
LEARNING TAGS THAT VARY WITHIN A SONG

Michael I Mandel, Douglas Eck, Yoshua Bengio
LISA Lab, Université de Montréal

{mandelm,eckdoug}@iro.umontreal.ca, yoshua.bengio@umontreal.ca

ABSTRACT

This paper examines the relationship between human gener-
ated tags describing different parts of the same song. These
tags were collected using Amazon’s Mechanical Turk ser-
vice. We find that the agreement between different people’s
tags decreases as the distance between the parts of a song
that they heard increases. To model these tags and these
relationships, we describe a conditional restricted Boltz-
mann machine. Using this model to fill in tags that should
probably be present given a context of other tags, we train
automatic tag classifiers (autotaggers) that outperform those
trained on the original data.

1. INTRODUCTION

Social tags are short free-form descriptions of music that
users apply to songs, albums, and artists. They have proven
to be a popular way for users to organize and discover music
in large collections [5]. There remain, however, millions
of tracks that have never been tagged by a user that cannot
be included in these systems. Automatic tagging, based on
an analysis of the audio of these tracks and user tagging
behavior, could enable them to be included in these systems
immediately. To this end, this paper explores the relation-
ship between audio and the tags that humans apply to it,
especially at different time scales and at different points
within the same track.

We perform this examination in the context of a “Human
Intelligence Task” (HIT) on the Mechanical Turk website 1 ,
where users are paid small amounts of money to perform
tasks for which human intelligence is required. Mechan-
ical Turk has been used extensively in natural language
processing [10] and vision [11, 13], but to our knowledge
has not been used in music information retrieval before.
Mechanical Turk is one means to the end of human compu-
tation, the field of cleverly harnessing human intelligence to
solve computational problems. This field has been growing
in popularity recently, especially in the context of games
for collecting descriptions of music [6, 7, 12]. While these

1 http://mturk.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

games have proven popular among researchers for collect-
ing these data, they require significant investment of devel-
opment time and effort in order to attract and retain players.
By using Mechanical Turk, a researcher can trade a little
extra money for significant savings in development time.

This paper makes three contributions. First, in Section 2
we discuss data collection and analysis from a new source,
Mechanical Turk, and Section 2.1 shows that clips from
different parts of the same song tend to be described dif-
ferently from one another. Second, Section 3.1 presents
a probabilistic model of tags and their relationships with
each other to combat the sparsity of music tagging data.
Section 3.3 shows that explicitly including information link-
ing tags from the same user, track, and clip improves the
likelihood of held out data under the model. Finally, we use
this model to “smooth” tag data, i.e. to infer tags that were
not provided, but perhaps should have been, given the tags
that were. Section 4 shows that these smoothed tags are
more “learnable” from the audio signal than the raw tags
provided directly by the users, especially when fewer users
have seen a given clip.

2. DATA COLLECTION

Users of the Mechanical Turk website, known as “turk-
ers”, were asked to listen to a clip from a song and de-
scribe its unique characteristics using between 5 and 15
words. The task was free response, but to provide some
guidance, we requested tags in 5 categories: Styles/Genres,
Vocals/Instruments, Overall sound/feel (global qualities like
production and rhythm), Moods/Emotions, Other (sounds
alike artists, era, locale, song section, audience, activities,
etc.). In order to avoid biasing the turkers’ responses, no
examples of tags in each category were provided. Turkers
were paid between $0.03 and $0.05 per clip, on which they
generally spent about one minute.

The music used in the experiment was collected from
music blogs that are indexed by the Hype Machine 2 . We
downloaded the front page of each of the approximately
2000 blogs and recorded the URLs of any mp3 files linked
from them, a total of approximately 17,000 mp3s. We
downloaded 1500 of these mp3s at random, of which ap-
proximately 700 were available, error free, and at least 128
kbps while still being below 10 megabytes (to avoid DJ sets,
podcasts, etc). Of these, we selected 185 at random.

From each of these 185 tracks, we extracted five 10-
second clips evenly spaced throughout the track. We pre-

2 http://hypem.com/list

399

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

User Track Clip Tags Num pairs

+ + + 6.0370 ± 0.0290 2,566
+ + − 2.3797 ± 0.0511 690
+ − − 1.2006 ± 0.0026 227,006
− + + 1.1137 ± 0.0142 4,838
− + − 1.0022 ± 0.0083 13,560
− − − 0.5240 ± 0.0004 3,702,481

Table 1. Average number of tags (± 1 standard error)
shared by HITs with various characteristics in common and
number of such pairs of HITs. A + indicates that the clips
shared that characteristic, a − that they differed in it.

sented these clips to turkers in a random order, and gener-
ally multiple clips from the same track were not available
simultaneously. Each clip was seen by 3 different turkers.

Mechanical Turk gives the “requester” the opportunity
to accept or reject completed HITs either manually or au-
tomatically. In order to avoid spammers, we designed a
number of rules for automatically rejecting HITs based on
analyses of each and all of a user’s HITs. Individual HITs
were rejected if: (1) they had fewer than 5 tags, (2) a tag
had more than 25 characters, or (3) less than half of the tags
were found in a dictionary of Last.fm tags. All of a users’
HITs were rejected if: (1) that user had a very small vocabu-
lary compared to the number of HITs they performed (fewer
than 1 unique tag per HIT), (2) they used any tag too fre-
quently (4 tags were used in more than half of their HITs),
(3) they used more than 15% “stop words” like nice, music,
genre, etc., or (4) at least half of their HITs were rejected
for other reasons. The list of stop words was assembled by
hand from HITs that were deemed to be spam.

We pre-processed the data by transforming tags into a
canonical form. We normalized the spelling of decades and
the word “and”, removed words like “sounds like” from the
beginning of tags, removed words like “music”, “sound”,
and “feel” from the ends of tags, and removed punctuation.
We also stemmed each word in the tag so that different forms
of the same word would match each other, e.g. drums,
drum, and drumming.

We posted a total of 925 clips, each of which was to be
seen by 3 turkers for a total of 2775 HITs. We accepted
2566 completed HITs and rejected 305 HITs. Some of
the rejected HITs were re-posted and others were never
completed. The completed HITs included 15,500 (user, tag,
clip) triples from 209 unique turkers who provided 2100
unique tags. Of these tags, 113 were used by at least 10
turkers, making up 13,000 of the (user, tag, clip) triples.
We paid approximately $100 for these data, although this
number doesn’t include additional rounds of data collection
and questionnaire tuning.

2.1 Co-occurrence analysis

The first analysis that can be applied to these data is a simple
counting of the number of tags shared by pairs of HITs. By
categorizing the relationships between two HITs in terms of
the users, tracks, and clips involved, an interesting picture

60 40 20 0 20 40 60
Separation (% of track)

0.40

0.45

0.50

0.55

0.60

0.65

C
o
-o

cc
u
rr

in
g
 t

a
g
s

a
b
o
v
e
 b

a
se

lin
e

Figure 1. Average number of tags above the baseline shared
by HITs from the same track as a function of the separation
between the clips measured as % of a track.

emerges. Table 1 shows the first analysis of the number of
shared tags for all possible pairs of HITs grouped by the
relationships of these characteristics.

The bottom row of the table shows that HITs with noth-
ing in common still share 0.5240 tags on average because
of the distribution of tags and music in this dataset. The
second line from the bottom shows that HITs involving dif-
ferent users and different clips within the same track share
1.002 tags on average. And the third to last row shows that
HITs with different users, but the same clip share 1.11 tags
on average, significantly more than HITs that only share
the same track. This same pattern also holds for HITs from
the same user, but with higher co-occurrences. The large
difference between HITs from the same user and HITs from
different users can probably be attributed to the lack of
feedback to the users in the task, allowing somewhat id-
iosyncratic vocabularies to perpetuate. Note that the top
row of the table shows the average number of tags per HIT.

A related analysis can be performed measuring the de-
pendence of tag co-occurrence on the distance between
clips in the same track. Figure 1 shows the average tag co-
occurrence of two clips in the same track above the baseline
level of co-occurrences for two clips from different tracks.
It reveals that the number of tags shared by clips decreases
as the clips get farther apart. The error bars show that this
result is not quite statistically significant, but it is still a no-
table trend. Results are similar for HITs from the same user
and for cosine similarity instead of plain co-occurrence.

3. DATA MODELING

While stemming can make connections between certain
tags in the dataset, it is only able to do this for tags which
are syntactically related to one another. Another kind of
model is required to capture relationships between tags like
indie and rock. We choose to capture these relationships
using a restricted Boltzmann machine (RBM), a generative

400

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

probabilistic model. The RBM observes binary vectors
representing the tags that a single user gave to a single clip.
Once trained, the model can compare the relative likelihood
of two such observations and can draw samples from the
observation distribution.

3.1 Conditional restricted Boltzmann machine

More formally, an RBM [9] is a probabilistic model of the
relationship between binary visible units, denoted, vi and
binary hidden units, denoted hj . Conditioned on the visible
units, the hidden units are independent of one another, and
vice-versa. The joint probability density function is

p(v, h) =
1

Z
exp

(
vTWh+ bT v + cTh

)
(1)

where the partition function Z ≡
∑

v,h p(v, h) is compu-
tationally intractable (exponential either in the number of
visibles or of hiddens). The likelihood of the observation
v is obtained by marginalizing over h: p(v) =

∑
h p(v, h),

and can be computed easily up to Z. In this paper, we
condition the model on “auxiliary” hidden units, a,

p(v, h | a) = 1

Z
exp

(
vTWh+ vTWaa+ bT v + cTh

)
(2)

where the partition function is now conditioned on a as
well, Z =

∑
v,h p(v, h | a). Conditional RBMs have been

used for collaborative filtering [8], although in that case the
conditioning variables influenced the hidden states, whereas
in our model they directly influence the visible units. The
matrices W and Wa and the bias vectors c and b are learned
using the contrastive divergence algorithm [4]. In addition
to the normal contrastive divergence updates, we place an
L1 penalty on Wa to promote sparseness of its entries.

In practice, the vector a is set a priori to represent the
user, the artist, the track, and/or the clip using a so-called
one hot representation. For example, each user has their
own column of the Wa matrix, providing a different bias
to the tag probabilities. We sometimes refer to the quantity
Waa as the auxiliary biases for this reason. Each user in
effect has a different baseline probability for the visible
units, meaning that they tend to use the tags in different
proportions. Because the entries of the Wa matrix are L1-
penalized, the user columns tend to represent discrepancies
between a user’s tags and the global average, which is cap-
tured in the bias vector b. Thus the Wa matrix is like a term
frequency-inverse document frequency (TF-IDF) represen-
tation (see e.g. [14]) of the variables that it is modeling, but
learned in a more probabilistically grounded way.

3.2 Purely textual datasets

We apply this model to three different tag datasets with the
goal of discovering relationships between tags, and the tags
that are used unexpectedly frequently or infrequently on
particular items. The first dataset is purely textual, from
Last.fm [1]. It includes (artist, tag) pairs, along with the
number of times that that pair appears. The second dataset,
from MajorMiner [7], includes (clip, user, tag) triples and

also includes the audio associated with each clip. The third
dataset, from the Mechanical Turk experiments described
in Section 2, similarly includes (clip, user, tag) triples and
audio. While it is smaller than the MajorMiner data, it
includes many more clips per track, and so can provide per-
haps more insight into clip-level and track-level modeling.

The dataset from [1] was collected from Last.fm in the
spring of 2007. It includes the tags that users applied to
approximately 21,000 unique artists and the number of
users who applied each tag to each artist. There are ap-
proximately 100,000 unique tags, and 7.2 million (artist,
tag) pairs, including duplicates. To reduce the size of the
required model, we discarded tags that had been applied
to fewer than 8000 artists (98 tags), and only kept the 200
most frequently tagged artists.

In order to transform this dataset into a form that can be
used by the RBM model, we simulated taggings from indi-
vidual users. We characterized each artist with independent
Bernoulli probabilities over each tag and drew multi-tag
samples from this distribution. The probability of each tag
was proportional to the number of times each tag was ap-
plied to an artist, so the counts were first normalized to sum
to 1. These normalized counts were multiplied by 5 (and
truncated to prevent probabilities greater than 1) so that the
expected total number of tags was 5, a number that a typical
user might provide. To create the dataset, we repeatedly
drew an artist at random and simulated a user’s tagging of
that artist. The artists’ tag probabilities provided a baseline
against which to measure the estimation of the relevant Wa

columns, which only modeled artist auxiliary information.
The dataset from [7] was collected from the MajorMiner

music labeling game over the course of the last three years.
It includes approximately 80,000 (clip, user, tag) triples
with 2600 unique clips, 650 unique users, and 1000 unique
tags. Each observation was encoded as a binary vector
indicating the tags that a single user applied to a single clip.
The a vector in this case indicated both the clip, the track
that it came from, and the user. On average, each track was
represented by fewer than two clips.

Finally, this new Mechanical Turk dataset provides (clip,
user, tag) triples along with relationships between clips and
tracks. While it contains the fewest triples, it contains the
most structure of the datasets because by design there are
five clips per track. To model it, the a vector represents the
user, the track, and the clip, so there is a separate auxiliary
term learned for each of them.

3.3 Textual experiments

Qualitative experiments on the Last.fm dataset showed that
our model successfully learned the auxiliary inputs, i.e.
the Wa matrix acted as a sort of TF-IDF model for tags.
Specifically, the W matrix modeled relationships between
pairs of tags, the b vector modeled overall popularity of
individual tags, and the columns of Wa modeled any tags
that were unusually prevalent or absent for an artist given
its other tags. For example, Nirvana’s Wa column included
a large value for grunge, and the Red Hot Chili Peppers’
included a large value for funk, both of which might not

401

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

have been expected from their other tags like rock and
alternative. Similarly, the Beatles have a negative bias for
seen live because presumably fewer Last.fm listeners have
seen the Beatles live than other artists tagged rock and pop.
These issues are addressed more quantitatively below.

All three of the datasets described in Section 3.2 can be
used in a leave-one-out tag prediction task. In this task,
the relative probability of a novel observation is compared
to that of the same observation with one bit flipped (one
tag added or deleted). If the model has captured important
structure in the data, then it will judge the true observation
to be more likely than the bit-flipped version of it. This ratio
is directly connected to the so-called pseudo-likelihood of
the test set [2]. Because it is a ratio of probabilities, it does
not require the computation of the partition function, Z,
which is very computationally intensive. Mathematically,
the pseudo-likelihood is defined as

PL(v | a) ≡
∏
i

p(vi | v\i, a) =
∏
i

p(v | a)
p(v | a) + p(ṽi | a)

(3)
where vi is the ith visible unit, v\i is all of the visible units
except for the ith unit, and ṽi is the observation v with the
ith bit flipped. Even though our observation vectors are
generally very sparse (∼4% of the bits were 1s), the 1s are
more important than the 0s, so we compute the average log
pseudo-likelihood over the 1s and 0s separately and then
average those two numbers together. This provides a better
indication of whether the model can properly account for
the tags that are present, than the tags that aren’t present.

This leave-one-out tag prediction can be done with any
model that computes the likelihood of tags. Thus we can
train models with different combinations of auxiliary vari-
ables, or different models entirely, as long as they can pre-
dict the likelihood of novel data. A baseline comparison
to all of our RBMs is a factored model that estimates the
probability of each tag independently from training data
and then measures the likelihood of each tag independently
on test data. Because of the independence of the variables,
in this case the pseudo-likelihood is identical to the true
likelihood.

We performed this experiment with the textual compo-
nent of these three datasets, dividing the data 60-20-20 into
training, validation, and test sets. The observations were
shuffled, but then rearranged slightly to ensure that all of the
auxiliary classes appeared at least once in the training set to
avoid “out-of-vocabulary” problems. We ran a grid search
over the number of hidden units, the learning rate, and the
regularization coefficients using only the track-based aux-
iliary variables, those with the most even coverage. This
grid search involved training approximately 500 different
models, each taking 10 minutes on average. We selected the
system with the best hyperparameters based on the pseudo-
likelihood of the validation dataset. Once we had selected
reasonable hyperparameters, we ran experiments using all
combinations of the auxiliary variables with the other hyper-
parameters held constant. Five different random divisions
of the data allowed the computation of standard errors.

The log pseudo-likelihoods of the test datasets under

Auxiliary info
Dataset User Track Item log(PL)± stderr

MajorMiner + + + −0.9179±0.0088
MajorMiner + + − −0.9189±0.0070
MajorMiner + − − −0.9416±0.0074
MajorMiner − − − −1.0431±0.0095
MajorMiner baseline −1.4029±0.0024

Mech. Turk + + − −0.893 ± 0.015
Mech. Turk + − − −0.904 ± 0.013
Mech. Turk + + + −0.914 ± 0.012
Mech. Turk − − − −1.039 ± 0.013
Mech. Turk baseline −1.300 ± 0.007

Last.fm − − + −0.5623±0.0042
Last.fm − − − −0.7082±0.0029
Last.fm baseline −1.1825±0.0018

Table 2. Average per-bit log pseudo-likelihood (less neg-
ative is better) for restricted Boltzmann machines condi-
tioned on different types of auxiliary information. A +
indicates that the auxiliary information was present, a − in-
dicates that it was absent. The baseline system is a factored
model evaluated in the same way.

these systems are shown in Table 2. The results are not
strictly comparable across datasets because they involved
slightly different numbers of visible units. The results are
shown on a per-bit basis, however, to facilitate compari-
son. These results show first that non-conditional restricted
Boltzmann machines (rows with three −s) are much more
effective than the factored models at modeling test data.
This is because in addition to modeling the relative frequen-
cies of tags, the RBM also models the relationships between
tags through its hidden units. Conditioning the RBM on
auxiliary information (rows with at least one +) further
improves the pseudo-likelihoods. Specifically, it seems that
the most useful auxiliary variable is the identity of the user,
but the identity of the track helps as well. Including clip
information is slightly detrimental, although not statistically
significantly so, possibly because it introduces a large num-
ber of extra parameters to estimate in the Wa matrix from
few observations.

4. AUTOTAGGING EXPERIMENTS

The final set of experiments involves not just the textual
tags, but also the audio for both the MajorMiner dataset
and this new data collected from Mechanical Turk. In this
experiment, we measure the usefulness of the RBM model
from Section 3.1 for “smoothing” the tag data. Specifically,
we create two datasets: the first, labeled “raw”, consists of
just the original (clip, user, tag) triples in the dataset. The
second, labeled “smoothed”, consists of labels imputed by
the RBM trained with all of the available auxiliary informa-
tion. For each clip, we drew 1000 samples from the RBM
conditioned on that sample’s auxiliary information, but with
no user indicated. We factored out the user so the taggers
were trained from a general point of view, not that of any

402

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Mechanical Turk

Tested
Trained Raw Smoothed

Raw 56.87 ± 0.52 56.56 ± 0.36
Smoothed 61.43 ± 0.51 63.40 ± 0.35

MajorMiner

Tested
Trained Raw Smoothed

Raw 65.97 ± 0.49 60.58 ± 0.35
Smoothed 66.67 ± 0.49 63.09 ± 0.35

Table 3. Average classification accuracy and standard errors of autotaggers trained and tested on different tag labelings for
Mechanical Turk and MajorMiner data. The tags were either raw or smoothed from RBM samples.

particular user. Because the model assumes the effects of
user, track, and clip are additive on the tag probabilities,
the effect of one can be factored out by not adding it. This
is further ensured by the regularization of the Wa matrix,
which forces many of the elements of the matrix to 0 and
the rest to be small.

To compare these datasets, we hold the acoustic fea-
tures constant, but change the labels used to train and test
classifiers. We first split the data into 5 cross-validation
folds. Then the positive and negative test examples for a
particular tag are the top- and bottom-ranked clips from
one cross-validation fold. The training examples are the
top- and bottom-ranked clips excluding that fold. Because
the cross-validation breakdowns are preserved across tag
sets, it is possible to train on one tag set and test on another.
For the smoothed dataset, we select the top and bottom 100
examples for each tag. For the raw counts, we choose for
each tag the smaller of the top 100 examples or all of the
examples verified by at least 2 people.

The autotaggers are inspired by those from [7], which
use timbral and rhythmic features and a support vector
machine (SVM) classifier. For this experiment we use Lib-
SVM’s ν-SVM as our SVM implementation, with probabil-
ity estimates and a linear kernel [3]. Performance with the
Gaussian kernel was similar. One binary SVM is trained
per tag using a balanced number of positive and negative
examples selected in order of tag affinity in the training set.
Performance is measured in terms of average accuracy on a
test dataset that is balanced in terms of positive and negative
examples to set a constant baseline of 50% for a randomly
guessing classifier. This metric is more appropriate than
overall classification accuracy for tasks like autotagging
where it is important to recognize positive examples in the
presence of a large number of negative examples. To avoid
the “album effect”, the cross-validation folds were assigned
so that clips from the same track were in the same fold
in the Mechanical Turk data and that clips from the same
album were in the same fold in the MajorMiner data.

The results of these experiments are shown in Table 3
and Figure 2. Each row of the tables represents a training
tag labeling and each column represents a test tag labeling.
The tables show these accuracies averaged over the 95 tags
used by the most people on each dataset. The first column
of each table shows the result of training on different tag
labelings and testing on the raw tags. For both the Ma-
jorMiner and Mechanical Turk datasets, smoothing with the
RBM improves test performance on the raw, user-supplied
tags, although for the MajorMiner dataset, this difference

is not statistically significant. The second column of each
table indicates the performance of both models in predicting
the smoothed data. In this case as well, the smoothed data
trains more accurate models.

The diagonals of these tables show the “learnability” of
the tag labelings. For the Mechanical Turk dataset, the
smoothed tag set is more learnable than the raw tags. For
the MajorMiner dataset, however, the raw tags are more
learnable than the smoothed tags. These accuracies may
not be directly comparable, however, because the measure-
ments differ in both the models used and the test data. The
difference in accuracy might indicate that the smoothing is
less necessary in the MajorMiner dataset due to its larger
size and larger number of repeated (clip, tag) pairs.

Figure 2 shows the autotag classification accuracy on
the raw tags when trained with the raw and smoothed tags.
The tags shown are the 50 used by the most people, and
are sorted in the plots by the performance of the best sys-
tem, that trained on the smoothed tags. For the Mechanical
Turk data, shown in Figure 2(a), these smoothed tags train
better classifiers almost across the board. Certain tags per-
form slightly better when trained on the raw data, but not
significantly so. Smoothing is particularly useful for train-
ing angry, violin, and country, where autotaggers trained
from the raw tags perform at chance levels.

For the MajorMiner data, shown in Figure 2(b), the
smoothed tags and the raw tags perform similarly to one an-
other. The smoothed tags train better autotaggers for club,
folk, pop, and funk, while the raw tags train better auto-
taggers for silence, strings, country, and acoustic. The
occurrence of the silence tag was due to the inclusion of a
few broken clips in the game, which makes it a very specific,
context-dependent tag that the RBM might not be able to
generalize. It is not clear why performance on country is
so different between the two datasets. It could be because in
the Mechanical Turk dataset the top co-occurring tags with
country are guitar 61% of the time and folk 27%, while in
MajorMiner, they are guitar 44% of the time, female 27%,
and male 26%. Thus in Mechanical Turk smoothing gives
better results for country because it occurs more frequently
with guitar and occurs with the more informative tag folk.

5. CONCLUSION

This paper has discussed the relationships between tags and
music at a sub-track scale. We found that Mechanical Turk
was a viable means of collecting ground truth tag data from
humans, although the lack of the immediate feedback of a
game might have contributed to lower inter-user agreement.

403

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

0.4 0.5 0.6 0.7 0.8 0.9
harmonica
classicrock
christmas

alternative
duet
love
and

happy
indie
male
funk
jazz

banjo
trance

bass
piano

female
sad

upbeat
instrumental

soft
fast
pop

country
metal

80s
loud

relaxed
femalevocals

slow
electricguitar

classic
malevocals

blues
guitar
violin
rock

synthesizer
folk
club

party
acousticguitar

acoustic
angry

rap
electronica

dance
disco

techno
hiphop

Smoothed
Raw

0.4 0.5 0.6 0.7 0.8 0.9 1.0
solo

organ
instruments

keyboard
indie
drum

fast
british

horn
bass

acoustic
trumpet
country

voice
vocal

electronic
end

punk
male

electronica
strings
guitar

sample
80s

synth
repetitive

noise
distorted

female
drummachine

saxophone
funk
pop

piano
house

slow
soft

techno
beat

ambient
dance

jazz
rock

silence
folk
loud
club

quiet
rap

hiphop

Smoothed
Raw

(a) Mechanical Turk (b) MajorMiner

Figure 2. Accuracy of autotaggers for the top 50 tags in the Mechanical Turk and MajorMiner datasets. The autotaggers
were trained on raw and smoothed tags and tested on the raw, human generated tags. Error bars show 1 standard error.

We also found that different parts of the same song tend
to be described differently, especially as they get farther
from one another. By modeling these differences with a
conditional restricted Boltzmann machine, we were able
to recover false negative tags in the user-generated data
and use these data to more effectively train autotaggers,
especially in smaller datasets. In the future we will ex-
plore additional models of tag-tag similarity, joint tag-audio
models, and models of tagging that take into account the
relationships between clips’ different distances from one
another.

Acknowledgements The authors acknowledge the support
of an NSERC Discovery grant and would like to thank
Razvan Pascanu and Johanna Devaney for their assistance.

6. REFERENCES

[1] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger: A
model for predicting social tags from acoustic features on large music
databases. J. New Music Res., 37(2):115–135, 2008.

[2] J. Besag. Statistical analysis of non-lattice data. The Statistician,
24(3):179–195, 1975.

[3] C. Chang and C. Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/
˜cjlin/libsvm.

[4] G. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14:1771–1800, 2002.

[5] P. Lamere. Social tagging and music information retrieval. J. New
Music Res., 37(2):101–114, 2008.

[6] E. Law, K. West, M. I. Mandel, M. Bay, and J. S. Downie. Evaluation
of algorithms using games: the case of music annotation. In Proc.
ISMIR, pages 387–392, 2009.

[7] M. I. Mandel and D. P. W. Ellis. A web-based game for collecting
music metadata. J. New Music Res., 37(2):151–165, 2008.

[8] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann
machines for collaborative filtering. In Proc. ICML, pages 791–798,
2007.

[9] P. Smolensky. Information processing in dynamical systems: founda-
tions of harmony theory. MIT Press, 1986.

[10] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap and fast – but is
it good? evaluating non-expert annotations for natural language tasks.
In Proc. Empirical Methods in NLP, pages 254–263, 2008.

[11] A. Sorokin and D. Forsyth. Utility data annotation with amazon me-
chanical turk. In CVPR Workshops, pages 1–8, 2008.

[12] D. Turnbull, L. Barrington, and G. Lanckriet. Five approaches to
collecting tags for music. In Proc. ISMIR, pages 225–230, 2008.

[13] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose
vote should count more: Optimal integration of labels from labelers of
unknown expertise. In NIPS 22, pages 2035–2043, 2009.

[14] J. Zobel and A. Moffat. Exploring the similarity space. SIGIR Forum,
32(1):18–34, 1998.

404

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

