}, one can model the
semantic relationships between the tensor objects by con-
structing the multi-label linear embedding matrix, which
exploits W1 and W2 as in [20]: M = D1−W1 + β

2 (I−
W2)T (I −W2), where β > 0 is a parameter, which ad-
justs the contribution of the ℓ1 graph in the multi-label lin-
ear embedding [20]. Let {U(n)|N+1

n=1 } be the mode-n factor
matrices derived by the NTF applied to Y [11]. We define
Z(n) , U(N+1) ⊙ . . .⊙U(n+1) ⊙U(n−1) ⊙ . . .⊙U(1).
One can incorporate the semantic information of tensor ob-
jects into the NTF by minimizing the following objective
function for the SMLENTF in matricized form:

f
(
U(n)|N+1

n=1

)
=

1

2
∥Y(n) −U(n)

[
Z(n)

]T ∥2F
+ λ tr

{[
U(N+1)

]T
MU(N+1)

}
, (3)

where λ > 0 is a parameter, which controls the trade off
between the goodness of fit to the training data tensor Y
and the multi-label linear embedding and ∥.∥F denotes the
Frobenious norm. Consequently, we propose to minimize
(3) subject to the nonnegative factor matrices U(n) ∈ RIn×k

+ ,
n = 1, 2, . . . , N + 1, where k is the desirable number of
rank-1 tensors approximating Y when linearly combined.

Let ∇U(n)f = ∂f
∂U(n) be the partial derivative of the

objective function f(U(n)|N+1
n=1 ) with respect to U(n). It

can be shown that for n = 1, 2, . . . , N we have

∇U(n)f = U(n)
[
Z(n)

]T
Z(n) −Y(n)Z

(n), (4)

while for n = N + 1 we obtain

∇U(N+1)f = U(N+1)
[
Z(N+1)

]T
Z(N+1)

+ λMU(N+1) −Y(N+1)Z
(N+1). (5)

Following the strategy employed in the derivation of the
Projected Gradient Nonnegative Matrix Factorization [9],
we obtain an iterative alternating algorithm for the SM-
LENTF as follows. Given N +1 randomly initialized non-
negative matrices U(n)|N+1

n=1 ∈ RIn×k
+ , a stationary point

of (3) can be found by the update rule:

U
(n)
[t+1] = [U

(n)
[t] − n[t]∇U

(n)

[t]

f ]+, (6)

where t denotes the iteration index and [.]+ is the pro-
jection operator, which is defined element-wise as [.]+ ,
max(., 0). The projection operator ensures that U(n)

[t+1] con-
tains only nonnegative elements after each iteration. The
learning rate n[t] can be determined by the Armijo rule
along the projection arc [1] or more effectively by the Al-
gorithm 4 in [9] in order to ensure the convergence of the
algorithm to a stationary point. The update rule (6) is ex-
ecuted iteratively in an alternating fashion for n = 1, 2,
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. . . , N + 1 until the global convergence criterion is met:

N+1∑
n=1

∥∇P

U
(n)

[t]

f∥F ≤ ϵ
N+1∑
n=1

∥∇
U

(n)

[t]

f∥F , (7)

where [∇P

U
(n)

[t]

f ]ij = min
(
0, [∇

U
(n)

[t]

f ]ij
)

if [U(n)
[t] ]ij = 0;

and [∇P

U
(n)

[t]

f ]ij = [∇
U

(n)

[t]

f ]ij if [U(n)
[t] ]ij ≥ 0. The pa-

rameter ϵ is a predefined small positive number, typically
10−5 [9]. The convergence criterion (7) is employed in or-
der to check the stationarity of the solution set {U(n)

[t] |
N+1
n=1 }

since it is equivalent to the Karush-Kuhn-Tucker optimal-
ity condition [1, 9].

5. MULTI-LABEL ANNOTATION VIA SPARSE
REPRESENTATIONS

In this section, the task of automatic music tagging is ad-
dressed by sparse representations of auditory temporal mod-
ulations projected onto a reduced dimension feature space,
where the semantic relations between them are retained.

For each music recording a 2D auditory representation
of temporal modulations is extracted as is briefly described
in Section 3 and detailed in [13]. Thus, each ensemble
of recordings is represented by a third-order data tensor,
which is created by stacking the second-order feature ten-
sors associated to the recordings. Consequently, the data
tensor Y ∈ RI1×I2×I3

+ , where I1 = If = 96, I2 = Ir = 8,
and I3 = Isamples is obtained. Let Ytrain ∈ RI1×I2×I

+ ,
I < Isamples, be the tensor where the training auditory
temporal modulations representations are stored. By ap-
plying the SMLENTF onto the Ytrain three factor matri-
ces are derived, namely U(1), U(2),U(3), associated to
the frequency, rate, and samples modes of the training ten-
sor Ytrain, respectively. Next, the projection matrix P =
U(2) ⊙ U(1) ∈ R768×k

+ , with k ≪ min(768, I), is ob-
tained. The columns of P span a reduced dimension fea-
ture space, where the semantic relations between the vec-
torized auditory temporal modulations are retained. Con-
sequently, by projecting all the training auditory temporal
modulations onto this reduced dimension space an over-
complete dictionary D = PTYT

train(3) ∈ Rk×I
+ is ob-

tained. Alternatively, the dictionary can be obtained by
D = P†YT

train(3), where (.)† denotes the Moore-Penrose
pseudoinverse.

Given a vectorized representation of auditory temporal
modulations x ∈ R768

+ associated to a test music record-
ing, first is projected onto the reduced dimension space and
a new feature vector is obtained i.e. x̄ = PTx ∈ Rk

+ or
x̄ = P†x ∈ Rk. Now, x̄ can be represented as a compact
linear combination of the semantically related atoms of D.
That is, the test auditory representation of temporal modu-
lations is considered semantically related to the few train-
ing auditory representations of temporal modulations with
non-zero approximation coefficients. This implies that the
corresponding music recordings are semantically related,
as well. Again, since D is overcomplete, the sparse coef-
ficient vector b can be obtained by solving the following

optimization problem:

argmin
b
∥b∥1 subject to Db = x̄. (8)

By applying the SMLENTF, the semantic relations between
the label vectors are propagated to the feature space. In
music tagging, the semantic relations are expected to prop-
agate from the feature space to the label vector space. Let
us denote by ā the label vector of the test music recording.
Then, ā is obtained by

ā = C b. (9)

The labels with the largest values in ā yield the final tag
vector of the test music recording.

6. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed frame-
work in automatic music tagging, experiments were con-
ducted on the CAL500 dataset [18, 19]. The CAL500 is
a corpus of 500 tracks of Western popular music, each of
which has been manually annotated by three human anno-
tators at least, who employ a vocabulary of 174 tags. The
tags used in CAL500 dataset annotation span six semantic
categories, namely instrumentation, vocal characteristics,
genres, emotions, acoustic quality of the song, and usage
terms (e.g. “I would like to listen this song while driving,
sleeping etc.”) [19]. All the recordings were converted to
monaural wave format at a sampling frequency of 16 kHz
and quantized with 16 bits. Moreover, the music signals
have been normalized, so that they have zero mean am-
plitude with unit variance in order to remove any factors
related to the recording conditions.

Following the experimental set-up used in [2,6,19], 10-
fold cross-validation was employed during the experimen-
tal evaluation process. Thus each training set consists of
450 audio files. Accordingly, the training tensor Ytrain ∈
R96×8×450

+ was constructed by stacking the auditory tem-
poral modulations representations. The projection matrix
P was derived from the training tensor Ytrain by employ-
ing either the SMLENTF or the MLE [20]. The length of
the tag vector returned by our system was 10. That is, each
test music recording was annotated with 10 tags. Through-
out the experiments, the value of λ in SMLENTF was em-
pirically set to 0.5, while the value of β used in forming
the matrix M was set to 0.5 for both the SMLENTF and
the MLE.

Three metrics, the mean per-word precision and the mean
per-word recall and the F1 score are employed in order to
assess the annotation performance of the proposed auto-
matic music tagging system. Per-word recall is defined as
the fraction of songs actually labeled with word w that the
system annotates with label w. Per-word precision is de-
fined as the fraction of songs annotated by the system with
label w that are actually labeled with word w. As in [6],
if no test music recordings are labeled with the word w,
then the per-word precision is undefined, accordingly these
words are omitted during the evaluation procedure. The F1
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score is the harmonic mean of precision and recall, that is

F1 = 2 · precision·recall
precision+recall .

In Table 1, quantitative results on automatic music tag-
ging are presented. In particular, CBA refers to the prob-
abilistic model proposed in [6]. MixHier is Turnbull et
al. system based on a Gaussian mixture model [19], while
Autotag refers to Bertin-Mahieux et al. system proposed
in [2]. Random refers to a baseline system that annotates
songs randomly based on tags’ empirical frequencies. Even
though the range of precision and recall is [0, 1], the afore-
mentioned metrics may be upper-bounded by a value less
than 1 if the number of tags appearing in the ground truth
annotation is either greater or less than the number of tags
that are returned by the automatic music annotation sys-
tem. Consequently, UpperBnd indicates the best possible
performance under each metric. Random and UpperBnd
were computed by Turnbull et al. [19], and give a sense
of the actual range for each metric. Finally, Human indi-
cates the performance of humans in assigning tags to the
recordings of the CAL500 dataset. All the reported per-
formance metrics are means and standard errors (i.e. the
sample standard deviation divided by the sample size) in-
side parentheses computed from 10-fold cross-validation
on the CAL500 dataset.

System Precision Recall
CBA [6] 0.286 (0.005) 0.162 (0.004)
MixHier [19] 0.265 (0.007) 0.158 (0.006)
Autotag [2] 0.281 0.131
UpperBnd [19] 0.712 (0.007) 0.375 (0.006)
Random [19] 0.144 (0.004) 0.064 (0.002)
Human [19] 0.296 (0.008) 0.145 (0.003)

Table 1. Mean annotation results on the CAL500 Dataset.

In Figure 1, the mean precision, the mean recall, and
the F1 score is plotted as a function of the feature space
dimensionality derived by the MLE and the SMLENTF.
Clearly, the SMLENTF outperforms the MLE for all the
dimensions of the feature space. The best music annotation
performance with respect to the mean per-word precision
and the mean per-word recall is summarized in Table 2.
The numbers inside parentheses are the standards errors
estimated thanks to the 10-fold cross-validation.

System Dimension (k) Precision Recall F1 Score
MLE [20] 150 0.346 (0.004) 0.154 (0.002) 0.2128
SMLENTF 150 0.371 (0.003) 0.165 (0.002) 0.2291

Table 2. Best mean annotation results obtained by MLE
and SMLENTF on the CAL500 Dataset.

By inspecting Table 1, Table 2, and Figure 1 SMLENTF
clearly exhibits the best performance with respect to the
per-word precision and per-word recall among the state-
of-the-art computer audition systems that is compared to,
no matter what the feature space dimensionality is. Fur-
thermore, MLE outperforms the CBA, the MixHier, and
the Autotag system with respect to the per-word precision,
while in terms of the per-word recall its performance is
comparable to that achieved by the MixHier. In addition

both the SMLENTF and the MLE perform better than hu-
mans with respect to the per-word precision and the per-
word recall in the task under study. These results make
our framework the top performing system in music tag-
ging motivating further research. The success of the pro-
posed system can be attributed to the fact that the seman-
tic similarities between two music signals with overlapped
labels that are measured in a sparse representation-based
way rather than in an one-to-one way as in [2, 6, 17, 19] by
applying the multi-label linear embedding and the sparse
representations both in the features extraction and the clas-
sification process.

7. CONCLUSIONS

In this paper, an appealing automatic music tagging frame-
work has been proposed. This framework resorts to audi-
tory temporal modulations for music representation, while
multi-label linear embedding as well as sparse represen-
tations have been employed for multi-label music annota-
tion. A multilinear subspace learning technique, the SM-
LENTF, has been developed, which incorporates the se-
mantic information of the auditory temporal modulations
with respect to the music tags into the NTF. The results re-
ported in the paper outperform humans’ performance as
well as any other result obtained by the state-of-the-art
computer audition systems in music tagging applied to the
CAL500 dataset.

In many real commercial applications, the number of
available tags is large. Usually most of the tags are asso-
ciated to a small number of audio recordings. Thus, it is
desirable the automatic music tagging systems to perform
well in such small sets. Future research will address the
performance of the proposed framework under such condi-
tions.
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