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Abstract

In swarm robotics, robots with only poor computational
equipment are often used. Additionally, the precision of their
actuators and sensors is rather poor. This causes a challenge
in the construction of controllers able to achieve complex be-
haviors on such robotic systems. Here we describe a novel
bio-inspired concept of a robot control paradigm, which is
inspired by the information-processing of simple microorgan-
isms. The basic idea is that we use a roughly abstracted model
of inter-cellular signal emission and signal processing to con-
trol the movement behavior of a two-wheeled autonomous
robot. Many unicellular organisms are able to perform taxis-
behavior (phototaxis, chemotaxis, etc.) without having so-
phisticated sensor equipment and without possessing neu-
ronal structures. Our Artificial Homeostatic Hormone System
(AHHS) mimics primitive chemical signal networks and is
able to achieve taxis-behavior with little computational cost.
In this article the controller is analyzed in a simple mathe-
matical model and additional tests are performed on a more
sophisticated multi-agent simulation of robotic hardware and
the controller is implemented on real robotic hardware.

INTRODUCTION
In swarm robotics (Beni, 2005; Şahin, 2005) simple and in-
expensive robotic hardware is used frequently. Such robotic
systems often have limited computational abilities and their
sensors and actuators are rather imprecise. Also memory
is often limited and therefore the minimal hardware equip-
ment cannot easily be compensated by extensive software
concepts such as data filtering, managing a world-model or
by simultaneous localization and mapping (SLAM) of the
environment. Thus, it is a challenging task to generate con-
trollers that allow the generation of adaptable complex be-
haviors. In addition, evolutionary robotics (Floreano et al.,
2008) is a concept to automatically design ‘simple’ robot
controllers with algorithms of evolutionary computation,to
explore the behavior space of the robots and to generate the
desired behaviors.

Many microorganisms, that have only limited sensor pre-
cision and do not have neuronal systems to process informa-
tion, show an impressive ability to perform complex and/or
target-oriented behaviors (taxis). For example, a unicellu-
lar algae (Bound and Tollin, 1967) performs phototaxis with

Figure 1: Five robots showing phototactic behavior with
AHHS controller.

just one photo-sensitive eye-spot and just a single actuator
(flagellum). Similar capabilities are found in many bacteria
(Khan et al., 1995; Darnton et al., 2007). Also, multi-cellular
aggregation (colonies) of simple cells are able to coordinate
their joint motion to collectively approach the source of a
stimulus (e.g., phototaxis inVolvox, Holmes (1903)).

The internal processes of cells can be interpreted as com-
putational processes as reported by Bray (2009). This ‘non-
cognitive’ method (i.e., single cells have no neurons, hence,
it is an anti-connectionist approach) of information process-
ing was applied many decades ago by Grey Walter (Grey
Walter, 1950, 1951) to control a simple robot. The behav-
iors reported in these papers are similar to this work, only
we are modeling internal cell processes explicitly. In previ-
ous studies (Schmickl and Crailsheim, 2009; Hamann et al.,
2010b,a), we suggested a simple difference-equation based
model of the internal signal processing of uni-cellular organ-
isms, which we call Artificial Homeostatic Hormone System
(AHHS). In such systems, representing rough abstractions
of biological physiological models, the difference-equation
model controls the way of how a robot acts based on sensory
input.

In the model we assume that the inner body of the robot
is compartmentalized. Specific compartments are associ-
ated with certain components of the robot’s real body. In
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each compartment, the model tracks the dynamics of virtual
chemical substances, which represent chemical cell signals
in real organisms. These chemical substances can diffuse
to neighboring compartments and they decay proportion-
ally to their current concentration over time. Some of them
are produced at constant rates as well, leading to homeo-
static set points (equilibria) that are approached after anini-
tial transient. Some of these signals affect actuators (e.g.,
wheels), leading to unstimulated behavioral modes of the
organism. Sensor excitation by environmental stimuli result
in local disturbances in the hormone equilibria, for exam-
ple, by sudden secretion of one of the chemical signals (hor-
mones). As hormone levels affect actuators, changing hor-
mone concentrations may change the robot’s behavior. This
stimulated behavior lasts until the ‘abnormal’ sensor excita-
tion has ceased and the hormone levels have approached the
previous homeostatic settings again. A set of hormone-to-
hormone interactions can enhance the behavioral repertoire
of the robot by providing more complex forms of sensor-to-
actuator linkage via the virtual hormone reaction networks.

To demonstrate the abilities of AHHS controllers in pro-
ducing interesting behavioral patterns even with limited
computational and with limited sensor equipment, we aimed
to mimic taxis behavior that is found in very primitive life-
forms (e.g., some bacteria).

The bacteriumEsherichia colishows interesting behavior
in finding attractive habitats by chemotaxis. The bacterium
is propelled by several flagella (actuators), which have two
modes of turning: clockwise (CW) and counter-clockwise
(CCW). The CCW motion allows the organism to swim al-
most in straight trajectories and the CW motion of some
flagella disturb the synchrony among the bundle of all flag-
ella. This leads to a so called ‘tumbling mode’ of movement,
where the organism almost randomly changes its direction
(Khan et al., 1995; Darnton et al., 2007). Chemoreceptors
that react to attractants in the environment suppress those
cell-internal chemical signals which finally alter the rotation
of flagella to the CW mode. In absence of these attractants,
the CW mode is not suppressed that much, which leads to
a higher probability and longer duration of the ‘tumbling
mode’.

This way, the organism is able to ascend in an attractive
chemical gradient in a way that was found to be a very robust
control mechanism (Alon et al., 1999; Yi et al., 2000). This
approach of taxis is rather different from those approaches
frequently used in mobile robotics, for example the famous
Braitenberg vehicles (Braitenberg, 1984). For example, us-
ing just one single sensor is comparable to ‘vehicle 1’. But
the functionality of the taxis-behavior is not existent in ‘ve-
hicle 1’, which rather speeds up or slows down depending
on the current sensor intensity. When searching for the func-
tionality of taxis, which is provided in our approach, a com-
parison with ‘Braitenberg vehicles 2 and 3 (fear, aggression
and love)’ makes more sense. But here, the inner structure of

the controller does not correspond. In contrast to these Brait-
enberg vehicles, our AHHS controller uses just one sensor,
thus no gradient-ascent based on differences between paral-
lel sensor values is used. Furthermore, there is no explicit
implementation of any kind of ‘seeking-behavior’: Neither
does the robot rotate with a directional sensor measuring
light intensity until it finds a maximum in a particular di-
rection that it then approaches directly, nor does it use any
explicit memory storage of past sensor values or an explicit
‘world model’. In contrast, we claim that in our solution,
the robot, its position in the world (relative to the light opti-
mum) and the trajectory itself serve as some kind of memory
and as some kind of world model. This approach is rather
unique.

In the study presented here, we investigate how an AHHS
controller can be programmed to perform a comparably sim-
ple behavior with similar simple mechanisms. As most
cheap robots are lacking real gas detectors (chemo-sensors)
we wanted our focal robot to pursue a different but compa-
rable task, that is phototaxis:

Our focal robot is equipped with two wheels and just one
sensor on the right hand side of the robot. In this first con-
troller example, this sensor is discrete and either passes a1
(light perceived) or a0 (no light perceived) to the controller.
This ‘binary’ controller is able to detect whether it pointsto-
wards the light or not, thus offering some directionality. In
a second controller, we assumed that the sensor cannot de-
termine this directionality, instead it can just report thelocal
illuminance at the robot’s current position. In contrast tothe
first controller, here the sensor reports a graduated output
value proportionally to the current local illuminance. The
task for the robot is to drive towards a light (phototaxis).

For a fixed topology with two wheels and a sensor on the
right side of the robot, there are four potentially reasonable
ways of programming a reactive agent: Without any sensory
input the robot moves in right turns and sensory input either
reduces the radius of the turns or it increases the radius. The
other option is to let the robot move in left turns without sen-
sory input and sensory input either reduces the radius of the
turns or it increases the radius. The methods with standard
right turns are gradient descends and the left turns lead to
gradient ascends. The method of decreasing the turn radii
leads to trajectories with many loops. We call this method
positive steeringbecause the robot steers by intensifying the
standard turn direction. The method of increasing the turn
radii or even changing the turn direction leads to waved or
straight trajectories. We call this methodnegative steering
because the robot steers by decreasing or inverting the stan-
dard turn.

AHHS controllers
In both of the reported controllers, we assumed that a basic
’forward-driving’ hormoneHf is produced (in the follow-
ing: forward hormone) in both compartments of the robot
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at rateα. This hormone activates the motors. The main
difference between these two controllers is the asymmetric
production rate (αl in the left compartment,alphar in the
right compartment, withαl 6= αr) in case of the first con-
troller. The second controller has a symmetric production
rate (αl = αr = α). Thus, the levels of the forward hormone
are equal in the ‘normal’ state, the robot basically drives in
straight lines. Such an AHHS controller can easily be com-
bined with a collision-avoidance system, as it was discussed
in (Schmickl and Crailsheim, 2009; Stradner et al., 2009).

First AHHS controller

In our first AHHS controller, we assumed that the robot is
equipped with a sensor that is able to determine whether it
points towards the light source (within an angular threshold
of ±90o around the sensor center). If this is the case, the
sensor triggers the production of a light-dependent hormone
H l (in the following: light hormone). The light hormone
interacts with the forward hormoneHf by blocking (de-
creasing) it. Thus, the hormone level in the compartment,
that corresponds to the side of the light-sensor, is decreased
by the light hormone and the robot starts to turn in curves
towards this side. This first approach was inspired by the
phototactic behavior ofEuglena gracilis(Bound and Tollin,
1967), which rotates around its axis until a shading pigment
shades the organism’s eyespot. This is only the case, if the
organism is oriented correctly towards the stimulus (light)
source. In this case, all phobic responses disappear and the
organism moves towards its target. In our case, also just one
binary and directional sensor is available and the ’body’ of
the robot acts as a shading device.

We chose a system of difference equations to model the
agent. It is assumed that the agent moves in a plane. The
agent’s position is given byx and updated by

∆x

∆t
=

(

cos φ(t)
sinφ(t)

)

v, (1)

for the agent’s headingφ and a constant velocityv > 0. The
change of the heading is defined by

∆φ

∆t
=
(

(HF
l (t) − HL

l (t)) − (HF
r (t) − HL

r (t))
)

θ, (2)

for the value of the forward hormone in the left compartment
HF

l (right compartmentHF
r ), the value of the light hormone

in the left compartmentHL
l (right compartmentHL

r ), and a
parameterθ called steering intensity that defines the inten-
sity of the turns related to the difference in hormones in the
tow compartments. The dynamics of the forward hormone
HF are given by

parameter value
hormone production leftαl 0.11 [1/time unit]
hormone production rightαr 0.1 [1/time unit]
hormone decayβ 0.04 [1/time unit]
hormone diffusionD 0.001
agent velocityv 0.01 [space unit/time unit]
sensor scale factorσ 0.03
steering intensityθ 0.1
sensor offsetδ 45o

Table 1: Standard parameters for the model of the first con-
troller.

∆HF
l

∆t
= αl − βHF

l (t) + D(HF
r (t) − HF

l (t)), (3)

∆HF
r

∆t
= αr − βHF

r (t) + D(HF
l (t) − HF

r (t)), (4)

for hormone production ratesαl (left compartment) andαr

(right compartment), decay rateβ, and diffusion constantD.
The update rule of the light hormoneHL is

∆HL
l

∆t
= −βHL

l (t) + D(HL
r (t) − HL

l (t)), (5)

∆HL
r

∆t
= −βHL

r (t) + σS(t) + D(HL
l (t) − HL

r (t)), (6)

for a sensor inputS(t) and the sensor scale factorσ.
The sensor returns a 1, if it points towards the light source

(within an angular threshold of±90o around the sensor cen-
ter). Otherwise it returns a 0. This is defined by the scalar
product:
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
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arccos
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))∣
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∣

∣

∣

> 90o

0 else.
(7)

The standard parameters, that were used, if not stated ex-
plicitly, are given in Table . With this model we generated
examples of trajectories by solving it numerically. Examples
of three trajectories are shown in Fig. 2. These trajectories
clearly show the two different strategies of positive and neg-
ative steering by changing the steering intensity parameter θ
(a convoluted trajectory compared to waved and straight tra-
jectories).

The model was also used to do extensive scans of parame-
ter intervals. For example, an interesting behavior was found
for the sensor scale factorσ that indicates complex behavior.
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Figure 2: Examples of three trajectories with different pa-
rameter settings. The agent starts atx = (−1, 1) with head-
ing φ = 90o (north). The maximum of the light gradient
is located at(0, 0). The blue trajectory is an example of
positive steering (θ = 0.1). The green (σ = 0.25) and red
(σ = 0.01) trajectories are examples of negative steering
(θ = −0.1).

The sensor scale factor influences the radius of the circular
behavior to which the robot converges to (i.e., the period
length). Results are shown in Fig. 3 that indicate a com-
plex relation (double exponential increase) between the sen-
sor scale factor and the period length.

Second AHHS controller
In this example, we assumed a photo-receptor which is
mounted on top of the robot, so that it has no directional-
ity at all. It just can report the local luminance in a grad-
uated manner: The higher the local luminance, the higher
is the reported sensor value. This sensor value produces a
light-dependent hormone in one of the two compartments
of the AHHS controller, which breaks down the forward-
driving hormone. As the sensor produces this hormone pro-
portionally to the local illuminance, the forward-drivinghor-
mone level is lowered also in a proportional level, lead-
ing to smaller curve radii in higher illuminated areas. This
rotation-behavior, changing the orientation of the robot fre-
quently and decreasing the net movement speed of the robot,
is inspired by the mechanisms of chemotaxis reported with
Esherichia coli.

The agent’s position update of this second controller is
defined as in Eq. 1. The dynamics of headingφ is now given
just by the difference of the forward hormone:

∆φ

∆t
= (HF

l (t) − HF
r (t))θ. (8)

The update rule of the forward hormone is similar to the
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Figure 3: Scan over the sensor scale factorσ showing its
influence on the length of the asymptotic period length. The
green points correspond to the smallest possible period, red
points correspond to rather complex periodic behaviors. The
fitted blue curve is double exponential.

definition above, except that now it is reduced by the light
hormoneH l:

∆HF
l

∆t
= α − βHF

l (t) + D(HF
r (t) − HF

l (t)) − γHL
l (t),

(9)

∆HF
r

∆t
= α − βHF

r (t) + D(HF
l (t) − HF

r (t)) − γHL
r (t),

(10)

for production rateα (now symmetrically defined), dif-
fusion constantD, decay rateβ, and hormone-induced de-
cayγ.

The update of the light hormone is defined as given by
Eq. 6. The sensor input is now a continuous value which is
a direct measurement of the local light intensity. The light
gradient is simply defined by the reciprocal of the distance
of the agent to the origin which is here the position of the
light source:

S(t) = 1/‖x(t)‖, (11)

for agent positionx. The standard parameters, that were
used, if not stated explicitly, are given in Table . An example
of an agent’s trajectory for this second controller is shownin
Fig. 4.

We used this model to do extensive parameter interval
scans. Such scans are the specialty of such abstract mathe-
matical models due to the small computational cost of solv-
ing them. We just need a valid metric to (automatically)
measure the performance of the parameter set. One possible
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parameter value
hormone production leftα 0.1 [1/time unit]
hormone decayβ 0.04 [1/time unit]
hormone diffusionD 0.03
agent velocityv 0.01 [space unit/time unit]
sensor scale factorσ 0.2
steering intensityθ 0.3
hormone-induced decayγ 0.003 [1/time unit]

Table 2: Standard parameters for the model of the second
controller.
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Figure 4: An example of an agent’s trajectory for the second
controller.

measure of the quality of the gradient ascent is the distance
to the maximum during the asymptotic and periodic behav-
ior of the agent. In Fig. 5 we present scans over the diffu-
sion constantD, the steering intensityθ, and the hormone-
induced decay rateγ for three different initializations of the
agent position. For each parameter value six distances of the
trajectory to the maximum of the light gradient during the
last 3000 time steps are plotted (3000, 2500, . . . , 500, 0 time
steps before the numerical integration was stopped). Clearly
two phases are detected. The distances above a distance of
100 correspond to the maximal possible distance that can
be obtained by a robot (by driving in a straight line). Close
to optimal parameter settings are found by choosing param-
eters with low distances. However, the parameters are not
fully mutually independent.
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(b) Scan over the steering intensityθ.
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(c) Scan over the hormone-induced decay rateγ.

Figure 5: Scan over different parameters showing the dis-
tance to the maximum of the gradient of 6 time steps dur-
ing the asymptotic behavior (3000, 2500, . . . , 500, 0 steps
before stopping to iterate) for three different initializations
of the agent’s positions (indicated by different colors). The
distances above 100 correspond to the maximal possible dis-
tance that is obtained by driving in a straight line. Clearly
two phases are detected.
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Multi-agent implementation of the second AHHS
controller

We tested the second AHHS controller in a multi-agent sim-
ulation of real robotic hardware, because we think that this
controller is especially interesting for robotics: It allows a
gradient ascent without any explicit memory of past sensor
values and without any directionality of the used sensor. To
test whether this concept works also in a more realistic en-
vironment (walls, obstacles, collision avoidance of robots)
compared to the mathematical model described above, we
implemented the AHHS controller in an individual based
multi-agent simulation as well. In our multi-agent simula-
tion, each robot can detect nearby obstacles through 2 IR
sensors which are mounted laterally. These distance sensors
emit a ‘collision stress’ hormone, which additionally acti-
vates the motor on the ipsi-lateral side. This leads to a turn-
ing away from the obstacle. This collision-avoidance behav-
ior was implemented in an AHHS controller in (Schmickl
and Crailsheim, 2009) where it is described in more detail.
The focal questions for our experiment described here are:
Will the collision-avoidance interfere with the phototactic
behavior of our above-mentioned second AHHS controller?
Will the phototactic behavior be adaptive to environmental
fluctuations? Will sensor noise affect the system? To inves-
tigate these questions we tested the combined AHHS con-
troller (collision avoidance and phototaxis) in a simulated
robotic arena which was bound by an arena wall. All sensor
data was affected by±25% uniform random noise. To test
the adaptability of the robots, we switched the position of
the simulated light source to the other side of the arena, as
soon as the robot approached the first optimum.

As can be seen in Fig. 6(a), the robot performs ‘normal’
collision avoidance behavior successfully when no light spot
is present in the arena. As soon as the light spot is forming a
gradient pointing towards the lower left corner of the arena,
the robot starts to approach it with its characteristic photo-
tactic behavior, see Fig. 6(b). After the robot approached
the light spot, we switched the lightspot’s position at a sud-
den and the robot changed its behavior and started to ap-
proach the new optimum, see Fig. 6(c). Fig. 7 shows the
dynamics of the forward-driving hormone and of the light-
induced hormone in the last two phases of the experiment.
It is clearly visible how the robot maximizes the light hor-
mone, thus it approaches the light spot, which, in turn, leads
to a lowering of the forward-driving hormone.

To perform a further test of this controller in the multi-
agent simulator, we performed additionally a test run, which
is shown in Fig. 1. In this run, the light spot was placed at
the right side of a lengthy arena and 5 robots started simul-
taneously at the left side of the arena. A wall narrows down
the possible paths from the left to right side of the arena
and the robots had to avoid each other, as well as the sur-
rounding outside wall. As the trajectories in Fig. 1 demon-
strate the robots successfully managed to approach the light

(a) No light spot in the habitat.

(b) Light spot in the lower left corner.

(c) Light spot moved to the upper right spot.

Figure 6: Trajectories of robots in three phases of our ’dis-
turbance’ experiment. Without any light spot, the robot per-
forms only collision avoidance. As soon as the light spot is
in the left lower corner, the robot approaches it in the char-
acteristic phototactic behavior. As soon as the light spot is
shifted to the right upper arena corner, the robot changes its
behavior and approaches the new optimum.

spot. The robot-to-robot interactions led to even more com-
plex trajectories compared to those of the single-robot runs.
We assume that such swarm effects can be exploited to kick
robots out of circular trajectories that surround local optima.
This will be tested in future studies.
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Figure 7: Hormone values in the AHHS controller that gov-
erned the robot’s behavior in the ‘disturbance’ experiment,
which is depicted in figure 6.

Implementation of the AHHS in robotic hardware
Based on the results we obtained from our simulation stud-
ies, we implemented the algorithm of the second AHHS con-
troller (described above) on a robotic platform. We used an
‘e-puck’ robot (Mondada et al., 2009) for this experiment.
The robot was equipped with only one light-sensor on top,
pointing upwards. Therefore, the light sensor reports local
luminance without any directional information. Also, the
robot is equipped with two wheels (differential drive). The
‘forward hormone’ is steadily produced and decays propor-
tionally, establishing an equilibrium that in turn determines
the robots general forward speed. The ‘light hormone’ of
the AHHS is emitted in response to light sensation, increas-
ing the decay rate of the ‘forward hormone’ to slow the right
wheel, thus inducing a curved trajectory. For the AHHS, we
used the following parameterization:β1 = 0.04, β2 = 0.04,
D = 0.015, α = 0.1, γ = 0.03, andσ = 0, 055. The
light sensor reports sensor values between0 (absolute dark-
ness) and1 (maximum luminance) with a noise factor of
about0.2. Because the arena was bounded by a wall, we
implemented a collision-avoidance behavior based on the
8 IR proximity sensors of the e-puck robot. This behavior
overruled the AHHS control when the robot approached a
wall. In (Stradner et al., 2009), we showed that this kind
of collision-avoidance behavior can also be built using an
AHHS control.

For this experiment, we used an arena (2.0m× 1.8m) with
two light emitters in opposing corners (top left and bottom
right). At first, only one emitter (top left) was switched on.
The robot was placed directly under the other, switched off,
light source with a heading pointing away from the light op-
timum. The robots objective was to navigate to the brightest
spot in the arena, directly under the light emitter (top left).
After the robot had reached the light spot, the light emitter
was switched off, while the other emitter was switched on

Figure 8: Composite image of the robotic implementation of
the light-seeking AHHS in an e-puck robot. The two light
emitters can be seen in the top left and bottom right corners.
The robot trail, here captured using a phosphorescent paint,
shows the spiral-way approach to the top left corner and the
bottom right corner.

(bottom right). The robots task was now to locate and navi-
gate to the new light optimum.

Figure 8 shows, that the robot (running the AHHS) per-
forms the spiral-way target approach towards the light gradi-
ent successfully. It can be seen that the light sensor’s noise is
significantly reduced in both hormone levels, thus enabling
the smooth spiraling movement of the robot.

CONCLUSIONS AND FUTURE WORKS
Conclusions
We have successfully demonstrated that a simple bio-
inspired AHHS controller can be used to achieve phototactic
behavior in autonomous robots. The controller is simple, so
that it can be easily analyzed and studied with mathemat-
ical differential-equation models. Using this technique we
analyzed the emerging phototactic behavior of two different
controller setups, both based on different AHHS configu-
rations. Both setups managed to perform phototaxis with
just one single illuminance sensor, having a different sen-
sor characteristic in each setup. Our mathematical anal-
ysis shows that the more interesting (and more complex)
behavioral patterns can be produced with the second con-
troller. This is especially interesting, because in this con-
troller setup, the sensor offers no directionality and pastin-
formation is never explicitly stored in a memory system.
This means that the robot does not simply compare old and
new sensor data and performs no memory-based gradient as-
cent. The behavior also differs significantly from classical
Braitenberg vehicle approaches (Braitenberg, 1984).

One important aspect of simple mathematical models is
that they allow exhaustive parameter sweeps in reasonable
computational time. From our performed parameter sweeps
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we conclude that the modeled AHHS controllers have a de-
fined, but wide, range of parameters that lead to the desired
phototactic behavior. The tests in the multi-agent simulation
show, that this phototactic behavior can be performed, even
with an underlying obstacle avoidance, with a more realis-
tic robotic habitat and with a huge amount of sensor noise.
And even multiple and frequent robot-to-robot interactions
did not significantly impair the robot’s ability to approach
the desired target. In addition, the ‘disturbance experiments’
showed that the emerging phototactic behavior is stable on
the one hand and flexible on the other hand. The AHHS
controller has also been shown to work on real robotic hard-
ware, in our case the e-puck robot. It performed a smooth
spiral-way target approach similar to those in the multi-agent
simulation. Furthermore it could adapt to the changing en-
vironment, when the light source switched places.

Future Works
In the future, we plan to use Evolutionary Computation
to optimize parameter sets of our AHHS systems. We
plan to implement a novel way of Artificial Evolution, so
that evolutionary operators can ‘create’ new hormones and
new sensor-to-hormones and hormones-to-actuator links. In
addition, we plan to extend the system to multi-modular
robotics, so the virtual hormones can be exchanged by
linked robotic modules. This way, we plan to mimic the
evolutionary step from uni-cellular to multi-cellular organ-
ism, like it happened several times in the natural evolution
of life forms.
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