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Abstract As a present to Mizar on its 40th anniversary, we develop an AI/ATP system that
in 30 seconds of real time on a 14-CPU machine automatically proves 40 % of the theorems
in the latest official version of the Mizar Mathematical Library (MML). This is a considerable
improvement over previous performance of large-theory AI/ATP methods measured on the
whole MML. To achieve that, a large suite of AI/ATP methods is employed and further
developed. We implement the most useful methods efficiently, to scale them to the 150000
formulas in MML. This reduces the training times over the corpus to 1–3 seconds, allowing
a simple practical deployment of the methods in the online automated reasoning service for
the Mizar users (MizAR).

Keywords Automated reasoning · Formal mathematics · Mizar · Large theories · Machine
learning · Artificial intelligence · Premise selection

1 Introduction and Motivation

Since 2003 the Mizar Mathematical Library1 (MML) has been used as a repository for
developing AI/ATP methods for solving formally stated (computer-understandable) conjec-
tures in general large-theory mathematics [28–30]. By large theories we mean theories with

1http://www.mizar.org
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many concepts, definitions, theorems and lemmas, over which many related conjectures are
posed, and where it is not immediately clear which of the previous facts will (not) be use-
ful for a proof of a conjecture. The number and strength of the methods developed has been
growing, however the methods were often developed and evaluated on smaller benchmarks
such as the MPTP Challenge2 and MPTP2078 [1]. Recently, we have tried to develop a
strong suite of AI/ATP methods that scale to the whole June 2012 version of the Flyspeck [7,
8] development [14, 15], containing more than 14000 theorems. The best methods using the
accumulated data have been recently deployed in an online (“cloud-based”) AI/ATP service
for HOL Light [9] formalizations [12, 16]. When running the 14 strongest methods in paral-
lel, 47 % of the Flyspeck theorems can be proved in 30 seconds without any user interaction.
To a significant extent, this performance is achieved by learning from the large number of
previous proofs various high-level [22, 32] and low-level [14, 33] guiding methods for state-
of-the-art ATP and SMT systems such as Vampire [19], E [25] and Z3 [3]. A similar work
has been recently undertaken with Isabelle [21].

We believe that this performance is a milestone on the way to John McCarthy’s AI and
QED dream of “Heavy Duty Set Theory”, i.e., a sufficiently smart AI/ATP/ITP system that
can without forcing mathematicians to struggle with various current technologies of explicit
“proof programming” automatically understand and check reasoning steps done on the level
that is commonly used in mathematical proofs. If such a system is developed, the current
barrier preventing computer understanding of common mathematical proofs will to a large
extent disappear, and mathematics (and thus all human exact thinking) may enter an era of
ubiquitous computer understanding and strong AI assistance.

In this work we employ, further develop, and evaluate a suite of scalable AI/ATP meth-
ods on the whole Mizar library, containing nearly 58000 theorems. The main experimental
result (Section 3) is that the 14 strongest methods run in parallel for 30 seconds prove
40.6 % of the 58000 Mizar theorems without any user interaction. If users are also allowed
to manually select the relevant premises used then by the ATPs, the performance grows to
56.2 %. Our hope is that this performance may significantly lower the barrier to formalizing
mathematics in the Mizar system [6], which has a long history of targeting mathematicians
with its standard logical foundations, intuitive proof style, and linguistic closeness to math-
ematical vernacular. The various methods used to achieve this performance are described
in Section 2. Section 3 discusses the experiments and results obtained with the methods,
Section 4 takes a brief look at the data obtained from the automatically found proofs,
Section 5 briefly describes the first integration of the methods in the MizAR online
service [34], and Section 6 discusses future work and concludes.

2 Learning Proof Guidance from the MML

The general idea behind the large-theory ATP-for-ITP systems that started to be developed
in the last decade is to combine (i) translations between the ATP and ITP formalisms with
(ii) high-level premise selection methods [1] and (iii) state-of-the-art ATP systems which
can be further strengthened and tuned in various ways for the large-theory setting. For the
translation from the Mizar logic to TPTP we re-use the existing MPTP translation [29, 30].
After several initial experiments with various ATPs and their versions, we have decided to
limit the set of ATPs to Vampire 3.0, Z3 4.0, and E 1.8 run using the Epar scheduler and

2http://www.cs.miami.edu/∼tptp/MPTPChallenge/

http://www.cs.miami.edu/~tptp/MPTPChallenge/
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strategies [33]. This combination also worked well for the experiments with Flyspeck. In
this work, the main focus is on (ii), i.e., on deploying and improving for MML the suite of
scalable high-level premise selection methods which we have recently developed for the
whole Flyspeck corpus, containing over 20000 formulas. Here premise selection is the task
of choosing a subset of all available facts (premises), which is most likely to lead to a
successful automated deduction proof of a given conjecture.

The currently strongest premise selection methods for large-theory mathematics are
data-driven [26]: instead of explicit programming of all aspects of knowledge selection,
data-driven methods extract (learn) significant parts of such complicated algorithms from
the existing large libraries of solutions (proofs). This shift from explicit (theory-driven)
programming of AI heuristics to learning AI algorithms from data is to a large extent
responsible for the recent successes in AI domains such as web search, consumer choice
prediction, autonomous car driving, etc. But this also means that extracting good training
data from the MML is equally important as the methods that learn premise selection on such
data. Interestingly, in large-theory ATP there is a full positive feedback loop [31] between
the amount/quality of the data and the strength of the methods: not only more/better data
produce stronger methods (which is the standard data-driven argument), but also stronger
proving methods produce more/better data in the form of proofs. This is quite a unique prop-
erty of this very expressive and fully semantic AI domain, born quite recently thanks to the
development on large formal mathematical libraries such as the MML [36]. The main body
of our work thus consists of the following steps:

1. Obtaining from the MML suitable data (proof dependencies) on which premise selection
methods can be trained.

2. Developing, training and testing such premise selection methods and their parameters
on a small random subset of the MML.

3. Iterating steps (1) and (2), i.e., using the most successful methods to get more proofs,
and training further methods on them.

2.1 Obtaining Proof Dependencies from the MML

There are 57897 Mizar theorems and unnamed toplevel lemmas in the most recent official
MML 4.181.1147. This set is canonically (chronologically) ordered by the MML order of
articles, and by the (chronological) order of theorems in the articles. This ordering also
applies to the about 90000 other Mizar formulas (typically encoding the type system and
other automations known to Mizar) used in the problems. Our goal is to prove automatically
as many of the 57897 theorems as possible, using at each point all the available formulas
and all information about previous theorems and their proofs.

The human-written Mizar proofs contain explicit information about the theorems and
definitions used. This information is however incomplete. For re-playing the Mizar proofs
with ATPs, a lot of “background” knowledge (typically about typing of terms) needs to
be explicitly added. The MPTP system adds such background formulas heuristically in a
fixpoint manner, by looking at the set of symbols in the problem and adding the appropriate
typing formulas. The average size of an ATP problem constructed in this way by MPTP is
328 formulas, while the average number of the explicit Mizar proof references is only 12.
In [1] we have constructed a computationally expensive method (using the Mizar checker)
that reduces the number of the background formulas 2–3 times. However, the measured
performance gain from that method when re-proving with ATPs the MPTP2078 problems
was only about 4 %, and in [2] it was found that the ATPs still typically do not use many of
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Table 1 Improving the dependency data used for training premise selection

Pass ATPs Premise Selection Theorems (%) Dependencies

1 V 300s MPTP re-proving 27842 (48 %) 27842

2 V, E, Z3 120s trained on (1), premises limited by (1) 29519 (51 %) 30024

3 V, E 120s trained on (2), premises unlimited 30889 (53.4 %) 31720

4 V, E 120s trained on (3), premises unlimited 31599 (54.6 %) 32976

5 V, E 120s trained on (4), premises unlimited 32010 (55.3 %) 35870

6 V, E 120s trained on (5), premises unlimited 32165 (55.6 %) 36122

the Mizar -needed background formulas. Since learning from the minimized ATP proofs is
typically superior [15, 22], in the current work we decided to skip the expensive Mizar -based
proof minimization, and focus on using the ATP proofs of the heuristically constructed re-
proving problems coming from the Mizar theorems. This decision was influenced by older
preliminary 20-second testing using an Intel Xeon 2.67 GHz server, in which Vampire 1.8
proved 20302 of the MPTP-constructed theorem problems, Epar proved 20324, and together
they proved 23141, i.e., 40 % of the theorems.

Table 1 shows the gradual growth of the set of ATP-computed proof dependencies that
we mainly use for learning. The first set is obtained by running Vampire 3.0 for 300 sec-
onds3 on the MPTP-constructed re-proving problems. The additional 1677 solutions in the
second set are obtained by learning premise selection on the first set, and running ATPs for
120 seconds again on various most relevant slices of the re-proving problems (we always
include the explicit Mizar references in such pruned ATP problems). The following passes no
longer prune the MPTP-constructed re-proving problems. They just use the premise selec-
tors trained on the previous passes to suggest the most relevant premises, regardless of the
original Mizar proofs, and re-learn from the newly obtained proofs in several iterations as in
the MaLARea system [31, 35]. Such iterations are also quite expensive to compute for a new
development. However, we have shown in [16] that this information can be in large libraries
efficiently re-used and does not need to be computed for every version again. As in [15], the
difference to the original MaLARea iterations is that at each premise-selection point only
the chronologically previous proofs are used for learning. This corresponds to the ultimate
deployment scenario, when always only the library proofs written so far are known.

In total, these iterations yield 32165 ATP proofs, and with the final evaluation described
in Section 3.2 this number reaches 32557 theorems. This means that when using either
human or AI-based premise selection and their combinations, state-of-the-art ATPs are
today able to prove 56.23 % of the toplevel MML theorems. This is a very good motivation
for developing good premise-selection methods.

2.2 Premise Selection Techniques

The premise selection techniques we start with, are the relatively fast scalable methods used
for Flyspeck in [15]: Naive Bayes (nb) and distance-weighted k-nearest neighbor [5] (knn).
In particular, a family of differently parametrized k-NNs together with the IDF (inverse doc-
ument frequency) feature weighting scheme [11] have recently provided quite significant

3The time limit of 300 seconds has worked well in the previous experiments done over Flyspeck [15].
Increasing the time limit further does not help significantly and it costs a lot of resources.
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performance improvement [14]. This is here extended to naive Bayes (nb idf). We are
interested both in the strongest possible methods, and also in methods that can be quite
weak, but complement well the stronger methods.

Apart from minor implementational modifications, we characterize each formula with
the syntactic features used by MaLARea: symbols, terms and subterms of the formula. In
the most successful methods, all variables in such features are renamed to just one variable
A0 (widening the similarity relation), however to a smaller extent, also the features with
original variables are useful. Following the recent successful use by MaLARea 0.5 in the
2013 CASC LTB competition [17] we also add a version of distance-weighted k-NN using
the Latent Semantic Indexing [4] (LSI) preprocessing of the feature space done efficiently
by the gensim [23] toolkit. We test the LSI preprocessing with 800, 3200, and 6400 topics
(lsi 800 .. lsi 6400), and also versions with and without the TF-IDF feature scaling
(e.g., (lsi 3200ti)).

The next modification of k-NN are various recursive schemes for weighting the neigh-
bors’ dependencies. The geo 1 F version stops the dependency recursion at the first
level, weighting each dependence of a neighbor N by the factor F ∗ distance(N) (where
F ∈ (0, 1)), and taking maximum (instead of sum) of such weights over all neighbors. The
geo r F version does full dependency recursion, weighting the indirect dependencies by
F recursionlevel ∗ distance(N), and again taking maximum over all such factors.

In [22] a linear combination of the strongest learning method with the SInE [10] heuristic
produced very good results. This is an instance of ensemble learning where multiple base
methods are combined into stronger classifiers. We heuristically explore combinations of
the various base methods using various weighting schemes. In addition to the linear com-
bination, we try geometric, harmonic, and quadratic average, and also use minimum and
maximum of ranks. In particular taking the minimal rank (comb min) and the geometric
average (comb geo) of ranks (computed as additions of logarithms) turn out to be quite
successful. This can be explained in various ways, for example, taking the geometric aver-
age is the correct way of averaging ratios. Since ATPs are very (probably exponentially)
sensitive to the number of axioms, treating the particular aggregated rankings as ratios is
quite likely fitting to our domain (e.g., the ratio between 50th and 60th premise is 1.2, while
the ratio between 10th and 20th premise is 2, whereas the linear distance is the same in the
two cases).

We also try several methods of boosting [24]: using for training of the next method
only those proof dependencies that are badly predicted by the previous methods. While
we believe that there are good reasons why this approach should help (e.g., our current
methods being quite simple and thus hard to fit to more complicated ideas), so far this has
not provided significant improvements.

All the tested methods4 (apart from LSI (gensim) and SInE (E prover)) are now uniformly
implemented in OCaml, which gives significant speedup over the initial Perl implementation
on the large number of features, labels and examples used when training over the whole
MML (the number of features reaches several hundred thousand). The most useful methods
are further implemented in C++, making them about twice as fast as their OCaml version.
A particularly useful low-level optimization is the use of partial sorting (based on heapsort)
of the scores according to the number of premises demanded from a particular premise-
selection method. For example, if only 128 premises are needed, the partial sorting is much
more efficient than full sorting of the whole array of 150000 MML formulas.

4For their details see http://cl-informatik.uibk.ac.at/users/cek/mizAR/legend.txt

http://cl-informatik.uibk.ac.at/users/cek/mizAR/legend.txt
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2.3 ATPs and Their Low-Level Guidance

No particular development of ATP strategies was done for this work on the whole
MML. However, thanks to the recent CASC competitions containing Mizar divisions
(Mizar@Turing12, CASC LTB 2013) the recent versions of Vampire and Epar seem to be
tuned well for MPTP2078. In particular, a set of strong strategies for E has been automati-
cally developed by BliStr [33] in 2012 on the 1000 Mizar@Turing12 problems, raising the
performance on MPTP2078 over E’s auto-mode by 25 %. A second round of such strategy
evolution on these 1000 problems was done for MaLARea 0.5 in CASC LTB 2013, where
additionally a number of strong SInE strategies were evolved. Vampire 3.0 is on MML 16 %
stronger than Vampire 2.6.

3 Experiments and Results

3.1 Experiments and Results on a Random Subset of 1930 Problems

Most of the experimental research was done on a random subset of MML consisting of 1930
theorems (more precisely, every 30th theorem was used). For each of these theorems, the
premise selection methods were trained on all the preceding proof data (Section 2.1), and
chosen numbers (32, 64, 96, 128, 256, 512 and 1024) of the best-ranked premises were
given to the ATPs. Most of the experiments during the development of the premise selection
methods were done with Vampire 3.0. The final experiments were extended to Epar and Z3.
As in [15], the systems were run with a 30 second time limit on a 48-core server with AMD
Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. In real time,
each evaluation thus took 2–3 hours for one ATP. In total, 70 different premise-selection
methods have been tried on the random sample, see our web page for a detailed listing.5

Table 2 shows the fourteen methods and their parameters that performed best on the
1930-subset. The �-SOTAC (State of the art contribution) is the sum of a system’s SOTAC
over all problems attempted, where for each problem solved by a system, its SOTAC for the
problem is the inverse of the number of systems in our evaluation that solved this problem.
This metric shows how useful a particular method is in a collection of other methods (in this
case all the 70 methods that have been tried).

Table 3 shows the 14 methods that collectively (when computed in a greedy way)6 cover
as many of the 1930 problems as possible. To be as orthogonal as possible, the methods in
this set differ a lot in their parameters, the data trained on, and the number of best premises
given to the ATP. Their joint performance on this subset is 44 %. All the 70 tested methods
together solve 968 of the 1930 problems, i.e., 50.155 % .

3.2 Experiments and Results on the Whole MML

When the developed methods on the 1930-subset reached sufficiently high joint perfor-
mance, we evaluated the most useful 14 methods on the whole MML, again with a 30-second

5http://cl-informatik.uibk.ac.at/users/cek/mizAR/5yp.html
6Such greedy (covering) sequence of methods starts with the best method, and each next method in such
sequence is the one that greedily adds most solutions to the union of solutions of the previous methods in the
sequence.

http://cl-informatik.uibk.ac.at/users/cek/mizAR/5yp.html
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Table 2 14 best premise selection methods on the 1930-subset

Method Parameters Premises ATP Theorem (%) �-SOTAC

comb min 2k 20 20 128 Epar 550 (28.50) 2.41

comb geo 3k 50 00 96 V 544 (28.19) 1.94

lsi 3200ti 8 80 128 Epar 537 (27.82) 2.17

comb geo 1k 33 33 96 V 535 (27.72) 1.60

comb geo 10k 33 33 96 V 533 (27.62) 1.73

comb geo 3k 20 20 96 V 533 (27.62) 1.71

comb geo 3k 33 33 96 V 533 (27.62) 1.63

comb geo 3k 25 25 25 96 V 532 (27.57) 1.62

comb har 2k k200 33 33 256 Epar 532 (27.57) 2.19

comb geo 3k 33 33 96 V 531 (27.51) 1.69

comb geo 3k 50 00 128 V 531 (27.51) 1.76

comb geo 1k 33 33 128 V 529 (27.41) 1.68

knn is040 128 V 528 (27.36) 1.85

knn is 40 96 Epar 528 (27.36) 2.40

Theorem (%): Number and percentage of theorems proved by a system.

�-SOTAC: See the explanatory text for this metric.

time limit. This took about one week of real time on our server. The performance of these
methods is shown in Table 4. The methods are ordered there from top to bottom already by
their position in the greedy covering sequence for the whole MML. The table says that run-
ning these fourteen methods in parallel for 30 seconds gives a 40.6 % chance of solving an
MML theorem without any user interaction. The best previous result in such fully automated
learning/proving over the whole MML was 18 %, achieved in [2] by running Vampire 0.6

Table 3 The top 14 methods in the greedy sequence on the 1930-subset

Method Parameters Deps Premises ATP Sum % Sum

comb min 2k 20 20 ATP6 128 Epar 28.497 550

comb qua k200 3k 33 33 ATP4 512 V 32.798 633

comb geo 3k 33 33 ATP3 64 V 35.959 694

lsi 3200ti 8 80 ATP6 128 Z3 37.461 723

geo r 99 ATP6 64 V 38.653 746

knn 200 ATP1+Mizar 1024 V 39.741 767

nb idf010 ATP6 128 Epar 40.725 786

comb min 20 20 ATP2 128 V 41.347 798

comb geo 3k 50 00 ATP3 1024 V 41.969 810

knn is040 ATP1 1024 Epar 42.487 820

knn is 40 ATP6 96 Z3 43.005 830

geo 1 66 ATP3 1024 V 43.420 838

lsi 6400 8 120 ATP1 64 V 43.782 845

geo 1 33 ATP3 256 V 44.093 851
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Table 4 14 most covering methods on the whole MML, ordered by greedy coverage

Method Parameters Prems. ATP �-SOTAC Theorem (%) Greedy (%)

comb min 2k 20 20 128 Epar 1728.34 15789 (27.3) 15789 (27.2)

lsi 3200ti 8 80 128 Epar 1753.56 15561 (26.9) 17985 (31.0)

comb qua 2k k200 33 33 512 Epar 1520.73 13907 (24.0) 19323 (33.4)

knn is 40 96 Z3 1634.50 11650 (20.1) 20388 (35.2)

nb idf010 128 Epar 1630.77 14004 (24.2) 21057 (36.4)

knn is 80 1024 V 1324.39 12277 (21.2) 21561 (37.2)

geo r 99 64 V 1357.58 11578 (20.0) 22006 (38.0)

comb geo 2k 50 50 64 Epar 1724.43 14335 (24.8) 22359 (38.6)

comb geo 2k 60 20 1024 V 1361.81 12382 (21.4) 22652 (39.1)

comb har 2k k200 33 33 256 Epar 1714.06 15410 (26.6) 22910 (39.6)

geo r 90 256 V 1445.18 13850 (23.9) 23107 (39.9)

lsi 3200ti 8 80 128 V 1621.11 14783 (25.5) 23259 (40.2)

comb geo 2k 50 00 96 V 1697.10 15139 (26.1) 23393 (40.4)

geo r 90 256 Epar 1415.48 14093 (24.3) 23478 (40.6)

for 20 seconds (using about twice as fast Intel Xeon machine than our AMD server) on 200
best-ranked premises proposed by the SNoW system using the Naive Bayes learner. Since
this was just a single method, a fair comparison is with the best method developed here,
which solves 27.3 %, i.e. 50 % more problems. One of the reasons for this improvement are
obviously the better training data developed here by the six MaLARea-style proving/learning
passes over the MML.

It should be however noted that much better results than 18 % have been achieved on
smaller benchmarks such as MPTP2078, where more expensive methods such as kernel-
based learning [22] could be applied. Comparison with those results is however possible
only in a high-level way: we use different MML version here, different versions of the ATPs,
coarser slices of the best premises, and we do not limit the premises only to those avail-
able in the 33 articles used for MPTP2078. The best result on MPTP2078 reported in [20]
was 823 problems (out of 2078) solved with 70 premises, Vampire 0.6 and 5s on an Intel
Xeon machine. The best new performance on the 2061 problems corresponding to the 33
MPTP2078 articles in the current MML is 1059 problems solved in 30 seconds by Epar using
128 best premises.7 To make a bit closer comparison, we test the current best-performing
method on the 2061 problems also with the old Vampire 0.6 and 5 seconds on the old Intel
machine, solving 726 problems. This is practically the same result as the performance of the
best old kernel-based method (combined with SInE) on the MPTP2078 benchmark when
using 128 premises. This seems to be an evidence (modulo all the differences named above)
that the methods based on fast scalable learning techniques such as k-NN can with enough
care catch up with the existing kernel-based techniques. Quite likely, this is however not
the last word, and we hope to get further improvements by scaling up and strengthening the
kernel-based and related methods.

7The detailed results restricted to the 2061 problems are at http://cl-informatik.uibk.ac.at/users/cek/mizl/
mptp2k.html

http://cl-informatik.uibk.ac.at/users/cek/mizl/mptp2k.html
http://cl-informatik.uibk.ac.at/users/cek/mizl/mptp2k.html
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4 Proofs

We have briefly compared the shortest ATP proofs found with the corresponding
MML proofs. For this, we only consider the 28892 named Mizar theorems for which we have
obtained either a human or AI-advised ATP proof. The complexity metric used for a human-
written Mizar proof is just the number of proof lines in the Mizar article, while for the ATP
proofs we use the number of dependencies.8 These statistics, sorted by the largest differ-
ence between these metrics is available online9, together with the ATP dependencies used
for this comparison10. For example the first entry says that the ATP proof of the theorem
REARRAN1:2411 has a 534-lines long Mizar proof, while the shortest ATP proof found has
only 5 dependencies. Indeed, this greatest AI/ATP-found proof shortening is valid, thanks
to a symmetry between the concepts used in this theorem and a previously proved theorem
REARRAN1:1712 which can be established quite quickly from the concepts’ definitions.
The Mizar proof instead proceeds by repeating the whole argument from scratch, modifying
it at appropriate places to the symmetric concepts. The AI/ATP toolchain has thus man-
aged to succinctly express the difference between the two theorems in a very explicit and
operational way, while the human authors probably were on some level also aware of the
symmetry, but were not able to capture it so precisely and succinctly. In some sense, the
AI/ATP system has thus managed to find, precisely formulate, and productively use a new
mathematical trick.

This comparison, showing such most striking shortenings, is also useful for heuristic
checking of the correctness of the whole translation/AI/ATP toolchain. By random inspec-
tion of a dozen of such shortenings, no suspicious proofs were found, i.e., all the inspected
ATP proofs could be replayed in Mizar . On the other hand, some of the ATP proofs can get
very long, and may be probably already quite hard to understand without further refactoring
and presentation methods.

Finally, the Mizar proof length expressed in terms of the lines of code can also serve as
another metric for measuring the performance of the ATP methods. The total number of the
Mizar source lines used for the proofs of the 52248 named toplevel theorems is 1297926. The
sum of the Mizar proof lines of the 28892 named theorems that were proved automatically
(either from human or AI-selected premises) is 300914. This means that on average 23.2 %
of the proof lines can be “written automatically”, if such automation is called on the toplevel
named theorems. This is a metric that in some sense complements the 56.23 % ratio obtained
in Section 2.1, showing that the ATPs are much better in proving the Mizar -easy theorems.
On the other hand, the 23.2 % average would be obviously improved a lot if also the proof-
local lemmas were included in the experiments, and the number of lines corresponding to
such lemmas was appropriately included in the statistics.

5 Integration with MizAR

The new optimized C++ versions of the premise selectors are sufficiently fast to train
on the whole MML in 1–3 seconds. This simplifies the integration of the methods in the

8These choices can obviously be questioned, but as a first comparison they are useful enough.
9http://mizar.cs.ualberta.ca/∼mptp/mml4.181.1147/html/00prdiff15.html
10http://mizar.cs.ualberta.ca/∼mptp/mml4.181.1147/html/00atpdeps
11http://mizar.cs.ualberta.ca/∼mptp/mml4.181.1147/html/rearran1.html#T24
12http://mizar.cs.ualberta.ca/∼mptp/mml4.181.1147/html/rearran1.html#T17

http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/00prdiff15.html
http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/00atpdeps
http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/rearran1.html#T24
http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/rearran1.html#T17
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MizAR service. For each query, the premise selectors are always first trained on the whole
MML and also on the features and proof dependencies added from the current article.13 After
such training, the premise selectors are presented with the conjecture features, to which they
respond by ranking the available theorems according to their relevance for the conjecture.
The several premise selection methods with their corresponding ATPs are run in parallel,
and if successful, the result is communicated to the user. The main MizAR server (Intel Xeon
2.67 GHz) is considerably faster than the AMD machines used for most of the experiments.

The service thus always updates itself with new data: the conjecture is always a part
of a particular Mizar article, which is submitted as a whole to the system. However, in
comparison with the recently produced HOL Light service (HOL(y)Hammer), the updating
is so far more limited. We do not yet try to get (for better training) the minimized ATP
proofs of the article’s theorems that precede the current conjecture. One reason is that,
unlike in HOL(y)Hammer, the MizAR service allows anonymous uploads of whole articles,
but does not yet keep such projects persistent. Adding such persistence should make the
computing and minimization of ATP proofs less expensive, because such data can then be
quite efficiently cached and re-used (see Section 3 of [16]).

Another difference to the HOL Light setting is the very common use of local constants
(eigenvariables) in the Jaśkowski-style Mizar proofs. The large-scale experiments (and thus
also the training data obtained from them) presented here only deal with the set of toplevel
Mizar theorems which do not contain such proof-local constants. This has two different
effects when proving the proof-local lemmas that contain such constants:

1. The local assumptions and lemmas about such constants are naturally preferred by the
premise selectors (in particular when using weighting schemes such as TF-IDF [14]),
because such local constants (which always have a distinct internal name) and the terms
containing them are rare. This is good, because such local lemmas are typically quite
relevant to the local conjecture.

2. The feature representation of the proof-local lemmas may become quite distant (in the
various metrics used by k-NN) from the general theorems that are needed to justify such
lemmas, because many terms in the lemmas are instantiated with the local constants.
This may be a serious problem, preventing finding the relevant theorems.

We use a simple method to counter (2): We generalize all local constants in such proof-local
conjectures to variables. The term features of such generalized versions of the lemmas are
used together with the standard term features. This is clearly just a first step, the general
task of getting features that indicate for example the (lack of) the instantiation relationship
between two formulas is quite interesting, and various syntactic and semantic methods are
possible [18]. Further experiments and evaluation of such issues, as well as of the user-
perceived strengthening of the MizAR service are left as future work.

6 Conclusion, Future Work and Thanks

The main result of this work is the 40.6 % success rate in proving the toplevel Mizar the-
orems fully automatically. This has been achieved by several iterations of implementing
better premise selection methods, using them to obtain better training data, and using such

13In the MizAR service, the conjecture is always submitted with the whole Mizar article in which the
conjecture is stated.
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data to further improve the performance of the learning methods. The methods were imple-
mented very efficiently, allowing their easy deployment in the MizAR service. We believe
that such strong AI/ATP systems are very useful tools that make formal mathematics much
more accessible, and their gradual strengthening is today one of the most promising paths
towards the eventual adoption of computer-assisted mathematics (and exact science) by
mainstream mathematicians (and exact scientists).

The main body of future work is thus further strengthening of the various parts (e.g.,
features/labels and the whole learning setup, machine-learning techniques, ATPs) of the
AI/ATP methods. Also, more advanced proof reconstruction such as [13, 27] is still missing
for Mizar . With longer and longer ATP proofs, human-friendly transformations and presen-
tations of such proofs are becoming more and more important tasks that will quite likely also
benefit from learning the “human-friendliness” from large repositories of human-oriented
proofs such as the MML.

Thus it seems that the forty years of incessant and stubborn designing and building of the
human-oriented formal mathematical language and large library by the Mizar team, and in
particular by the recently deceased Mizar gurus Andrzej Trybulec and Piotr Rudnicki, have
already resulted in one of the most interesting AI corpora currently available to mankind.
It will be quite hard for the historians to properly enumerate all their inventions that led
to the current state of the art. We would like to thank Andrzej and Piotr for this lifelong
Opus Magnum, for their infatuating dreams, their wide and never-ending interest in science
(and science fiction), and for their great sense of fun combined with high doses of self-
criticism, down-to-earth common sense, caution and modesty, that made them into such
great scientists, hackers, teachers, debaters, critics, and friends.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in anymedium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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21. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for Sledgehammer. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proceeding of the 4th international conference on
interactive theorem proving (ITP’13) of LNCS, vol. 7998, pp. 35–50. Springer (2013)
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