
Frame-Based Editing
Michael Kölling, Neil C. C. Brown, Amjad Altadmri
Department of Informatics, King’s College London, UK

{michael.kolling, neil.c.c.brown, amjad.altadmri}@kcl.ac.uk

Abstract In introductory programming teaching, block-based editors
have become very popular because they offer a number of strong
advantages for beginning programmers: They avoid many syntax
errors, can display all available instructions for visual selection and
encourage experimentation with little requirement for recall. Among
proficient programmers, however, text-based systems are strongly
preferred due to several usability and productivity advantages for
expert users. In this paper, we provide a comprehensive introduc-
tion to a novel editing paradigm, frame-based editing – including
design, implementation, experimentation and analysis. We describe
how the design of this paradigm combines many advantages of
block-based and text-based systems, then we present and discuss
an implementation of such a system for a new Java-like language
called Stride, including the results of several evaluation studies. The
resulting editing system has clear advantages for both novices and
expert programmers: It improves program representation and error
avoidance for beginners and can speed up program manipulation
for experts. Stride can also serve as an ideal stepping stone from
block-based to text-based languages in an educational context.

1. Introduction
Syntax errors are a well-known – and largely unavoidable

– problem in text-based programming. The severity of the
problem varies widely: They can range from a small nuisance
slightly slowing down an expert programmer’s workflow to an
insurmountable hurdle stopping a novice programmer in her
tracks. A significant body of existing published work explores
which errors are problematic (for example [1–3]) and how
to alleviate these problems via additional tools [4, 5], but it
is clear that text-based programming and syntax errors are
inseparable.

In this paper, we will introduce a re-thinking of editing
interactions in programming environments, which we term
frame-based editing. A reduction in the number of syntax
errors made by a programmer is one advantage, and we will
use this goal as one motivation for our new design. We
will see, however, that this is not the only benefit. Various
other advantages, including improvements in readability, better
navigation, and faster program manipulation also follow from
our design.

For beginners, syntax errors present a serious and particu-
larly annoying hurdle [4, 6]. Serious, because beginners often
lack the skill to remove the error; syntax may still be mys-
terious, and what later becomes trivial is still the main focus

DOI reference number: 10.18293/VLSS2017-012

of the programming activity [7]. Annoying, because syntax
errors typically do not provide a path to any useful insight
or learning experience. While the encounter of a semantic
error may expose a misunderstanding and lead to a useful
and meaningful learning experience, overcoming a syntax error
does not usually teach an important concept of programming;
it merely enforces an arbitrary rule to be memorised.

The problem is usually compounded by the dismal quality
of error messages in many of our programming systems. Error
messages are typically written by compiler writers, and little
effort is made to include information useful to beginners.
Many errors are reported from the viewpoint of the parser
or type checker (such as the well-known “Illegal start of
expression” or “Identifier expected” messages in common
Java compilers), and in many cases, little useful information
is given to a novice [1, 5]. Weinberg [8] summarises this
succinctly: “[H]ow truly sad it is that just at the very moment
when the computer has something important to tell us, it starts
speaking gibberish.”

One instinctive goal might be to improve the quality (speci-
ficity and correctness) of error messages [9, 10]. However, we
can do better: A more worthwhile goal is to avoid syntax errors
in the first place, for the benefit of beginners and experts.

2. Blocks: Avoiding Errors in Programming
When thinking about novice programming, especially for

young learners, it is useful to consider other successful areas
of learning. When children play with Lego blocks, for ex-
ample, they typically learn various techniques of construction
without ever reading a manual and without any error messages
involved in the process. Lego blocks have the inherent quality
of allowing experimentation and fitting together only in well-
defined ways. It is not possible to connect two Lego bricks
erroneously – if they fit together at all, they fit correctly. There
are no type errors in Lego bricks.

The equivalent of Lego bricks for programming are block-
based languages, such as Scratch [11]. These languages pro-
vide statements of the programming language as direct ma-
nipulation “blocks”, which can be snapped together in syntac-
tically valid constellations.

Direct manipulation programming systems for beginners
have become widely popular in the last 10 years. In these
systems, language statements are visually represented as user
interface entities that can be manipulated: dragged, dropped,

40



Figure 1. Block-based program notation in Scratch

snapped together, or double-clicked to activate. Due to the
block-like appearance of these statements in many systems,
they are often referred to as “block-based” languages.

The most popular of these systems in early programming
education is Scratch (Figure 1); other notable examples include
StarLogo TNG [12], Alice [13] and App Inventor [14]. While
these systems differ in many aspects and significant details,
they are similar enough for the purpose of our discussion here
to be treated as one common class of system.

2.1. Benefits of Block-based Languages
Due to the visual and direct manipulation nature of program-

ming elements, block-based editing achieves a more playful
feel of programming, leading young learners to more exper-
imentation and exploration [15]. All possible statements and
expressions are represented on screen, supporting recognition
rather than requiring recall for selection of statements.

What is more, most common syntax errors found in typical
text-based languages are avoided; they simply cannot be made.
It is not possible, for example, to forget to close the scope
of a conditional statement – the statement is either present
in its entirety or not at all. The syntax of statements cannot
be mistyped, and statements can only be snapped together in
syntactically valid combinations.

Indeed, the error prevention goes further than simple syntax:
Where parameters are expected, statements are often created
with reasonable default values already inserted. While the
default value might be not what the programmer desired, the
program is at least syntactically valid and will execute.

Type errors can also be avoided: statements expecting typed
expressions can contain slots of specific geometric shapes,

boolean expression
integer expression

boolean expected

Figure 2. Shapes indicating types of expressions

where the shape denotes the expected type (see Figure 2).
Expressions are represented in these shapes; only if the ex-
pression type matches the expected type will the shape fit, and
the blocks snap together. In some systems, it is not possible
to assemble a combination that would represent a type error.
(More advanced use of shapes for types in block languages
are also possible [16].)

For beginning programmers, these systems offer several
tangible benefits: they reduce the rate of errors, allow a
better exploration of the available language, make assembly of
programs easier, almost always lead to executable code, and
increase subjective satisfaction [17]. Many of these benefits
are also clearly desirable for experienced developers, so the
obvious question is: Why don’t we all program like this?

2.2. Limitations of Block-based Languages

Experienced programmers clearly favour text-based lan-
guages over direct manipulation systems. The reason lies
in several severe limitations of block-based languages: They
suffer in readability, viscosity and navigation support.

When programs in block-based languages become large
(and “large” in this context is reached very quickly – a few
pages of program code already feels “large” in these systems),
they become hard to read. The graphical nature – colour,
shape and three-dimensional appearance with light and shadow
effects – adds visual noise that can overwhelm the program
structure and distract from program semantics.

Navigation in these systems is also comparatively poor.
Quickly switching focus between declaration and use of an
entity is typically not well supported, making reading and
exploration of an existing program harder than in typical text-
based environments. The ability to position code fragments
arbitrarily in Scratch makes it difficult to systematically read
a whole program, and little support is provided for organising
the code, higher level structuring or obtaining an overview.

Viscosity – the resistance to change [18] – is high in these
systems. Making changes to existing programs requires more
effort and takes more time than in professional text-based
environments. Changing large existing code bases – rather than
the development of new, small programs – is the bread and
butter work for most experienced programmers, and this is
precisely where block-based systems do not offer adequate
support.

41



3. Text-Based Programming
Text-based programming is the current standard in most

programming systems for proficient users. Many benefits are
obvious: Text is a very expressive, flexible medium that allows
fairly clear and concise definitions of programs. Humans are
very practised in reading, navigating and understanding text-
based representations.

However, text-based systems have a number of limitations.
Most of these encumber the programmer with work that could
easily be automated by a more sophisticated system. Perform-
ing the work impedes productivity, sometimes just by requiring
time to perform, and sometimes by adding cognitive load that
distracts from the intrinsic complexity of the programming
task. Common limitations include:
• Programmers must often type out program statements. Typ-

ing out keywords of the language is unnecessary work that
slows down program entry – previous work has suggested
an association between faster typing speed and increased
programming performance [19, 20]. Often, the conceptual
space of valid entities to be entered at any point in the
program is fairly limited, and more efficient selection inter-
actions could be devised.

• When entering program text, programmers must ensure syn-
tactical correctness of statements (including correct spelling
and punctuation). When the statement intended is recog-
nised (e.g. once the programmer has entered the while
keyword), it is unnecessary to make the human programmer
responsible for correct orthography of the remainder of the
construct.

• Layout, whitespace and indentation are typically under con-
trol of the programmer. Again, this is unnecessary. Many
modern programming environments will offer help in auto-
matically indenting correctly, but the indentation can still be
“broken” (i.e. changed to contravene coding styles) by the
programmer after the fact. This happens easily and often
by accident. Since indentation and layout rules exist and
follow simple algorithms, there is no reason why this cannot
be fully automated, freeing the programmer from one more
unproductive task.

The reason that these tasks require more work than would be
ideally desirable is rooted in the fact that program represen-
tation is based on pure text. A one-dimensional sequence of
free-form characters is arranged two-dimensionally on screen,
and this serves as the basis for all program elements.

Pure text representation is a technology developed more
than half a century ago for early computer terminals, and
there is little reason today – other than historical inertia –
to restrict program representation to this limited form. (This
observation previously led to work on structure editors; later,
in section 13, we will examine why these early attempts failed
but block-based editors later succeeded.)

Few reasons exist that program statements have to be typed
out manually in their entirety, that the programmer should be
responsible for correct punctuation, or that characters (tabs
and spaces) should be used for the arrangement of program

components on a page. Some work has also suggested that
the choice of syntax symbols is often arbitrary, and that a
randomly chosen syntax is no less usable than existing ones
[21].

Scope is represented in many programming languages by
using a pair of brackets. This is undesirable for several reasons:
• A pair of brackets is not the best visual representation of

the extent of a scope. Considering graphical elements as a
possible part of a language, using drawn frames, boxes or
colours offers a clearer, continuous representation which is
easier to recognise and interpret than two isolated brackets.

• The fact that one can even omit a closing bracket – that
it is technically possible to enter half a statement – serves
no useful purpose. Any modern system should ensure that
a statement is either present or absent, and offer interaction
techniques that allow convenient entry and manipulation.
Representing program statements as a sequence of char-
acters which can all be edited individually – for example
deleting a single character out of the middle of a language
keyword – is an archaic accidental artefact that is hard to
justify in today’s code editors.
Modern IDEs have largely recognised this fact and offer a

variety of support mechanisms to address some of these issues.
Shortcuts, code completion, auto-indentation and automatic
entry of matching brackets and quotes are all designed to
alleviate the unnecessary busy work a programmer is tasked
with. However, these mechanisms fail to solve the real prob-
lem. While they streamline the entry of the program text,
the representation is still pure text, with all the resulting
problems. Spelling can still be incorrect, parentheses can be
deleted after entry to break the balance, indentation can be
changed accidentally, and so on. Various possible benefits
and improvements cannot be realised due to the reliance on
pure text for program representation. In the following parts of
the paper, we shall discuss some improvements that become
possible when leaving behind pure text as the medium.

4. Blocks versus Text: A Brief Comparison
4.1. Criteria

In the previous sections, we have discussed some beneficial
and some problematic aspects of direct manipulation (block-
based) and text-based programming environments.

Three aspects emerge as the main areas of consideration:
• Representation includes the appearance of the program at

various scales, from the visual appearance of a single in-
struction to the representation of larger structures such as
control structures, classes, or modules. Representation is
crucial for program comprehension and readability.

• Manipulation describes all aspects of program entry and
editing, including ease of entry and deletion of program
constructs, making changes ranging from small scale edits
to large refactorings, and extending existing program source.

• Error rate refers to the rate of errors an average programmer
makes, or the number of errors that can be made in a system.

42



As we have discussed, a significant number of syntactical
or type errors can be avoided in some systems.

4.2. Comparison
Using these three areas of consideration, which class of

system – block-based or text-based – is better? This question
cannot be answered without taking the type of user into ac-
count, so we will ask this question individually for two relevant
distinct user groups: Beginners and proficient programmers.

4.2.1. Novice Programmers
For novice programmers, block-based environments have a

lot to offer:
• They provide a clearer, easier to interpret representation of

individual program statements and their semantics;
• They allow easier manipulation of program elements, to a

large extent because of the recognition-over-recall charac-
teristic of entering program code; and

• They lead to a significantly lower error rate, eliminating
many syntax errors outright.
For a typical thirteen-year-old novice, block-based systems

win on all counts – a finding confirmed by several recent
blocks versus text comparison studies [22, 23].

4.2.2. Proficient Programmers
For proficient programmers, text-based systems have some

distinct advantages:
• Once a reader has been trained to read a programming

language, text provides a more concise, more readable
representation than blocks;

• Manipulation in standard text editors is faster and more flex-
ible than in block-based systems – viscosity is significantly
lower; but

• Text-based environments still allow a higher error rate, and
even proficient programmers will make some errors which
would not be possible in direct manipulation systems. Many
of these errors will be slips and typographical errors, which
are quickly fixed by experts; however, they still have the
potential to interrupt workflow and cognitive processes.
Overall, for proficient programmers, typical text-based en-

vironments are clearly preferable.

4.3. Where is the Cut-off?
In the above discussion, we have – rather arbitrarily –

distinguished only two groups: “novices” and “proficient pro-
grammers”. This raises the questions: What about intermediate
users? And at what point do programmers become sufficiently
“proficient” to warrant a shift to text-based systems?

In fact, programmers reach the point where their proficiency
outstrips the usability of typical block-based languages fairly
quickly. We believe that a typical sixteen year-old, having
programmed for two or three years with Scratch or similar
systems, will normally have reached a level of expertise and
expectation where she is more efficient and productive with a
typical text-based system. For adults, with their higher ability

of dealing with abstraction and notation, the time of usefulness
of block-based systems is much shorter still (and may be near
zero for some novices with good technical and abstraction
background).

Despite their clear and distinct advantages in early stages
of learning to program, current block-based languages do
not manage to support programming activity for a significant
length of time beyond the initial learning stages. Programmers
outgrow these kinds of system fairly quickly, and their advan-
tages are lost with the switch to traditional text-based systems.
(We have discussed elsewhere the issues surrounding the tran-
sition from blocks to text programming in more detail [24]).

One could present the view that, at the time of sufficient
maturity that a change to a text-based system is advisable, the
additional help provided by direct manipulation systems is not
needed anymore, and thus there is no problem. This, however,
misses an opportunity. We strongly believe that proficient
programmers can also profit from the advantages that block-
based systems bring to the table: clearer representation, easier
manipulation, and lower rates of errors. Programming for all
users can be improved if the advantages of both kinds of
systems can be combined.

5. Frames: A New Editing Paradigm
In the remainder of this paper, we present the concept of

frame-based editing, a redesign of program editing with the
goal of combining the advantages of text-based and direct
manipulation editing systems.

Block-based languages provide the following main advan-
tages:

• They make many syntax errors impossible, and thus reduce
error rates.

• They make program statements visible and support recog-
nition and experimentation.

• Some selected editing operations are quicker or easier due
to the direct manipulation characteristics of the program
elements.

Text-based systems have the following strengths:

• The representation is more readable for anyone but early
novices.

• Lower viscosity; program manipulation is quicker.
• Navigation and exploration are more flexible.
• Programs can be entered, manipulated and navigated purely

via the keyboard.

The goal is to combine the best of both worlds, to create
an editing technology that sits in the space between block-
based and text-based languages and that combines advantages
of both systems.

The principle providing the foundation of this design is to
approach the problem from an HCI perspective. Two views
are fundamental:

• A programming environment is a user interface for
manipulating a program.

43



• A programming environment is a user interface for
understanding a program.

Reading and writing programs is equally important, and
therefore both the representation and the manipulation aspects
need to be considered equally.

When designing an interface for the representation and ma-
nipulation of programs, some elements are better represented
graphically. Scope, for example, is a concept of extent in
the program text, and can better be presented with graphical
elements (such as boxes) than by using characters (such as
brackets) in the text flow of the program.

6. Design of a Frame-Based Editor

Figure 3, overleaf, shows the interface of a frame-based
editor for a new, Java-like language called Stride1, integrated
into the Greenfoot system since 2015 (and BlueJ since 2017).
The editor uses some graphical elements (shapes and colours)
to present aspects where graphics have advantages over char-
acters. Overall, however, the presentation maintains the look
of a program as essentially a textual, if coloured, document.

Greenfoot [25], the system our current implementation was
first integrated into, is an introductory development environ-
ment aimed at beginning programmers. Previously, when it
supported only the Java programming language, it was targeted
at those aged from about 14 years old upwards. The new
version, also supporting Stride, is aimed at an audience starting
younger than that by two or three years. We will use this
implementation as the prototype to discuss the concepts of
frame-based editing.

While some specific design decisions are influenced by the
concrete context (a novice user group likely to transition to
Java), most of the aspects described here are independent of
this context, and the design advantages would apply equally to
professional environments. We will discuss this applicability
to professional environments further in section 14.

6.1. Representation

Figure 4 shows the look of a segment of typical program
code in Stride. We will discuss several aspects of our code
representation, in turn.

6.1.1. Scope

Scopes are represented as frames: graphical boxes, rather
than the customary pair of brackets or keywords. This is true
for all scopes: classes, methods and control structures. The
frames – like the scopes – may be nested.

The advantages are fairly obvious: Recognising the extent
– beginning and end – of a scope is much easier and quicker
in this representation. Programmers do not need to determine
which closing bracket matches which opening bracket, and no
additional confusion can be created by misleading indentation.

1The exact differences between Java and Stride are detailed in the appendix.

6.1.2. Indentation
In text programming, indentation is created using editable

whitespace characters (tabs or spaces; the subject of a long-
running debate, which also includes the exact number of
spaces to be used), and programmers are responsible for
creating and maintaining correct indentation. Both of these are
archaic characteristics that have no place in modern editors.
We will see that this fact – that all program elements are
represented by text characters – forms the basis of problems
with many elements of current systems.

Making programmers responsible for maintaining correct
indentation – a task that can easily be automated – adds
unnecessary work, both manual and cognitive, and may cause
distraction from the actual task the user wants to achieve. The
fact that almost all modern programming environments pro-
vide substantial help with this, in the form of auto-indentation
of newly added lines and auto-formatters for whole documents,
shows that designers of text editors are aware of the problem.
But there is no reason to allow indentation to be later modified
to be incorrect, or to require programmers to think about it at
all.

Making the editor responsible for indentation also opens up
a solution to another problem. Many programmers disagree
over the desired depth of indent; anywhere from two to eight
spaces is used. Frame-based code does not store the indent
depth in the file – it is simply a graphical attribute in the
editor2. Thus, it becomes possible for each programmer to
define their own preferred indent level as a personal display
preference without altering the shared code. And because our
editor also manages the line-wrapping of code as a visual
aspect (without modifying code to add line breaks, etc), the
indentation of continuation lines is also automated.

One partial consequence of managing the indentation as an
editor attribute is that we are free to use variable-width fonts.
The main advantage of traditional monospace coding fonts is
that they allow programmers to align code. This is no longer
tied to font selection in frame-based editing. Some studies
have suggested that variable-width fonts are more readable
than fixed-width [26, 27], although these results are often hard
to generalise as they are affected by specific choice of font
face.

6.1.3. Whitespace
While indentation – leading horizontal whitespace – is

maintained automatically in a frame-based editor, vertical
whitespace – blank lines in traditional text editors – is partly
automatic and partly under control of the programmer.

Spacing between fixed elements of a program (for example,
the space between method declarations) is maintained by the
system. There is little need for this to vary, so consistency can
automatically be maintained.

Within a sequence of statements, vertical whitespace is
sometimes used to separate logically distinct parts of a method.

2A similar argument is made for tabs over spaces, but continuation lines
usually present a further problem.

44



Fi
gu

re
3.

Fr
am

e-
ba

se
d

ed
ito

r
in

te
rf

ac
e,

in
te

gr
at

ed
in

to
th

e
G

re
en

fo
ot

sy
st

em

45



Figure 4. Code representation in a frame-based editor

This is a semantic consideration – not a syntactic one –
and a programmer, therefore, has the option to enter vertical
whitespace between statements, equivalent to inserting a blank
line in a text editor.

6.1.4. Colour

Background colour is used to identify different frames,
which represent different kinds of program elements. In our
implementation, the outermost frame – the class – has a green
background, methods are yellow, with other types of frames
using various colours to distinguish themselves.

Simple statements, such as assignments or method calls,
are also represented by frames (although these do not hold
nested statements). These simple frames have a greyish-sandy
background colour and no border drawn around them. This
makes sequences of statements visually less busy than in most
block-based editors.

Many frames have “slots” – holes that need to be filled in
to complete the statement – such as the condition in an if-
statement or the value in an assignment. These slots are white
when they are empty. When slots are correctly filled in, they
acquire the background colour of the frame, blending into their
context. Thus white areas, standing out quite clearly, signify
syntactically unfinished code (visible later on in Figure 7 and
Figure 8).

Users can get used to these colours quite quickly, and they
provide useful cues about program structure that are quicker
and easier to recognise than groupings arranged using bracket
characters.

Figure 5. A group of variable declarations

Figure 6. Representation of a break statement

6.1.5. Context Sensitive Display
The visual representation of statements can be context

sensitive. For example, a variable declaration starts with the
keyword “var” (Figure 5). However, if a variable is declared
directly below another variable declaration, the keyword is not
repeated; for visual simplicity, the keyword is shown only once
for a variable group. The indentation of the rest of the frame is
kept constant, to indicate a grouping of variable declarations.

Another context-adaptive example is the presentation of

46



Figure 7. An if-statement with empty slots

break statements, which exit the innermost loop or switch
statement in which they are contained. The background colour
of the break statement automatically matches the innermost
enclosing loop or switch statement, representing its context,
and a solid band of colour is drawn from that container’s indent
to the break statement (Figure 6).

This reflects again the underlying principle that the pro-
grammer is responsible for creating the structure of the pro-
gram, but not for creating or maintaining its visual represen-
tation.

6.2. Manipulation
Manipulation of programs takes place mostly at the frame

level. Users enter, remove or manipulate frames as a whole.
Since frames represent statements (and other program ele-
ments) the main unit of manipulation is complete statements,
not single characters. Character level editing exists only in text
slots within frames (see section 6.2.2).

6.2.1. Insertion of Statements
Statements are inserted by inserting a frame. Every kind of

statement has its corresponding frame, which can be inserted
using a single command key when a frame cursor has focus
(see section 6.2.3 and section 7.5).

Command keys are simple character keys on the keyboard
– they do not need to be combined with a modifier key. Thus
pressing the ‘i’ key when the frame cursor is focused will enter
an if-statement (not the character ‘i’). This is different from
auto-completion of statements as supported in many traditional
environments. There is no need to trigger any code completion
system; one keypress is all that is needed. The command
keys are not necessarily the first characters of a keyword.
(Assignment, for example, can be inserted by typing an equals
symbol.)

6.2.2. Slots
Some frames are complete just by inserting the frame itself

(such as a break statement). However, most frames require
additional information to be filled in to be complete; this
information is provided in slots.

Frames can contain two different kinds of slots: text slots
and frame slots. Text slots accept (almost) free-form text entry,
whereas frame slots contain nested frames. A frame for an if-
statement, for example, has two initially empty slots: a text

Figure 8. Optional text slots: invisible without focus (left) and visible
when holding keyboard focus (right)

Figure 9. Cursors: a frame cursor (left) and a text cursor (right)

slot to specify the condition and a frame slot to hold the body
of the statement (Figure 7).

Text slots have a white background when they are empty,
expecting text entry. Two varieties of text slot exist: compul-
sory and optional text slots.

Compulsory text slots are always visible, and content must
be supplied to create a syntactically valid program. The con-
dition of an if-statement is an example.

Optional slots are only visible when the cursor navigates to
their potential location. An example is a formal parameter in
a method declaration. The parameter list always has optional
slots at the end so that additional parameters may be entered.
When the cursor is not at the location of the optional slot, it is
invisible (Figure 8, left); however, when the cursor is moved
to the location of the optional slot it becomes visible, gains
focus and text can be entered (Figure 8, right). In the case of
the formal parameter, two optional slots are present, one for
the type and one for the parameter name. When one is filled
in, the other slot becomes compulsory.

6.2.3. Frame Cursor versus Text Cursor

A focused frame editor always displays one cursor, and the
cursor is always in a slot. Two different types of cursor exist,
depending on what kind of slot has focus: When the cursor is
in a frame slot, a frame cursor is shown (Figure 9, left); inside
a text slot, the cursor changes to a text cursor (Figure 9, right).
It is not possible to have a frame cursor and a text cursor at
the same time.

Interpretation of input differs with the two different cursors:
When the frame cursor is visible, key input is interpreted as
commands, and corresponding frames are inserted. When the
text cursor is visible, keys insert their own character literally,
as in a traditional text editor.

Technically, this introduces two separate modes: a frame
editing mode and a text-editing mode. These modes are entered
by cursor movement, and visually distinguished by a different
cursor representation. Whether this causes confusion to users
was one of the important early questions in this design, and
is discussed further below.

47



Figure 10. Preview of delete operations

Figure 11. A disabled frame

Statements are frames, and entered in frame slots, while
expressions are not frames, and are entered in text slots.

6.2.4. Deletion of Statements
As with insertion, deletion of a frame deletes the whole

statement. Deletion can be achieved using the delete or
backspace keys when the frame cursor is before or after the
frame, respectively.

Another option to delete a frame is to right-click the frame
with the mouse, and selecting a delete option from the frame’s
pop-up menu. Different delete options may be available: If,
for example, the frame is an if-statement, the statement can
be deleted while leaving the statements contained in its body
present, or the statements in the body may be deleted with it.
While a function is selected in the menu, a preview annotation
in the source code hints at the effect of the selected function
(Figure 10).

6.2.5. Disabling Frames
The example above, selecting ‘Delete’ from a frame’s con-

text menu, shows another advantage of elevating program ele-
ments to first class citizens in the interface. Since declarations
and statements have become interface entities in their own
right, they can have associated properties and functionality.

Most obviously, they can have a context menu which offers
operations on the frame. One of these operations is disabling
a frame.

Disabling a frame (Figure 11) temporarily treats the frame
as if it were deleted. In traditional systems, this is typically
done by “commenting out” a block of text. (One study [28]
found that 63% of all comment usages were disabling code,
not providing an actual text comment.) Again, we see the
richer possibilities of an interface not relying solely on char-
acters for functionality: “Commenting out” a sequence of
statements to temporarily disable them is technically a misuse
of the comment symbol – unused code is not a comment.
The purpose here is not to comment on other code, and a
comment symbol is used merely because of the absence of
other mechanisms.

If a comment symbol is entered at each line, entry and
removal can be tedious, and individual lines can be missed.
If a block comment is used, they typically cannot nest and so
consideration must be given to whether the commented section
already contains a block comment.

Existing text-based environments can alleviate the issue of
the display by giving comments a different appearance (al-
though there is no distinction between actual prose comments
and disabled code). Our frame editor gives disabled frames a
lightly blurred appearance (Blockly has similar functionality
and changes the background appearance). Unlike in traditional
editors, it is not possible to comment out part of a statement,
for instance missing a closing bracket of a scope, and thus
breaking program structure.

The explicit disable function in the frame editor is both
visually clearer and less prone to syntax errors. A disabled
frame can be re-enabled by the user when required. All frames
inside a disabled frame are always disabled; you cannot re-
enable a frame inside a disabled block (we believe this would
make the program flow too hard to follow). However, inner
frames can be easily dragged out and re-enabled.

6.2.6. Selection and Clipboard Operations
One theme in frame-based editing is the idea that most

operations should act on whole frames (structures), and not
parts of frames. This also applies to selection.

Selection of frames always selects a whole frame, or mul-
tiple adjacent frames inside the same enclosing frame slot. If
the user selects a loop frame, for example, all of its content
is automatically included in the selection. As a consequence,
a frame selection must always begin and end within the same
frame slot (scope).

Multiple selected frames can be dragged simultaneously
as described in the next section, or the usual cut and copy
operations can be performed. Frames may be pasted at a frame
cursor location. So cut/copy/paste may be performed on single
frames or multiple consecutive frames (at the same scope), and
is also possible on the text content of individual slots.

When one or more frames are selected, inserting a control
structure frame wraps the selection in that frame; the selection
becomes the body of the inserted structure. This provides an

48



Figure 12. Cursor indicates valid (top) and invalid (bottom) drop
targets. The drag source (at bottom of each) is blurred during drag.

easy way to add a loop or if-guard to existing code, as would
be done in text by adding a header at the beginning, then
adding a closing curly bracket at the end, then correcting the
indent.

6.2.7. Drag and Drop

Treating statements and declarations as interface entities
also naturally leads to the expectation of being able to perform
drag-and-drop operations on them. Frames can be dragged
with the mouse and dropped at alternative locations.

In traditional text editors, similar functionality is usually
available: Text can be selected, and the selected text can be
dragged and dropped to a different location.

Again, the different unit of manipulation (editing frames
instead of editing characters) leads to various advantages in
our editor compared to text:

• In text editors, arbitrary spans of text can be selected and
dragged. These may include parts of statements, acciden-
tally selected, and thus the drag operation may invalidate
program structure. In the frame editor, only complete frames
can be dragged. (This includes simple one-line statements
– these are also frames.)

• Selecting a complete multi-line statement in a text editor
typically requires careful targeting with the mouse, making
this a high-overhead operation. It usually requires careful

consideration of including whitespace, indentation or trail-
ing return characters in the selection, resulting in different
formatting for subtly different choices. No such consider-
ation and fine targeting are required in a frame editor; the
frame is a large target, and does not require selection before
dragging.

• In text editors, dragged text may be dropped anywhere,
again potentially breaking program structure. The vast ma-
jority of potential drop locations are syntactically invalid,
yet no help is provided by the editor in identifying the
few valid ones. In the frame editor, frames may be dropped
only at locations where they maintain a syntactically correct
structure. While frames are being dragged, the cursor indi-
cates whether a potential target is valid or not (Figure 12).

It makes little sense to allow, for example, placing state-
ments outside of a method body or method declarations at
locations where they are invalid. Since many more potential
edits invalidate legal structure than maintain it, disallowing
invalid manipulation severely cuts down the space of possible
user actions. Fewer possible actions lead to simpler and more
expressive interfaces and fewer mistakes.

Dragging and dropping in frame-based editing also has
advantages over block-based editing. In most block-based
editors, it is awkward to drag out individual blocks or two
adjacent blocks from a larger body. Generally, you must either
drag the blocks separately, or (in the case of Scratch and many
others), drag out the body, pick it apart with a further drag or
two, then drag back the pieces you wanted to keep in place.
Allowing a frame selection followed by a drag provides a
much easier and clearer way to perform such a manipulation.

6.2.8. Changing Frame Type
One manipulation that is often highlighted as difficult in

block-based or structure editors is that of changing the type
of frame. A common example is changing while loops into if
statements, and vice versa. There is also the issue of changing,
for example, method calls into assignments if you wish to store
the result (either because it was a mistake to discard it, or
because you now need the result3), or vice versa if you decide
not to. We have different mechanisms for these manipulations,
which we will consider in turn.

We resolve the issue of changing method calls into assign-
ments by direct text editing. If the user types an assignment
symbol (the ‘=’ character) in a method call frame then the
frame is automatically converted into an assignment frame.
Similarly, deleting the assignment symbol from an assignment
frame (by placing the cursor before and pressing delete, or
after and pressing backspace) converts in the opposite direc-
tion. This means existing text-manipulation patterns transfer
directly. This does present a question as to whether it is worth
conceiving of method call and assignment frames as different

3Many Java methods have a side-effect and return a value which may or
may not be of interest. For example, the remove method on lists in Java
removes the element from the list if present, and returns a boolean indicating
whether the item was present or not. Depending on your code, you may or
may not care whether it was present or not beforehand.

49



at all. We believe it is pedagogically useful to consider assign-
ment different from a plain method call, even if technically in
the editor, there is minimal difference.

The issue of transforming while to if statements is handled
differently, because we do not allow editing of keywords, and
thus text-manipulation cannot be used to make the change.
Initially in the Stride editor, we were uncertain whether it was
worth providing this transformation. Our intuition was that this
transformation was rarely needed. However, we have access
to a dataset to verify this. The Blackbox data set [29] records
the editing behaviour of several million sessions of BlueJ, our
beginners’ Java IDE.

We looked in the Blackbox data set for the number of edits
(and session counts) which introduced a new line of code
containing an if statement, a new line of code containing
a while statement, or changing if to while (and vice versa)
without changing the accompanying condition4. We found that
(to 3 significant figures):
• In total, there were 732,000,000 edits across 9,160,000

sessions.
• 2,030,000 edits (across 1,030,000 sessions) introduced a

new line with an if statement header
• 46,900 edits (across 35,200 sessions) changed an if state-

ment header to a while
• 376,000 edits (across 277,000 sessions) introduced a new-

line with a while loop header
• 40,600 edits (across 29,400 sessions) changed a while loop

header to an if
This means that over 10% of the while loops written later

get changed to if statements (minus those which are changed
back and forth between while and if, something which is
difficult to track). This was a much larger proportion that we
had anticipated, and on this basis we introduced a context
menu option to change an if statement to a while loop, and
vice versa.

6.2.9. Localised History
Our frame-based editor has a standard, class-wide undo

system: The standard Ctrl-Z shortcut undoes the last edit,
whether it altered the value of a text slot or moved, added
or deleted a frame.

A previous study of programmer behaviour, however, found
that programmers rarely used the undo feature [28]. Program-
mers observed in this study preferred backspace for correcting
recent typing mistakes. They were often unable to use undo
for their other corrections because they had already made
subsequent correct edits elsewhere before noticing the error;
undo would have removed these first.

To solve this problem, we offer localised history. Each slot
keeps a history of the three most recent content values. A sub-
menu in the context menu offers these values for selection to
restore an earlier state. This mechanism provides independent
undo functions for logical elements of the code, even if other

4This stipulation avoids falsely counting cases where the user has happened
to paste completely different line(s) of code over the previous code.

edits have been made elsewhere. Apart from providing more
flexible undo, this function also supports easy experimentation:
Values may be changed temporarily with the ability to restore
previous values easily. Like several features in our frame-based
editor, this feature is difficult to implement well in text-based
editors [30], but is straightforward in frame-based editing.

6.2.10. Extending Frames
Many frames, such as while loops, have a fixed structure.

Other frames, however, can be extended: An if-statement
frame, for example, begins without an “else” clause, but can
be extended to add it. Another example is the extension of a
constructor definition to add a “super” or “this” call to invoke
another constructor. Frame extension is triggered by command
keys, just as frame insertion. For example, to add an “else”
clause to an if-frame, the user should place the frame cursor
inside an if-frame, and press the ‘e’ key; any frames after
the cursor position will be used as the body of the new else
clause. Adding “else if” clauses is done in a similar way, with
the ‘l’ key. Deleting such extensions is done by placing the
frame cursor at the top of the following frame slot and hitting
backspace.

6.3. Navigation
The frame cursor allows navigation and manipulation to

be performed with the keyboard, which is the preferred input
method for navigation for practised programmers [31].

The frame cursor is always positioned between frames. Up
and down navigation moves in steps of single lines by default
(mimicking traditional editors). However, combining the use of
cursor keys with a modifier key moves the cursor at the current
scope level, jumping over compound frames in a single step.
This adds a generic method of quick movement; if the cursor
is outside of a method, for example, this command moves in
increments of whole method definitions and provides quick
navigation through a class.

The left and right cursor keys enter a slot in the neighbour-
ing frame, whether it is a text slot or a frame slot, positioning
the cursor at the beginning or end of the slot: The left key goes
to the end of the last slot in the previous frame, while the right
key goes to the beginning of the first slot in the next frame.
The TAB and Shift-TAB keys can also be used to navigate
slots.

Overall, this key binding largely mimics movement in tra-
ditional text editors, but adds generic navigation options for
additional structure-based movement.

6.4. Overtyping
Most syntactic elements, such as parentheses, commas and

spaces, are automatically displayed annotations and decora-
tions; they do not need to be typed and cannot be edited. A
new frame is created with these decorations, and only slots
need to be filled in (Figure 13). Using a TAB character or
right arrow advances to the next slot.

While this is a common interaction sequence for form fill-
in, it goes against the habits of programmers, who are used to

50



Figure 13. A method frame with empty slots

typing the spaces and other syntactic elements. In the Stride
editor, typing the syntax elements is permitted and advances
the cursor to the next slot. The programmer can effectively
“type over” a syntax element. For example, when entering the
method return type in Figure 13, typing a space moves the
cursor to the method name field. From there, typing an open
parenthesis advances the cursor to the parameter list. Pressing
space again moves from parameter type to parameter name.
A comma in the parameter name slot creates the additional
parameter slots and places the cursor into them.

As a result, an input key sequence that would type the
method signature in a traditional text editor also works iden-
tically in the Stride editor. This supports the muscle memory
of experienced programmers, who do not need to relearn all
habits of program entry.

6.5. Editing in Text Slots
When filled in correctly, text slots appear as normal text

on the background colour of their enclosing frame (see, for
example, Figure 4). This ensures that lines of code can be
read as flowing text without unnecessary visual overhead. Text
slots that are either empty or have keyboard focus have a white
background.

The Stride editor has three types of text slots: identifier slots
that support entry of an identifier of the supported language,
choice slots that allow entry of a limited set of fixed values and
expression slots for the entry of expressions. Using specialised
slots for different kinds of token in the syntax tree allows
support for more efficient content entry as well as better
avoidance and reporting of errors. We will give more detail
on each type of text slot in turn.

6.5.1. Identifier Slots
Identifier slots allow the textual entry of program identifiers,

but inhibit entry of characters that are syntactically invalid in
this context, such as punctuation characters. Typing characters
that follow the identifier slot, such as a space or the opening
parenthesis after a method name, causes slot advance by
overtyping as described above. Special characters can also
cause the insertion of optional slots; typing, for example, a
comma in a formal parameter name inserts an additional pair
of slots for entry of an additional parameter.

6.5.2. Choice Slots
Choice slots allow selection of one of a small number of

possible values. They are used, for example, for the access
modifiers of method declarations (Figure 14) which have three
possible choices.

Figure 14. Text entry in a choice slot

Choice slots behave in ways similar to combo boxes in many
interface toolkits: One value is always selected (they are never
empty), and choices can be made using the mouse or cursor
keys. Textual entry, however, is also possible. When the slot
gains keyboard focus, a menu of choices is displayed, with the
top choice selected. Typing narrows the choice list to those
values starting with the characters entered (invalid characters
are ignored), and using TAB, return, space, or a right arrow
at any point confirms the current selection and advances focus
to the next slot.

This method again ensures syntactically valid program
structure while allowing overtyping of the whole text if de-
sired, with the added possibility of much faster entry.

6.5.3. Expression Slots

Expression slots allow the entry of expressions, including
arithmetic expressions, variables and function calls.

Expressions are structured. When an operator is entered in
an expression slot (such as a plus symbol), the expression
acquires a new structure, with an operator in the middle
between two text fields for each of the operands. The operator
itself is not part of the text fields; it can be deleted, merging
the text fields again, but cannot be edited.

Multi-character operators are easily inserted. For example,
typing “<” (the less than symbol) splits the current text field
into two, with the less than operator between them. Typing
“=” (the equals symbol) at the beginning of the second field
will automatically merge with the less-than operator to make
less-than-or-equal-to, just as would happen when typing text.

Entities that appear as pairs of symbols (such as paren-
theses, brackets and quotes) always appear in full: entering
one half enters the other half automatically. While traditional
text editors typically also do this for entry (e.g., typing an
opening parenthesis automatically inserts the closing one), the
link in the Stride editor is stronger: The pair of symbols
remain linked and are processed during editing as a single
operator. Deleting one also deletes the other, selection and
drag-and-drop operations always operate on the complete sub-
expression, processing both or none of the bracket symbols.
Existing expressions can be enclosed in parentheses by se-
lecting the expression in question and pressing the opening
parenthesis. This will enter both surrounding symbols.

Again, as before, various advantages flow from the fact that
the user edits the structure of the code, not the representation:

• Some syntax errors become impossible to make, cutting the
overall error rate.

51



Figure 15. Prompt text and tooltip for parameters

• Edit operations, such as selection and drag-and-drop can
guarantee to maintain syntactically valid structure.

• Errors that do occur can be associated more precisely with
a particular token in the program source, because there are
no structural syntax errors such as missing brackets.

• While structure is under the control of the programmer,
representation can be automated. For example, spacing be-
tween symbols and arranging line breaks and indentation in
long lines can be automated to be consistent and meaningful
which can enhance readability.
Automatic adaptive spacing is used in the Stride editor to

clarify precedence of operators (higher precedence operators
use less adjacent space than lower precedence operators).
This technique has previously been used in mathematical
editors [32] and in print-outs of code [33] but not usually
in WYSIWYG programing editors. It can lead to respacing
of an expression as it is entered, which is not ideal but we
believe is outweighed by the ensuing readability advantage.

All Java expressions can be entered in Stride’s structured
expression editor using exactly the same keypresses (although
almost all the space characters are redundant due to the
automatic spacing), meaning that those used to text will notice
no difference on entering text, just in the display.

Again, through the use of overtyping and flexibility in
navigation, text entry feels natural to seasoned programmers,
with opportunities for faster entry when becoming familiar
with the frame editor.

Our expressions are displayed and entered infix. We believe
it is important that the entry and display align. While we did
not choose to use prefix notation in Stride, in prefix-expression
languages like Lisp at least the entry and display are also
aligned. Many of the early structured editors displayed infix
expressions but required prefix entry. This required that the
user understand the abstract syntax tree behind the expres-
sions being created – but novices do not yet understand that
an expression is a structured tree. Therefore we felt it was
important to be able to enter expressions infix, to match how
they are displayed in the editor.

6.5.4. Prompts and Hints
One advantage of using interface elements other than pure

text for the representation is the ability to display prompts to
provide guidance for expected entry. We have seen examples
in the condition of an if-statement (Figure 7) and the definition
of a method signature (Figure 13). While these examples are
mainly useful for beginners who have not yet memorised the
syntax of those statements, there are other situations where
these prompts remain helpful for experienced programmers.

One such example is found in the actual parameter(s) of
method calls (Figure 15). In this example, the prompt text
shows the name of the formal parameter, and a tooltip may
provide additional information, showing the type and param-
eter comment.

Many existing program editors also provide helpful content
for actual parameters when entering method calls via an auto-
complete mechanism. Some enter the formal parameter name
(as in our prompts), while others guess at a possible intended
value and enter the name of a nearby variable of matching
type. None of these is ideal. In the first case, the resulting
program text is almost certainly wrong, but appears to have
been completed. In the second case, the program may compile
and run, without leaving a hint that the programmer may not
have considered and confirmed the default choice, potentially
introducing semantic errors.

The problem, again, stems from the fact that the interface
elements are just plain text: traditional text editors cannot
display text to the user embedded in the program source that
is not also part of the program, and therefore interpreted by
the compiler. (Modern IDEs are starting to develop the use of
prompts and pop-up windows for this purpose.)

In the Stride editor, using richer interface elements, we can
display the prompt text to the user while still recognising
the slot as unfilled, delivering helpful information and more
accurate errors at the same time. For example, if you write
a method in Java and forget the type or name of a param-
eter (e.g. “public void setX(x) { }”), you will get
an unhelpful error “<identifier> expected”. In Stride,
either the type or name slot will be empty, showing a more
helpful message such as “name cannot be empty”.

7. Interface Elements
The Stride editor uses various additional interface elements

to improve readability and provide additional information to a
programmer.

7.1. Method Header Display
The signature of a method contains important information:

its name, parameters, and the return type. This information is
frequently useful while reading or editing any given method.
However, if the method is longer than a few lines, the informa-
tion often scrolls out of view. In the Stride editor, scrolling up
leaves the header visible, sticking to the top of the window,
and the body of the method appears to slide underneath it
(Figure 16). Thus, the most important contextual information
remains visible.

7.2. Long Scope Annotation
Another example where header information is useful is in

the use of frames which contain conditionals in their definition,
such as if-statements and loops. Figure 16 shows examples of
these where the frame header has scrolled out of view; the
header information is then displayed in the left margin of the
frame, leaving it visible for the programmer.

52



Figure 16. Method signature pinned to top of screen

Figure 17. The bird’s eye view

An alternative would have been to treat these frames iden-
tically to method frames and pin the header to the top of
the display (or, indeed, to also use the left margin for method
header displays). Pinning all open frame headers to the top was
considered undesirable as it would have resulted in a potential
stack of multiple headers, consuming more space and reducing
readability.

The more significant context of the enclosing method, and
the fact that there is only ever one enclosing method in Stride
(which does not support Java’s inner classes), justifies different
treatment with more prominent presentation.

Figure 18. List of inherited methods

Figure 19. The override annotation

7.3. Bird’s Eye View
The bird’s eye view is an alternative (temporary) view of

the class for quick orientation and navigation. Bound to a
command key, it can easily be activated and displays only
instance field, constructor and method frames, reduced to their
signatures (Figure 17). A second press toggles the display
or hiding of documentation (useful to see more details about
methods, but reduces the conciseness of the method list) and
a third press exits bird’s eye view.

As a result, users can get an easy and quick overview
over available methods, and easily navigate the class. Up- and
down-arrows select method frames, and pressing the Return
key or clicking with the mouse returns to the standard display
with the selected method in view. (A similar view-only op-
eration is available in Blockly to collapse all visible blocks,
but without the functionality to easily navigate between the
collapsed blocks.)

7.4. Inherited Methods
Inherited methods are available for invocation in subclasses.

Traditionally, the available inherited methods are not easily
visible without referring to documentation outside of the class
under construction. This causes problems for learners who
would use methods from the superclass without understanding
where the methods were declared.

In the Stride editor, a small arrow next to the superclass
name in the ‘extends’ declaration allows a list of inherited
methods to be unfolded (Figure 18).

This list serves two purposes: It provides easily accessible
in-editor documentation of the methods available, and it allows

53



Figure 20. The “Cheat Sheet”, which appears on the right of the
editor

the user, via a command in a contextual menu, to override
an inherited method. Selecting the override function on an
inherited method inserts the appropriate method definition
into the current class. It should stop the availability of meth-
ods seeming ‘magic’ to beginners, by allowing all available
method calls to be seen in a class, either directly declared or
shown in the inherited list.

Methods can also be overridden in the traditional way:
by simply defining a method with a matching signature. In
this case an override annotation is automatically added to the
method definition display (Figure 19), serving as information
to the reader. This contrasts with override annotations in Java,
which the programmer must enter and manage themselves.

7.5. The Cheat Sheet
A small arrow on the right-hand side of the editor allows

a separate window pane to be displayed, showing the “Cheat

Sheet” (Figure 20). Viewing or hiding this pane is also possible
via a shortcut key, and is shown by default for new users.

The Cheat Sheet lists all frames that can be inserted at the
current cursor position, together with their command keys.
Using the command key or clicking on the frame in the Cheat
Sheet inserts the frame into the program text.

The Cheat Sheet serves a similar purpose as the block
catalogue in block-based languages: It supports recognition
over recall and encourages experimentation for users who are
not familiar with the whole range of options. One significant
difference is that block catalogues in most block-based lan-
guages show all available operations (method calls) separately,
while Stride offers only different types of frames. Thus, a
method call is shown as a single option, encompassing all
possible method calls. Selecting a specific method from those
available is left to the code completion mechanism, described
below.

As a result of this choice, the number of available options
at any point is limited and a complete set of options can be
displayed in a relatively small amount of space. (Figure 20
shows the complete list of all available statement frame types
that can be inserted at the a typical frame cursor position inside
a method.)

The Cheat Sheet is context sensitive: At any time, only
valid options are shown. If, for example, the cursor is be-
tween method definitions, only commands to insert methods
or comments are offered. One potential disadvantage is that
if a student wants to insert a frame not available at the
current context (e.g. a method, but their cursor is already
inside a method) then they will not find what they are looking
for. However, we expect that this will only be an issue for
beginners, and students will soon learn which elements are
available in which context.

8. Context-Aware Editing
In a traditional text editor, the entire text area is one in-

terface element. If the editor aims to offer context-sensitive
support, the editor must infer the type of structure currently
being edited from the representation. In a frame-based editor,
each part of the code (i.e. each node in the syntax tree) is
represented by a separate interface element. The programmer
edits the structure, not the representation, so the context of
the element edited is always known. As a result, frame-based
editors can much more easily offer context-aware editing: we
describe several examples of this here.

8.1. Contextual Code Completion
Code completion allows a programmer to insert code more

quickly than typing it in full, by selecting “completions” from
a generated list, usually chosen by matching the already typed
prefix to possible suggestions (e.g. typing “get” would offer the
completion “getNeighbours”, Figure 21). Text-based editors
often offer completion of variable and method names.

The Stride editor also offers completion of variable and
method names – but only in expression slots. If the user
is editing a type slot (e.g. a method return type or variable

54



Figure 21. Code completion in Stride

declaration type), code completion offers type completions
instead (e.g. “St” will offer “String” as a completion). If the
cursor is within a string literal, code completion offers a list of
frequently used string literals (in Greenfoot’s case: image and
sound filenames in the current Greenfoot scenario) as choices.
If the user is editing a method name slot and requests code
completion, names of methods in parent classes are offered
for overriding. In a “throws” clause, only subtypes of type
Throwable are offered, and so on.

In short: The fact that the Stride editor maintains code
structure more explicitly enables better contextual support for
code entry.

8.2. Error Messages
In a text-based editor, a single character (present or missing)

can cause a parse error that affects the parsing of the rest of
the file. Too many closing curly brackets or an unterminated
string literal can affect the parsing of the remaining code.
Thus, relevant syntax error messages can be hard to determine
and can be affected by distant mistakes.

In a frame-based editor, the location of the source of a
syntax error can be much more precisely determined. There is
no possibility of unclosed scope, unterminated string literals
or missing semicolons. Each syntax error can be attributed to
a single slot in a frame.

For example, entering the text “wait(,,);” into Eclipse shows
the error “wait cannot be resolved to a type”, as the editor
struggles to decide if this is intended to be a method call or
a variable declaration. In a frame-based editor, this choice is
made explicitly upfront, and entering “wait(,,)” into a method

call frame will display two errors stating “parameter cannot
be empty”.

In fact, because so many invalid inputs are disallowed in
frame-based editing, the majority of remaining syntax errors
are simply “X cannot be blank”, positioned exactly at the
offending text slot.

8.3. Suggested Fixes
Some IDEs offer suggested fixes to a program when they

detect an error. Our Stride editor does the same, and usually
with less technical effort. In order for a text-based IDE to offer
the fix “You are attempting to assign to undeclared variable x;
fix by declaring here?”, an IDE must parse the source, deter-
mine that this is an assignment statement, check whether the
left-hand side is declared, offer this fix, and then manipulate
the text to change to a variable declaration. In our frame-
based editor, we implicitly know that an assignment frame
is an assignment; we must still check if the left-hand side
is undeclared, but then implementing the fix simply requires
swapping the assignment frame for a variable declaration
frame.

These examples demonstrate that offering improved help
and support for programmers, while not impossible in text-
based editors, is technically easier to implement in a frame-
based editor. As a result, we are able, in some areas, to offer
better functionality in the first release of a new editor than
existing professional IDEs currently offer after many years of
development.

8.4. Context-Awareness vs Error Tolerance
There is sometimes a tension between context awareness

and error tolerance. As a simple example, when the user is
entering content in a type slot, we could only allow entry of
existing known types. However, it may be that the user intends
to introduce a new type (and thus precluding its entry would
be frustrating) or they want it to be incomplete (e.g. they have
a List but need to look up its inner type). So we allow the
erroneous type to be entered even though we know it to be
wrong.

Another example is the context awareness of the frame
cursor, where we make different choices in different contexts.
We do not allow arbitrary code to be inserted outside methods:
we know this to be wrong, and if the user wants to enter an
arbitrary code fragment, they can always add it inside a nearby
method. More subtle is the case of break frames: we know
that they are only valid inside a loop or switch frame. But this
means the context relies not only on the immediate parent, but
the grandparent or further. Additionally, the user may write the
break ahead of enclosing the current code in a loop. We thus
allow break frames to be entered anywhere a statement can,
and an error will be issued if this is an invalid placement.

9. Implementation
Frame-based editors must store program code and attribute

information, such as the enabled/disabled state of frames. It

55



would be possible to store the frame structure as standard
text (e.g. as Java code). An advantage then would be the
interoperability on the same source files with other editors.
We do not do this for several reasons.

Firstly, it requires extra technical effort to read and write
the code from/to Java compared to storing it in a structured
format. Secondly, if the file was externally edited it could
be in an invalid state that is unrepresentable in our frame
editor. Thirdly, any details such as white space in the Java
code would be difficult or impossible to preserve during frame-
based editing. Fourthly, Stride only supports a subset of Java,
which makes it awkward if the Java code contains features
unsupported by Stride (see appendix).

In short, storing the code as Java text would expose many
of the problems that frame-based editing eliminates. Thus, the
Stride editor stores the code in a simple structured form, using
XML.

One historical advantage of text is that it was portable
between tools. But this is not an inherent advantage of text-
based programming: the advantage of being able to edit code
in multiple editors, and for code written in Emacs to be
analysable in Eclipse is not to do with text, it is because
there is a standard format for Java code (defined by the Java
language standard). There is no reason that Stride code stored
as XML could not also be edited, analysed or compiled by
other tools (including existing text editors, although this would
be slightly unwieldy). Alternatively, Droplet [34] has shown
that frame-based or block-based editors can use text as the
canonical representation if desired.

We transform the program to Java source code for compi-
lation, and then use a standard Java compiler. Any semantic
errors are passed back into the editor for display to the user.
(There should be no syntax errors generated from frame-based
code, as syntax errors are detected during the Java generation
phase and short-circuit the process.)

To support the transition of learners from Stride to Java, we
also allow to preview Stride code as Java (using an animated
transformation) directly in the Stride editor, and to convert the
Stride code to Java for further editing in standard Java form
in a traditional text editor. Greenfoot supports development
in either Java or Stride, and classes in the two languages are
interoperable. This transition is also behind the syntax choices
of Stride: with a frame-based editor, the choices of keywords
or syntax (e.g. brackets around the if-condition) are a choice
solely based on visual design and comprehension rather than
ease of entry. We retain similarity to Java to allow an easier
transition from Stride to Java.

10. Evaluation A: CogTool
To evaluate the effectiveness of the design features of the

Stride editor, we have carried out a study comparing task times
of common editing tasks performed in a frame based editor
and seven other commonly available and popular programming
systems.

The editors used for this study were an earlier prototype
of our Stride editor to represent frame-based editing, Scratch,

Alice, and StarLogo TNG as examples of traditional block-
based systems, the Lego Mindstorms NXT [35] editor as an
example of a visual editor with an alternative design, and
NetBeans (Java), Greenfoot (Java), and IDLE (Python) as
representatives of common text-based editing.

The results of this evaluation have been presented in an
earlier paper [36] and are summarised here.

10.1. Cognitive Modelling
To compare the editing tasks performed in each editor,

we used CogTool [37], a software tool that automates the
creation of cognitive models for the purpose of evaluating and
comparing interactions in competing systems. Cognitive mod-
els extend on keystroke-level interaction models by including
“mental” operators, such as eye movement, reading time and
thinking time in addition to explicit interaction events (such as
key presses, mouse movements and mouse clicks). It should
be noted that CogTool is primarily intended for measuring
expert use, and aspects such as novice learning processes are
not addressed.

Cognitive models more accurately reflect interaction com-
plexity and time than keystroke-level models, but are more
difficult to correctly construct by hand [38]. It can be difficult
to judge which mental operators to include at what time, and
errors are easily introduced. CogTool automates the creation of
the cognitive models, improving accuracy considerably [38].
CogTool records the interaction sequence and uses the “Adap-
tive Control of Thought – Rational” (ACT-R) architecture, a
computer model of human cognition [39] to generate a model
of the task.

10.2. The Experiment
Green and Blackwell [40] define six “cognitive activities”

in relation to programming activity: “incrementation” (adding
new code), transcription (copying a design into code, or
copying code from somewhere else), modification, exploratory
design, searching, and exploratory understanding. For our
experiment, we primarily covered the incrementation and
modification categories. These cover common editing tasks,
including inserting and modifying statements, deletion and
restructuring of code.

Forty-six common editing tasks were defined and carried
out in each of the target systems. CogTool was used to
record and analyse the resulting interactions. For simplicity
of presentation, the tasks were grouped into five categories:
adding new statements (n=6), modifying part of a statement
(n=8), deletion (n=12), moving code to another location in
the program (n=13) and replacing code with another statement
(n=7).

10.3. Results
The recording of the sessions allowed us to observe the

number of steps involved in each task, and the cognitive
models generate simulated tasks times. The mean task times

56



Table 1. Mean editing times in seconds for various editing tasks. Lower times are better. Best time highlighted.

Scratch Alice Mindstorms StarLogo Python NetBeans Greenfoot Frame editor
Insert 4.87 6.56 15.95 12.50 3.95 5.09 3.80 1.64
Modify 5.61 7.05 9.10 8.29 5.44 5.53 5.84 5.01
Delete 5.44 2.56 6.51 5.59 5.53 7.82 6.53 2.42
Move 5.48 3.09 3.82 4.97 5.18 6.01 12.20 4.84
Replace 9.80 8.90 18.55 11.55 5.16 5.10 4.69 2.29

produced by the model for each system, grouped by task type,
are presented in Table 1.

An analysis of variance (ANOVA) shows that the differences
between systems are significant in all groups except “Modify”.
Mean task times are lower for the frame editor in all groups
except “Move”. These results support our hypothesis that
frame-based editing can improve on the efficiency of common
editing tasks compared to existing editors.

11. Evaluation B: Frames vs Text in Middle
School

We aided in an evaluation of frame-based editing against
text-based editing among middle-school students. The results
have previously been published elsewhere [41] but are briefly
summarised here.

18 middle-school students were set a task in Java in Green-
foot, while 14 other students were set the same task in Stride
in Greenfoot. This allowed the task and IDE to be kept
constant between the conditions, with the only difference being
the editor paradigm: text-based Java or frame-based Stride.
Students were given a 25-minute introduction followed by the
60-minute task.

The students in both conditions rated the activity as low
frustration and high satisfaction. No differences in satisfaction
were found between Java and Stride; there exists, however, a
potential of a ceiling effect. Students in the Stride condition
advanced through the task instructions faster than the Java side
and completed more objectives with less idle time than Java.
Less time was spent making syntactic edits in Stride than in
Java, and less time was spent in Stride with non-compilable
code. Stride users encountered issues with remembering to
press the command key to insert a frame rather than just typing
immediately.

12. Evaluation C: Experienced User Study
We conducted a small user study with participants who had

programmed before to collect their opinions on using the new
editing paradigm. The results of this study have not previously
been published.

12.1. Method
We recruited 23 participants by advertising on the postgrad-

uate student mailing lists of the Computing, and Engineering
and Digital Arts departments at the University of Kent. The
study was approved under the ethics procedure at the Univer-
sity of Kent.

• What, if anything, did you find more difficult in a frame-based
editor compared to a text-based editor which you might usually
use?
• What, if anything, did you find easier in a frame-based editor
compared to a text-based editor which you might usually use?
• Did you complete task 1? Did you have any particular difficul-
ties doing so?
• Did you complete task 2? Did you have any particular difficul-
ties doing so?
• Did you complete task 3? Did you have any particular difficul-
ties doing so?
• If the frame-based editor had all the advanced features of a
professional IDE (e.g. easy project organisation and navigation,
refactoring support, version control, etc), would you consider
using a frame-based editor over a text-based editor? Whether
yes or no, please explain your reasons.
• Briefly describe your previous experience in programming:
what language(s) you commonly use, how many years you have
been programming, and what editor(s) you usually use.
• Do you have any comments you want to make about the
frame-based editor which did not fit into the previous questions?

Figure 22. The free-text questions asked in the electronic survey.

In one parallel session, the participants were seated at com-
puters and given a 5-minute verbal introduction and demon-
stration of the Stride editor on a projected screen. Participants
then worked through three sets of tasks in order. Task 1
involved detailed steps to carry out various editor interactions
(e.g. inserting frames, deleting frames, editing frames). Task
2 asked participants to enter large pieces of provided code
into the editor, and task 3 (for those few who finished all of
task 2) was to program extensions to the Greenfoot project
they had entered in task 2. Participants worked on the tasks
for around 50 minutes, with most near the end of task 2 at
the end of the allotted time. Subsequently, they were asked
to fill in an electronic survey containing some open questions
with free-form text responses (shown in Figure 22) and some
questions to be answered using a 7-point Likert scale (shown
in Figure 23).

12.2. Results
Participants were asked (as free text) to provide details

on their programming experience. 21 of the 23 participants
indicated how long they had been programming: the median
was 7 years. The most popular programming languages were
C++ and Java (17 of 23 participants in each case) and the most
popular editors mentioned were Visual Studio (7 participants)
and Eclipse (5 participants). We did not collect data on na-

57



Which editor... Mean
(1 d.p.)

Distribution

...is faster to program in 3.6
� � �

...requires fewer keypresses 4.7 � � �

...makes code easier to read 5.6 � � �

...makes it easier to insert
new code

4.4 � � �

...makes it easier to edit ex-
isting code

3.4 � � �

...makes it easier to delete
existing code

5.6 � � �

Figure 23. The results of comparative questions on a 7-point Likert
scale, where 1 meant text-based editor, and 7 meant frame-based
editor. Thus, 4 is neutral, numbers lower than 4 favoured the text-
based editor, above 4 favoured the frame-based editor.

tionality but we observed that many participants did not have
English as a first language. We do not believe this affected
their ability to follow the instructions (they were all studying
at an English-speaking university), but it did lead to some
slightly broken English in the responses.

The results for the Likert scale questions are shown in
Figure 23 with details of the distribution of the responses on
the 7-point scale.

12.2.1. Negative Comments
To analyse the open text responses, we created categories for

the responses and tagged the answers given by the participants,
which we will detail now, beginning with the negative issues.

Learning Curve: The issue of the learning curve was raised
by 9 participants. By far the most frequently cited issue was
remembering to press a command key to insert a frame before
typing the content: “The shortcuts to start a new frame take
a bit of getting used to (in the beginning I’d often open
a frame by mistake by starting typing my line of code).”
One participant noted: “especially with the assignation [i.e.
assignment frame] because we are use to write the left side
first before telling it’s an assignation”.

Navigation: Four participants mentioned frame cursor nav-
igation being difficult, and another four mentioned some spe-
cific cases where they found it difficult to navigate between
certain slots using the keyboard. We plan to address these
issues in the software; it is our belief that they are solvable
usability issues rather than inherent aspects of the design (as,
for example, the command keys are).

Expression Editing: Seven participants mentioned that
editing text at the slot level could be more awkward than in a
text editor. Two highlighted the difficulties of editing incorrect

brackets when the brackets must remain paired (which pre-
vents deletion of a single bracket to move it elsewhere). This is
a cost of the advantage of never having mismatched brackets.
We plan to investigate whether there are usability additions
(e.g. allowing the drag of an opening or closing bracket to
move it) that can mitigate this problem.

Software Issues: Some responses mentioned issues with the
software, such as the code completion interface being slow,
one or two small bugs, or the lack of a “saved” indicator
when the work is auto-saved. Although we intend to address
any problems with the specific software, they do not relate
to the editing paradigm design, so we will not discuss them
further here.

Two participants also offered the viewpoint that frame-based
editing was not as advantageous as it perhaps would have
been when text was first used with primitive text editors,
because many IDEs now offer what they viewed as similar
functionality: auto-indentation, forms of scope highlighting,
text selection and mouse-dragging.

12.2.2. Positive Comments
The positive comments were categorised as follows.
Easier to read: As shown in the Likert scales in Figure 23,

most of the participants found the frame-based editor easier to
read, and this was confirmed by several mentions in the free-
text responses (e.g. “It’s more structured and easier to follow
your code.”), although none went into great detail as to why
(two mentioned the colouring and scope highlighting).

Easier to insert new code: The Likert scales for easier to
insert new code show a slight favouring of frames, and the
fewer keypresses most likely relates to inserting new frames
too (since the command-keys is one of the major differences to
text). This is confirmed by many text responses, e.g. “I like the
speed with which you can get code created. I like not having
to worry about saving, semi colons, braces and parentheses.”

Easier to delete new code: This was one of the Likert items
that most favoured frame-based editing, and was backed up
by several text responses, e.g. “It is nice being able to treat a
whole frame as one unit for the purposes of moving / deleting
etc. Since it is broken up into frames you won’t get errors
with missing / extra closing braces after such tidying up of
code.”

12.3. Study Conclusions
The main problem participants highlighted was that of the

learning curve, and in particular, remembering to press a
command key to insert a new frame, rather than just beginning
to type. It is impossible to tell from a 1-hour session how long
this problem persists, but many participants seemed to view
the issue as a temporary initial hurdle rather than a permanent
problem.

The participants were almost equally split as to their prefer-
ence between frames and text. We view this as a very positive
result once you consider the context: after only one hour
with a new paradigm which has a difficult learning curve,
many participants (all of whom were quite experienced in

58



programming) indicated that they would consider using frames
over text.

To avoid overloading participants, we did not make mention
of all the frame-based editor features listed in this paper.
Several of the more advanced features – such as bird’s eye
view, the long scope annotation, the inherited methods pane,
tooltips, and overtyping – were not explicitly mentioned. Some
participants may have discovered a few of them, but we
focused primarily on the core interactions and features (the
frame cursor, frame insertion and deletion, etc). It may be
that participants would have been more positive about the
possibilities for long-term use if they had also seen the more
advanced features.

Participants praised the readability of frames, and the
speed/ease with which you can create new code, manipulate
existing frames and delete whole frames. The main sticking
point appears to be the editing and navigation of slots and their
content. Given that this hybrid approach of text and frames
(rather than pure-text of mainstream programming, or only-
blocks of Scratch et al.) is novel, there may still be room
to improve the text aspect so that any usability issues are
minimised or removed.

12.4. Threats to Validity

Participants knew that the experimenters had created the
Stride editor software being tested, which created a risk of
response bias. To mitigate this, we assured all the participants
that their responses were anonymous, and we avoided collect-
ing detailed demographic data (age, sex, etc), and used an
online form, to emphasise the anonymity of the responses.

It is possible that being non-native speakers may have
hampered the performance of some students both in terms of
the software (two students mentioned the QWERTY keyboard
layout of our PCs as being a problem for them) and the in-
structions. However, all students achieved a similar amount of
progress through the tasks (all completed task 1 successfully,
and most were near the end of task 2) and since we are not
using task progress as a measure for our analysis, this does
not seem to present a serious issue.

13. Related Work

There are two strands of previous work which relate to
frame-based editing: the work on structure editors from the
1980s and early 90s, and work on block-based editing in the
past ten years.

These strands of work suffered different fates. Structure
editing had a period of limited popularity but – apart from
a few Lisp editors – is barely used today. Block-based editing
has been a resounding success and is now the predominant
form of programming for younger age groups, via systems
such as Scratch, Snap!, Blockly editors and many others.
Given that our work relates to both, it is instructive to investi-
gate the fate of structure editors, and the relation between the
two strands of work.

13.1. Structure Editing: First Attempts

Structure editing started to receive attention in the late
1970s, beginning with systems such as the Cornell Pro-
gram Synthesizer [42]. Work on structure editors contin-
ued throughout the 1980s, producing systems such as GE-
NIE/GNOME [43] and Boxer [44] that saw some success,
as well as many other systems. There is a noticeable pattern
in the literature, with excited descriptions of new structure
editors in the early 1980s giving way to critical retrospectives
of structure editors’ failure in the late 1980s and early 1990s:
“Despite [structure editors’] potential, they have not been
successful, as evidenced by limited use. In general, they are
perceived as being too difficult to use and the benefits of their
use are outweighed by the difficulties.” [45].

So why did structure editors fail? We believe there are
four main reasons. Firstly, we should consider the computing
environments in the early 1980s. Text-mode displays were the
norm, mice would only become popular later in the 1980s,
and high resolution full-colour graphical displays would only
become widespread in the 1990s. Also crucial was that the
discipline of human-computer interaction (HCI) was in its
infancy in the 1980s. Interface design has improved immensely
in the 30 years since. All of these contextual issues meant that
the interfaces constructed for structure editors were hampered
in what they could achieve.

Secondly, there was a lack of flexibility in the structured
approach. Over time, the creators of structure editors noted that
structure editing could be awkward and overly restrictive at
the lowest levels in the syntax tree. Expressions were difficult
to manipulate, and were entered differently to their display
in many cases. They were entered prefix, with the operator
specified before the operands because the operator is higher
in the syntax tree than the operands, but displayed infix as is
standard in text editors (outside Lisp). Expressions also caused
issues with cursor movement: the cursor was generally moved
around the syntax tree which was not visible at the expression
level. For example, moving from 1 to 4 in the expression
(1+2)*(3+4) required moving “up” two levels (once to the
addition operator, once more to encompass the whole bracket),
then across one level (to the other bracket), then “down”, and
right. But these concepts of “up” and “down” are abstract and
not visualised; the user must understand syntax trees before
being able to navigate their program. As Miller et al. [46]
pointed out, structure editors were already quite different from
text editors in that the selection in a structure editor is almost
always a node and thus a range of text, rather than a point
(between characters) as users were used to in text editors.
These problems led to many systems providing hybrid editors,
where code could be entered either in text mode or in structure
mode. As per Minör [47], this could create difficulties for users
in obtaining a consistent mental model of the lexical structure
of their program code. Welsh and Toleman [48] suggested that
users do not think of their program as structured all the way
down, which relates to our decision to provide different editing
at different levels of the syntax tree.

59



Thirdly, we believe a further issue was that programming
instruction in the 1980s was primarily university-based. First-
year university students learning structure editing would be
required to switch to text-based editing (ready for exit into
industry) within the next year or two. Thus structure editing
had only a small window available: it had to provide sufficient
benefits that it was worth using for only a year or two, before
students had to make a switch which would be unnecessary
if text-based tools were simply used throughout. As we will
discuss in section 13.3, this is a different environment than the
one in which block-based editing would achieve great success.

Fourthly, there were elements of over-design in the editors.
Many, if not most, of the structure editors were not a single
editor, but rather editor generators. Given a formal language
grammar, the generator would automatically produce an editor.
As later work in this area pointed out [45, 49], this led to awk-
ward editing interactions. With present-day interface design
sensibilities, for example, we would not expect that given a
description of a database table, we could automatically gener-
ate a perfectly usable web form/user workflow to populate the
table. In our own work we have made several decisions specific
to the Stride language which would not generalise to other
languages: We believe an automated editor generator is highly
unlikely to produce very usable editors in each case. (We
note that similarly, Scratch and Snap! are editors for specific
languages, although Blockly provides a counter-example as it
is a framework for creating block languages.)

Crucially, none of these reasons for the failure of structure
editors strike at their core argument: that text is an inappro-
priate way to model structured program code. (Note: we use
structured here to refer to the lexical structure of code, not the
semantic structuring that “structured programming” referred to
in the 1960s). Instead, the arguments were that the structure
editors were too unusable. The open question going into the
1990s was: did structure editors fail because no-one had yet
worked out a way to produce a more usable editor than a text
editor, or would this never be possible?

A fascinating glimpse of the potential of structure editors
was provided near the end of the first wave of interest, in
a 1992 special journal issue on structure editors. Minör [47]
describes there a possible direct manipulation structure editor,
and shows a prototype interface (reproduced here in Figure 24,
overleaf). We would now identify this as looking like an
early prototype of the today’s block-based editors. So the
structured programming era ended by pointing towards block-
based editing, just as interest in it died. Over a decade later,
these ideas would be independently reinvented by later work
such as Agentsheets [50] and Scratch to great success, as
discussed in section 13.3.

13.2. Structure editing: Recent Work
There were isolated pieces of further work on structure

editors after the 1990s, followed by several recent examples
of work in the area. In 2006, Ko and Myers [31] described
Barista, a structured code editor generator (see earlier com-
ment) which allowed editing in text or structured mode as

discussed earlier. Barista was a prototype, with a mouse-
focused interface for adding new blocks and little support for
keyboard navigation or manipulation.

A recent effort at structure editing was presented by Os-
enkov for C# [51]. The indentation level is under editor
control, as in our frame-based editor, and keywords are entered
through a classic code completion menu. At times (when the
cursor is at the beginning of what we call a frame slot) the
cursor shares similarities with a frame cursor. The type of
syntactic elements, however, is not explicitly declared by the
programmer on entry (as it is for frames through the use of a
command key), but rather is deduced from the textual repre-
sentation once the user has written enough text to resolve the
ambiguity between different possible constructs. Thus the C#
structure editor does not automate the creation of boilerplate
to the same extent, nor does it prevent subsequent editing of
keywords.

JetBrains MPS [52] is a framework/generator for creating
structure editors. MPS does not have the concept of frames as
first-class entities which can be picked up and manipulated,
and is closer to classic structure editors than to block-based
languages. With no frame cursor, navigation and selection re-
volve around what we call text slots in our editor, meaning that
direct manipulation of existing code is not as easy, especially
with the mouse. MPS also lacks the visual presentation of
frames.

The Envision editor [53] is structural, but moves much
further away from the traditional text-based presentation with
methods arbitrarily placed on a two-dimensional grid and the
use of icons instead of keywords, and provides alternative
visualisation displays such as a flowchart view. It is de-
signed to be possible to visualise large code-bases on a single
large two-dimensional display. Envision focuses on keyboard-
based interactions, in contrast to our editor, which supports
keyboard- and mouse-based interactions.

An alternative approach for touchscreen devices has been
created by Almusaly and Metoyer that uses specialised buttons
to generate common patterns in code [54]. Like our work, this
greatly reduces the number of keypresses required to enter core
program code. The keyboard is primarily focused on the entry
of code, and does not have the structured frame manipulation
that our editor provides.

Other editors support structure editing modes. One example
is the ParEdit mode in Emacs, which prevents unbalanced
parentheses and curly brackets. Gomolka and Humm [55]
described a structure editor for Lisp which also prevented un-
balanced parentheses. These tools match frame-based editing’s
advantage of avoiding unbalanced parentheses/scopes, but do
not address issues such as easy automatic keyword insertion,
illegal edits of syntactic structure or typing of syntactic sym-
bols. Lisp advocates may argue that this is because control
structures should not be special cases in the language; we
would argue that by making them known special cases, we
gain significant advantages in editing speed and readability.

60



Figure 24. Editor interface proposed by Minör, 1992.

13.3. Block-based Editing
Block-based editing was in a sense a reinvention or re-

imagining of many of the ideas of structure editing. It is,
therefore, instructive to consider why it succeeded where
structure editing failed. We believe there are two main reasons.

Firstly, block-based editing had a more usable interface,
informed by fifteen years further development in HCI, and
also the ability to use high-resolution, full-colour displays
with a fast graphical system. This eliminated many previous
constraints on designers of program editors.

Secondly, some of the concerns about structure editors do
not apply in blocks’ target audience of young children. There
are few worries about the transition into text, or compatibility
with other tools or many of the other issues which dogged
structure editing in contexts such as universities or industrial
use. Thus, all blocks had to do was to provide an easier
interface for that age group – and the elimination of syntax
was an even bigger advantage for young children (who tend
to struggle with the precision required in text-based syntax)
than older learners.

Meerbaum-Salant et al. [56] examined some of the down-
sides of block-based editing, highlighting an extremely
bottom-up approach, and an issue with “extremely fine-grained
programming”, where users split their programs into particu-
larly small fragments, making them hard to read. This arises
from the way that Scratch and most other block-based editors
allow execution of single blocks, and also allow programs
to be split into very small event handlers. Neither of these
characteristics are present in our frame-based editor: code must
be contained in one single coherent class, thus not allowing

either of these issues to occur. (There may be other bad habits
which frame-based editing permits – something to investigate
in future.)

Many block-based program editors have been designed,
most quite similar in design to Scratch, the system we have
used as our primary example in this paper. We will focus here
on work performed to extend block-based programming to be
more powerful, or closer to text-based programming.

Alice 3 [57] is a block-based environment that is closer
to text programming than many others. It uses method call
syntax similar to Java rather than phrases resembling natu-
ral sentences, and code is organised into methods. However,
like many other block editors, it lacks support for keyboard
navigation and entry and does not include many of the other
possible representation improvements presented here.

Alice 3 has a text (Java) preview mode, as do other editors
such as Tiled Grace [58] and Droplet [34]. The latter two
editors allow for a two-way translation between blocks and
text representation of the exact same code, with Droplet even
preserving the indentation pattern of the original text in its
blocks view. This idea of a hybrid editor (editing code either
as blocks or as text) has similarities to the hybrid structure
editors described earlier, which allowed editing as structure
or as text. It is our belief that a successful editing paradigm
should not need such a hybrid mode; we seek to merge blocks
and text in one representation rather than requiring two distinct
modes.

A significant recent effort in block-based editing to add
keyboard support is GP [59]. GP is close to Scratch and
Snap!, but seeks to improve accessibility, add keyboard support

61



and generally improve the design of block-based program-
ming languages. The designers have added a block cursor
very similar to our frame-based editing cursor, which allows
navigation along the same lines. They have chosen a more
search-focused paradigm to entering new blocks (since GP
has many more blocks available than Stride has frames) rather
than our command keys, but GP and Stride are evolving along
similar lines (thanks in part to discussions between the two
teams).

There have been attempts to apply block-based program-
ming to mainstream programming languages, such as C [60].
This acts as a proof of concept for the transferability of block
programming to other languages, but does not add any new
editing features to mainstream block editors.

TouchDevelop [61] has several modes, from a classic block-
based view through a hybrid view to a mostly text-based
representation. The hybrid view includes elements from classic
structure editing and frame-based editing; some fields are free
text entry like our text slots, while others are similar to the
choice slots or code completion, with a grid-based touch-
oriented restricted list of selections. It employs a classic text
cursor instead of a frame cursor, but syntactic constructs (such
as if-statements) can be selected by typing, in a way that is
slightly faster than IDE template code completion.

TouchDevelop allows manipulation by drag-and-drop simi-
lar to that for frames and similar schemes for frame selection
and surrounding a selection with compound statements. Being
touch-oriented, the keyboard navigation and manipulation are
less flexible than in frame-based editing, resembling classic
structure editing. For example, it is not possible to enter
a non-existent variable name in an expression, intending to
declare it later – an intermediate error state that we explicitly
choose to allow in frame-based editing. (This is a significant
difference in programmer flexibility: A study of programmer
behaviour [28] found that around one-fifth of all name edits
resulted in the use of an as-yet undeclared name.) TouchDe-
velop does not contain the structured expression slots of frame-
based editing, nor many of the informational display elements
described here, but its hybrid mode, and GP, are probably the
most similar of the existing systems to frame-based editing.

13.4. Contribution and Novelty of Frame-Based Edit-
ing

The related work described here has a complex correspon-
dence to frame-based editing. Several individual features of
frame-based editing are present in isolation in other editors,
while we believe others are entirely novel. The contributions
of frame-based editing encompass these new features and new
combinations of existing features into a robust editor publicly
released and available for serious use:
• The horizontal frame cursor, as originally developed by

McKay and Kölling, is a new feature for block-like pro-
gramming (as a target for keyboard-based insertion and
selection rather than just as a drop target), which enables or
simplifies a variety of keyboard based editing interactions,

and adds new interactions such as wrapping a selection into
a control structure.

• The combination of keyboard overtyping, bracket balancing
and automatic spacing in expression slots (and prompt text
for parameters), while partially available in existing IDEs,
is a novel way to enter expressions.

• Keyboard-enabled frame extensions are a new way to ma-
nipulate blocks that can be arbitrarily extended with addi-
tional body elements.

• The display of inherited methods as a foldout display within
the body of the code itself (rather than as a pop-up display)
is not present in other editors.

• The contextual code completion is not available outside
professional text-based IDEs, and here goes beyond them,
e.g. restricting the types available for catch clauses.

• The Cheat Sheet provides help for textual entry not previ-
ously available for keyboard-driven programming.

• The localised per-frame/per-slot history is a novel way to
support returning to earlier versions of individual elements
of program code.

14. Discussion
Our frame editor aims to fuse benefits of blocks and

text editors to increase usability, whether for writing new
code, reading or manipulating existing code. We believe there
are several advantages for novice programmers compared to
block-based and text-based programming:
• Easier to enter new code: Frames save typing much text-

based boilerplate, while keyboard commands allow faster
entry than block-based programming. Expressions can be
entered via a keyboard rather than through mouse-controlled
drag-and-drop operations.

• Fewer errors: Many syntax errors, including those related to
balancing brackets, punctuation and semicolons, are elimi-
nated.

• Better error messages: Those errors that do remain have
clearer messages and more accurate error locations than in
text-based programming.

• Readability: Frames are more easily readable than text at
the statement level (for example by depicting scope more
clearly). At the same time, its look is designed to have lower
visual overhead and offer better visual text flow than current
block-based editors. This makes programs more readable
than in block systems for larger segments of code.

We believe that expert programmers also benefit, particularly
in contrast to text-based programming:
• Faster entry: The number of keystrokes required to enter

code is significantly lower than in traditional text editors.
In addition, there is no responsibility on the programmer to
spend time maintaining the layout of code.

• Readability aids: The highlighting of scopes, improved dis-
play of method headers and annotations of long scopes all
serve to aid readability of standard programs.

• Better navigation: The Stride editor offers quicker naviga-
tion for some use cases than many traditional text editors.

62



This includes easy navigation at the method level and the
availability of the bird’s eye view.
Many of these beliefs have been backed up in our user

studies. Middle-school students spent less time with non-
compilable code (in effect, had fewer errors) in Stride and
were able to proceed faster than students using Java on the
more advanced parts of a task. Expert programmers who tried
the system agreed that it made program code more readable,
and that inserting new code and deleting existing code was
faster in Stride than in text-based systems.

14.1. Separation of Code and Representation
In a frame-based editor, the structure and content of the

code and its representation on screen are decoupled.
This removes long-standing problems in programming

teams which include members with different visual prefer-
ences. Arguments about the preferred depth of indentation or
the best placement of curly brackets disappear.

In traditional systems, if one team member changes the
number of spaces used for indentation, version control systems
would register changes for all lines of code (creating possible
conflicts with other edits) even though the code structure is
unchanged. Layout changes are indistinguishable from code
changes. Thus, the same layout preferences must be imposed
on all team members.

In a frame editor, the visual appearance (including depth of
indentation and other layout details, including colours) can
be a personal preference of any team member. The code
structure is shared with the team; the visual representation
can be separately customised by any individual programmer
without affecting others.

14.2. Edit Flexibility and Tolerance of Error States
The Stride editor allows entry of many erroneous statements

and expressions, even where they could feasibly be prevented.
When entering a method call, for example, it would have
been possible to provide an interface mechanism that only
allows entry of existing method names, thus avoiding possible
mistyping of identifiers. We chose not to implement this
restriction.

While such a mechanism has the potential to prevent some
errors, it would also prevent some valid use cases and potential
work patterns. A programmer might, for example, conceive of
a new method while implementing an algorithm, write a call
to this new method first, with the plan to add the definition of
that method later. An editor that only allows calls to existing
methods would not allow this sequence; our Stride editor does.

Similarly, during the editing of an expression containing
multiple operators, the code might be temporarily in a syn-
tactically incorrect state. An editor could force a user to fix a
recognised problem before allowing entry of additional code,
ensuring that any sub-expression is syntactically correct before
allowing the cursor to move away. (The Visual Basic editor
used to have this restriction: An attempt to move the cursor
away from an incorrect line caused a modal error dialog

to appear; this was perceived as deeply frustrating by many
users.)

We consider these error prevention possibilities too restric-
tive. Users must be allowed the flexibility to choose their
order of work, including the ability to leave parts of work
half finished and incorrect to work on or consult other parts
of the system.

We believe that the over-restrictive nature of the systems is a
further significant reason that previous attempts at popularising
structure editors failed [45]. Structure editors managed to pre-
vent many errors, but most locked users into fixed workflows,
resulting in frustrated programmers reverting to free form
editors.

In the Stride editor, we do not prevent entry of many
incorrect code segments, choosing instead to subtly indicate
erroneous code (via a red underline) without blocking the
programmer from additional manipulations.

Deciding the exact line to draw – how much help (and
restriction) to provide, and how much freedom (and errors) to
allow – provides an interesting and complex design space. The
concrete decisions made in each individual editor implementa-
tion will strongly colour users’ views and opinions, determine
acceptance or rejection of the tool, and ultimately contribute
to success or failure of achieving user acceptance.

Whether we have achieved an acceptable balance in the
implementation of the Stride editor remains to be seen. We
considered many cases and attempted to make reasonable
choices, but whether we have succeeded will only be known
after a longer period of use by a larger user base.

14.3. Modal Entry and Learnability
Text editing in a frame editor is modal. Pressing a key in

a text slot has a different effect from pressing the same key
when the cursor is in a frame slot. The former enters the key
verbatim, while the latter is interpreted as a command key that
may enter a frame.

Modal interfaces are known for their potential to introduce
confusion and misinterpretation in interface operations. Users
may misread the mode and their expectations of command
entry effects may be at variance with the actual system state
and behaviour. Thus, in many situations, it may be beneficial
to avoid modal interfaces if possible.

Some examples exist, however, of very successful and ac-
cepted modal interfaces. Paint programs, for instance, often
offer a variety of paint tools, and the current choice of tool
represents a mode. This mode is typically indicated by the
shape of the mouse cursor, which may take the form of a
pencil, an eraser, or a paint bucket.

Modal interfaces can be successful if the existence of the
modes mirrors a user’s mental model and the current mode is
sufficiently clearly indicated for users to be aware of it at all
relevant times.

In the Stride editor, the mode is indicated by the shape
of the input cursor. This mirrors the successful indicators in
paint programs: Because the indicator is, by definition, at the

63



point of the user’s focus, it is implicitly noticed and hard to
overlook.

The text cursor takes a very traditional shape, indicating
text entry as in common editors. The frame cursor has a very
different, distinct and prominent shape and colour, signalling
different behaviour.

Whether the cursors as visual mode indicators are sufficient
will remain to be seen with increased use of the Stride editor.
Initial observations in user trials are promising: Users seem
to adapt to the two-mode editing model easily and quickly,
without the need for formal introduction or explanation.

One misinterpretation remains longer than others after a
short time of use of Stride: When entering method calls, novice
Stride users often forget to issue the method call command
(space) before starting to type the method name. Just starting
to type the name seems a habit that is harder to break than
with other commands, perhaps because no modern language
uses a keyword before method calls, whereas other constructs
(if, while, etc) do begin with a keyword. Whether this habit
disappears after some time remains to be seen; currently, there
are not enough longtime Stride users to assert this either way.

It is our intention to conduct further detailed user studies
to assess learnability and usability issues. One of our existing
studies (evaluation B) already turned up one example issue: the
ability to delete an entire frame by placing the frame cursor
before/after it and hitting delete/backspace respectively was
used accidentally by students who then removed a large piece
of their program without meaning to. The students did not
generally think to undo, preferring instead to re-enter the code.
We have now added an overlay after deleting a large piece of
code which offers to undo it. We believe that other issues will
be on this scale: minor to medium usability issues which can
be designed against, rather than serious flaws in the interaction
model.

14.4. Code Folding
Some text-based program editors include support for code

folding: Selected segments of code (usually constructs which
in our editor are represented by frames) can be temporarily
“folded in” to reduce them to their header, similar to the
bird’s eye view described earlier. Frame-based editing and
code folding clearly can work well together – we could easily
provide a clickable control (and a shortcut key) which reduces
any given frame to a single line. Blockly already does this for
block-based editing, for example.

In Stride, we have chosen not to do so. The main reason for
this is our personal belief that code folding is not very useful
when good navigation functionality is provided. However, it is
clear that code folding can easily be implemented in a frame-
based editor.

14.5. Accessibility
Making programming accessible, for example to blind pro-

grammers, is a difficult challenge [62]. Furthermore, it has
been noted as a particular issue for block-based languages [63]

(and was a motivation for keyboard support in GP [59]), due to
their focus on a visual display and mouse-based manipulation
– items less amenable to supporting screen-reader technology
than text-based display and keyboard-based manipulation.

It is a shame that the visual aspect and mouse-focus has
prevented accessibility support, as the fundamental model
of block-based (and frame-based) editors is more suited to
accessibility. The reduction in syntax means that blind users
do not have to worry about entering or correcting the syntax;
with a screen reader, the users must either hear ”semi-colon”
read out all the time, or if it is not read out, will find it harder to
correct when it is missing. The inherent chunking of the code
into semantic units should make it easier to provide screen
readers with relevant information, compared to the line-based
approach that existing screen readers take.

Frame-based editing has several features that should allow it
to be more accessible than existing block-based editors. The
ability to perform all edit operations (entry and navigation)
using the keyboard instead of the mouse allows use of the
editor even if the user cannot operate the mouse (physically,
or due to poor sight). The way that expressions are entered
by typing them rather than entering a series of blocks should
allow for faster use by blind users than block-based entry, even
with keyboard support for blocks (as in GP). The decision to
have all program code in a single long sequence of named
methods allows easier navigation and organisation for a blind
user than multiple scattered unnamed fragments as in many
block-based languages.

14.6. Frame-Based Editing of Other Languages
In this paper, we have presented a frame-based editor for a

language very similar to Java (for compatibility, both technical
and pedagogical, with our Greenfoot system). However, the
principles of frame-based editing are independent of this lan-
guage. It is possible to edit any typical programming language
(or structured tree format, such as XML or HTML) with a
frame-based editor.

We note a few features that may make a language more or
less amenable to frames-based editing, starting with issues we
encountered while aiming for Java compatibility:
• Java’s overloading of less-than/greater-than symbols as an-

gle brackets in generic types is not ideal, especially when
combined with the casting syntax. In a type slot, this does
not pose a problem because here these characters always
denote a generic type. But parsing expressions proves more
problematic: Because type casts are not identified by a
keyword, types can appear in expressions. Thus we must
allow having mismatched angle brackets because we must
treat these characters as less-than/greater-than symbols, the
more flexible form.

• Java generally makes little use of whitespace to separate
lexical tokens, which allows us to not require the user to
enter spaces in expressions. We can let the user enter 1+2
or x/3 and let the editor space the expression. Because most
operators have a different alphabet to operands, we can eas-
ily distinguish one from the other. For keyword operators,

64



such as “new” and “instanceof”, spaces are still required
between the operator and its arguments. To alleviate this
problem, the instanceof keyword has been replaced with a
symbolic operator in Stride (“<:”). The “new” operator is
treated as a special case. In general, keyword operators are
more awkward than symbols for frame-based editors.

• Java’s lambda expressions remain an open issue for us. A
lambda expression can appear in any expression and contain
arbitrary segments of code. This means that an arbitrarily
complex frame structure could appear in an expression slot.
This may become complicated to display and manipulate.
(For the same reason we also do not support anonymous
inner classes). Devising a manipulation system for this is not
impossible, but complicates the interface. A stricter model
of programming, where statements contain expressions and
no further nesting is possible (avoiding arbitrary levels
of nesting of statements inside expressions) is easier to
implement in frame-based editors.

• Frame-based editing works well where there is an expres-
sion/statement divide, or more generally, a setting where
there is a high-level structure with program units, and a
lower-level expression editing. Although in theory every-
thing in Haskell is an expression and there are no statements,
it would actually be a good fit as you could have frame slots
for monadic ‘do’ blocks, ‘case’ statements, ‘where’ clauses,
individual functions and so on. In Lisp-like languages where
every construct is an S-expression, frame-based editing
would be almost non-applicable because there would be no
apparent way to distinguish what is a frame vs what is a
structured slot.

• Frame-based editing can also be used for non-programming
languages. On similar lines to the previous point, it would
work well for HTML and XML where each element could
be a frame, attributes could be slots, and text content
and sub-elements could go in frame slots. Because each
element has a name (and potentially type information in the
DTD) you could have context-sensitive input assistance. In
contrast, JSON is closer to Lisp S-expressions and would
work much less well. Languages with markup which have
tags rather than begin/end hierarchal structure (e.g. LATEX’s
section commands) would need to be converted to nested
frames to work well.

15. Conclusion
In this project, we set out to build a system that combines

advantages of block-based and text-based systems.
We have designed and implemented an editor for a new,

Java-like language called Stride that incorporates this goal. The
Stride editor demonstrates that such a system can be designed
and that it presents a number of advantages over each of the
competitor systems.

Our initial user studies, on middle-school students and
experienced programmers, suggest that Stride has several ad-
vantages over text-based programming. Users reported that
they found it more readable, and easier to insert new code

and delete existing code. When given the same task, students
using Stride progressed further than students using Java within
the same environment. We continue to iterate and improve the
software in order to address possible weaknesses, such as the
navigation between slots and editing of structured expressions.

The Greenfoot system including the Stride editor is available
for free download at http://www.greenfoot.org/. The same
Stride editor has also recently been incorporated into BlueJ,
which is also available for free download (http://www.bluej.
org/).

15.1. Future Work
There are several avenues for future work. The first is to

perform further user studies and evaluation with the editor.
Computer science education unfortunately produces many new
tools, but little evidence of their effectiveness. We have begun
to address this already with the evaluations reported in this
paper, but we would like further evaluations, carried out either
by ourselves or by others.

A second avenue for future work is to create frame-based
editors for other languages, and/or integrate frame-based ed-
itors into other tools (such as professional IDEs). (We have
frequently been asked if there is a frame-based editor for
Python, or whether the editor is available as an Eclipse plugin,
etc.) We do not have the resources available to perform this
extra technical work, but we would welcome such work by
others.

A third avenue for future work is to build on the new
editor model. We have so far implemented editor interactions
in frame-based editing, but editors in modern IDEs support
several other modes of use, such as debugging and version
control. We believe there is potential to integrate these other
modes of use into a frame-based editor in a better way than
they are supported in current plain-text-focused editors.

Appendix

Appendix: Java vs Stride
In one sense it is difficult to precisely define the difference

between Java and Stride. The characters which form neces-
sary keywords and syntax in Java are often mere decoration
in Stride, which we have kept looking similar to Java. For
example, whether Stride shows round brackets surrounding the
condition in a while loop is a cosmetic decision, whereas those
characters are essential for Java code to be parsed correctly. On
similar lines, Stride has no curly brackets around its scopes,
whereas Java requires them, Stride displays a var keyword
which Java does not use.

Broadly, however, the languages are near-identical. Stride
currently lacks several Java constructs: inner classes, anony-
mous inner classes, synchronised blocks, several advanced
modifiers (such as volatile), enums, and interfaces, although
we are likely to add the latter two. Stride uses <: instead of
instanceof due to the difficulty of distinguishing variable
names from letter-based symbol names, and also disallows

65

http://www.greenfoot.org/
http://www.bluej.org/
http://www.bluej.org/


floating-point literals of the form .5, requiring 0.5 instead.
Semantically, Stride is an unaltered subset of Java: what Stride
includes from Java is identical to Java.

Acknowledgments
Some of the initial design work of the frame editor, and

the CogTool work presented in section 10 were carried out by
Fraser McKay as part of his PhD work. The study described
in section 11 was primarily carried out by Thomas Price, in
conjunction with Dragan Lipovac and Tiffany Barnes. We are
grateful for their contributions.

References
[1] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are

not equal,” in Proceedings of the 17th ACM Annual Conference
on Innovation and Technology in Computer Science Education, ser.
ITiCSE ’12. New York, NY, USA: ACM, 2012, pp. 75–80.

[2] A. Altadmri and N. C. C. Brown, “37 million compilations:
Investigating novice programming mistakes in large-scale student data,”
in Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’15. New York, NY, USA: ACM,
2015, pp. 522–527.

[3] D. McCall and M. Kölling, “Meaningful categorisation of novice
programmer errors,” in 2014 Frontiers In Education Conference,
October 2014.

[4] S. K. Kummerfeld and J. Kay, “The neglected battle fields of
syntax errors,” in Proceedings of the Fifth Australasian Conference
on Computing Education - Volume 20, ser. ACE ’03. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2003, pp.
105–111.

[5] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just
aren’t natural: Improving error reporting with language models,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014, pp.
252–261.

[6] M. C. Jadud, “An exploration of novice compilation behaviour in bluej,”
Ph.D. dissertation, University of Kent, 2006.

[7] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx,
“Understanding the syntax barrier for novices,” in Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education, ser. ITiCSE ’11. New York, NY, USA:
ACM, 2011, pp. 208–212.

[8] G. M. Weinberg, The Psychology of Computer Programming (2nd
edition). Dorset House Publishing, 1998.

[9] G. Marceau, K. Fisler, and S. Krishnamurthi, “Measuring the
effectiveness of error messages designed for novice programmers,” in
Proceedings of the 42Nd ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’11. New York, NY, USA: ACM,
2011, pp. 499–504.

[10] P. Denny, A. Luxton-Reilly, and D. Carpenter, “Enhancing syntax error
messages appears ineffectual,” in Proceedings of the 2014 Conference
on Innovation and Technology in Computer Science Education, ser.
ITiCSE ’14. New York, NY, USA: ACM, 2014, pp. 273–278.

[11] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions
on Computing Education, vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010.

[12] K. Wang, C. McCaffrey, D. Wendel, and E. Klopfer, “3D game design
with programming blocks in StarLogo TNG,” in Proceedings of the
7th International Conference on Learning Sciences, ser. ICLS ’06.
International Society of the Learning Sciences, 2006, pp. 1008–1009.

[13] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-D tool for introductory
programming concepts,” Journal of Computing Sciences in Colleges,
vol. 15, no. 5, pp. 107–116, Apr. 2000.

[14] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor 2:
Create Your Own Android Apps. O’Reilly Media, Inc., 2014.

[15] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: Urban youth learning programming with
Scratch,” SIGCSE Bull., vol. 40, no. 1, pp. 367–371, Mar. 2008.

[16] M. Vasek, “Representing Expressive Types in Blocks Programming
Languages,” Undergraduate thesis, Wellesley College, 2012.

[17] C. D. Hundhausen, S. F. Farley, and J. L. Brown, “Can direct
manipulation lower the barriers to computer programming and promote
transfer of training?: An experimental study,” ACM Transactions on
Computer-Human Interaction, vol. 16, no. 3, pp. 13:1–13:40, Sep.
2009.

[18] T. R. G. Green, “Cognitive dimensions of notations,” People and Com-
puters V, pp. 443–460, 1989.

[19] R. C. Thomas, A. Karahasanovic, and G. E. Kennedy, “An investigation
into keystroke latency metrics as an indicator of programming
performance,” in Proceedings of the 7th Australasian Conference on
Computing Education - Volume 42, ser. ACE ’05. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2005, pp.
127–134.

[20] J. Leinonen, K. Longi, A. Klami, and A. Vihavainen, “Automatic
inference of programming performance and experience from typing
patterns,” in Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, ser. SIGCSE ’16. New York, NY,
USA: ACM, 2016, pp. 132–137.

[21] A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” ACM Transactions on Computing Education, vol. 13,
no. 4, pp. 19:1–19:40, Nov. 2013.

[22] T. W. Price and T. Barnes, “Comparing textual and block interfaces in
a novice programming environment,” in Proceedings of the Eleventh
Annual International Conference on International Computing Education
Research, ser. ICER ’15. New York, NY, USA: ACM, 2015, pp.
91–99.

[23] D. Weintrop and U. Wilensky, “Using commutative assessments to
compare conceptual understanding in blocks-based and text-based
programs,” in Proceedings of the Eleventh Annual International
Conference on International Computing Education Research, ser. ICER
’15. New York, NY, USA: ACM, 2015, pp. 101–110.

[24] M. Kölling, N. C. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education, ser. WiPSCE ’15. New York, NY, USA: ACM, 2015, pp.
29–38.

[25] M. Kölling, “The Greenfoot programming environment,” ACM
Transactions on Computing Education, vol. 10, no. 4, pp. 14:1–14:21,
Nov. 2010.

[26] J. S. Mansfield, G. E. Legge, and M. C. Bane, “Psychophysics of
reading. XV: Font effects in normal and low vision.” Investigative
Ophthalmology & Visual Science, vol. 37, no. 8, pp. 1492–1501, 1996.

[27] M. Bernard, B. Lida, S. Riley, T. Hackler, and K. Janzen, “A comparison
of popular online fonts: Which size and type is best,” Usability News,
vol. 4, no. 1, 2002.

[28] A. J. Ko, H. H. Aung, and B. A. Myers, “Design requirements for more
flexible structured editors from a study of programmers’ text editing,”
in CHI ’05 Extended Abstracts on Human Factors in Computing
Systems, ser. CHI EA ’05. New York, NY, USA: ACM, 2005, pp.
1557–1560.

[29] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, “Blackbox: A
large scale repository of novice programmers’ activity,” in Proceedings
of the 45th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’14. New York, NY, USA: ACM, 2014, pp. 223–228.

[30] Y. S. Yoon and B. A. Myers, “Supporting selective undo in a
code editor,” in Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ser. ICSE ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 223–233.

[31] A. J. Ko and B. A. Myers, “Barista: An implementation framework
for enabling new tools, interaction techniques and views in code
editors,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’06. New York, NY, USA: ACM,
2006, pp. 387–396.

66



[32] P. H. F. M. Verhoeven, “The design of the mathspad editor,” Ph.D.
dissertation, Technische Universiteit Eindhoven, 2000.

[33] R. Baecker and A. Marcus, “Design principles for the enhanced
presentation of computer program source text,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’86. New York, NY, USA: ACM, 1986, pp. 51–58.

[34] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of
Computing Sciences in Colleges, vol. 30, no. 6, pp. 138–144, Jun.
2015.

[35] “Lego mindstorms,” Retrieved on 17 Dec 2015 from
http://www.lego.com/en-us/mindstorms, 2015.

[36] F. McKay and M. Kölling, “Predictive modelling for HCI problems
in novice program editors,” in Proceedings of the 27th International
BCS Human Computer Interaction Conference, ser. BCS-HCI ’13.
Swinton, UK, UK: British Computer Society, 2013, pp. 35:1–35:6.

[37] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’04. New York, NY, USA: ACM, 2004, pp. 455–462.

[38] B. E. John, “Reducing the variability between novice modelers: Results
of a tool for human performance modeling produced through human-
centered design,” in Proceedings of the 19th Annual Conference on
Behavior Representation in Modeling and Simulation (BRIMS), 2010,
pp. 22–25.

[39] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and
Y. Qin, “An integrated theory of the mind.” Psychological review, vol.
111, no. 4, p. 1036, 2004.

[40] T. R. G. Green and A. Blackwell, “Design for usability using cognitive
dimensions,” 1998, tutorial session at British Computer Society confer-
ence on Human Computer Interaction HCI98.

[41] T. W. Price, N. C. C. Brown, D. Lipovac, T. Barnes, and M. Kölling,
“Evaluation of a frame-based programming editor,” in Proceedings
of the 2016 ACM Conference on International Computing Education
Research, ser. ICER ’16. New York, NY, USA: ACM, 2016, pp.
33–42.

[42] T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A
syntax-directed programming environment,” Communications of the
ACM, vol. 24, no. 9, pp. 563–573, Sep. 1981.

[43] D. B. Garlan and P. L. Miller, “GNOME: An introductory programming
environment based on a family of structure editors,” in Proceedings of
the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, ser. SDE 1. New
York, NY, USA: ACM, 1984, pp. 65–72.

[44] A. diSessa, “Twenty reasons why you should use Boxer (instead of
Logo),” in Learning & Exploring with Logo: Proceedings of the Sixth
European Logo Conference, Budapest, Hungary, 1997, pp. 7–27.

[45] L. R. Neal, “Cognition-sensitive design and user modeling for syntax-
directed editors,” SIGCHI Bulletin, vol. 18, no. 4, pp. 99–102, May
1986.

[46] P. Miller, J. Pane, G. Meter, and S. Vorthmann, “Evolution of novice
programming environments: The structure editors of Carnegie Mellon
University,” Interactive Learning Environments, vol. 4, no. 2, pp. 140–
158, 1994.

[47] S. Minör, “Interacting with structure-oriented editors,” International
Journal of Man-Machine Studies, vol. 37, no. 4, pp. 399–418, Oct.
1992.

[48] J. Welsh and M. Toleman, “Conceptual issues in language-based editor
design,” International Journal of Man-Machine Studies, vol. 37, no. 4,
pp. 419–430, Oct. 1992.

[49] B. S. Lerner, “Automated customization of structure editors,”
International Journal of Man-Machine Studies, vol. 37, no. 4, pp.
529–563, Oct. 1992.

[50] A. Repenning and J. Ambach, “Tactile programming: a unified manip-
ulation paradigm supporting program comprehension, composition and
sharing,” in Proceedings 1996 IEEE Symposium on Visual Languages,
Sep 1996, pp. 102–109.

[51] K. Osenkov, “Designing, implementing and integrating a structured C#
code editor,” Brandenburg University of Technology, Cottbus, 2007.

[52] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly
projectional editors,” in International Conference on Software Language
Engineering. Springer, 2014, pp. 41–61.

[53] D. Asenov and P. Müller, “Envision: A fast and flexible visual code
editor with fluid interactions (overview),” in IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2014, pp. 9–12.

[54] I. Almusaly and R. Metoyer, “A syntax-directed keyboard extension for
writing source code on touchscreen devices,” in IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Oct 2015,
pp. 195–202.

[55] A. Gomolka and B. Humm, “Structure editors: Old hat or future vision?”
in Evaluation of Novel Approaches to Software Engineering, ser.
Communications in Computer and Information Science, L. Maciaszek
and K. Zhang, Eds. Springer Berlin Heidelberg, 2013, vol. 275, pp.
82–97. [Online]. http://dx.doi.org/10.1007/978-3-642-32341-6 6

[56] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of
programming in Scratch,” in Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’11. New York, NY, USA: ACM, 2011, pp.
168–172.

[57] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. Cooper, “Mediated
transfer: Alice 3 to Java,” in Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’12. New
York, NY, USA: ACM, 2012, pp. 141–146.

[58] M. Homer and J. Noble, “Combining tiled and textual views of code,”
in Proceedings of the 2014 Second IEEE Working Conference on
Software Visualization, ser. VISSOFT ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 1–10.

[59] J. Mönig, Y. Ohshima, and J. Maloney, “Blocks at your fingertips:
Blurring the line between blocks and text in GP,” in IEEE Blocks and
Beyond Workshop, 2015.

[60] S. Federici, “A minimal, extensible, drag-and-drop implementation of
the C programming language,” in Proceedings of the 2011 Conference
on Information Technology Education, ser. SIGITE ’11. New York,
NY, USA: ACM, 2011, pp. 191–196.

[61] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and
S. Burckhardt, “Touchdevelop: App development on mobile devices,”
in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 39:1–39:2.

[62] A. M. Stefik, C. Hundhausen, and D. Smith, “On the design of
an educational infrastructure for the blind and visually impaired
in computer science,” in Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’11. New
York, NY, USA: ACM, 2011, pp. 571–576.

[63] A. Wagner, J. Gray, D. Marghitu, and A. Stefik, “Raising the
awareness of accessibility needs in block languages (abstract only),”
in Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, ser. SIGCSE ’16. New York, NY, USA: ACM,
2016, pp. 497–497.

67

http://dx.doi.org/10.1007/978-3-642-32341-6_6

	Introduction
	Blocks: Avoiding Errors in Programming
	Benefits of Block-based Languages
	Limitations of Block-based Languages

	Text-Based Programming
	Blocks versus Text: A Brief Comparison
	Criteria
	Comparison
	Novice Programmers
	Proficient Programmers

	Where is the Cut-off?

	Frames: A New Editing Paradigm
	Design of a Frame-Based Editor
	Representation
	Scope
	Indentation
	Whitespace
	Colour
	Context Sensitive Display

	Manipulation
	Insertion of Statements
	Slots
	Frame Cursor versus Text Cursor
	Deletion of Statements
	Disabling Frames
	Selection and Clipboard Operations
	Drag and Drop
	Changing Frame Type
	Localised History
	Extending Frames

	Navigation
	Overtyping
	Editing in Text Slots
	Identifier Slots
	Choice Slots
	Expression Slots
	Prompts and Hints


	Interface Elements
	Method Header Display
	Long Scope Annotation
	Bird's Eye View
	Inherited Methods
	The Cheat Sheet

	Context-Aware Editing
	Contextual Code Completion
	Error Messages
	Suggested Fixes
	Context-Awareness vs Error Tolerance

	Implementation
	Evaluation A: CogTool
	Cognitive Modelling
	The Experiment
	Results

	Evaluation B: Frames vs Text in Middle School
	Evaluation C: Experienced User Study
	Method
	Results
	Negative Comments
	Positive Comments

	Study Conclusions
	Threats to Validity

	Related Work
	Structure Editing: First Attempts
	Structure editing: Recent Work
	Block-based Editing
	Contribution and Novelty of Frame-Based Editing

	Discussion
	Separation of Code and Representation
	Edit Flexibility and Tolerance of Error States
	Modal Entry and Learnability
	Code Folding
	Accessibility
	Frame-Based Editing of Other Languages

	Conclusion
	Future Work

	Appendix
	References



