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Abstract. This paper gives an extensive documentation of applications of finite-dimensional
nonlinear complementarity problems in engineering and equilibrium modeling. For most applica-
tions, we describe the problem briefly, state the defining equations of the model, and give functional
expressions for the complementarity formulations. The goal of this documentation is threefold: (i) to
summarize the essential applications of the nonlinear complementarity problem known to date, (ii) to
provide a basis for the continued research on the nonlinear complementarity problem, and (iii) to sup-
ply a broad collection of realistic complementarity problems for use in algorithmic experimentation
and other studies.
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1. Introduction. As a result of more than three decades of research, the subject
of complementarity problems, with its diverse applications in engineering, economics,
and sciences, has become a well-established and fruitful discipline within mathemat-
ical programming. Several monographs [34, 79, 135] and surveys [72, 148] have doc-
umented the basic theory, algorithms, and applications of complementarity problems
and their role in optimization theory.

An important reason why complementarity problems are so pervasive in engineer-
ing and economics is because the concept of complementarity is synonymous with the
notion of system equilibrium. The balance of supply and demand is central to all
economic systems; mathematically, this fundamental equation in economics is often
described by a complementary relation between two sets of decision variables. For
instance, the classical Walrasian law of competitive equilibria of exchange economies
[203] can be formulated as a nonlinear complementarity problem in the price and
excess demand variables. The complementarity condition expresses the fact that the
excess demand of a commodity must be zero if its price is positive; similarly, the price
of the commodity must be zero if there is positive excess supply. Complementarity
is also central to all constrained optimization problems. The well-known complemen-
tary slackness property in linear programming exemplifies the fundamental role of
complementarity in optimization; this property persists in nonlinear programs and
variational inequalities. Optimization is a recurring theme in numerous engineering
applications; however, many engineering systems involve the notion of equilibrium
without an objective being optimized. For instance, the renowned Wardrop principle
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of user equilibrium in traffic theory [205] has a natural formulation as a nonlinear
complementarity system; in this case, the complementarity condition is a behavioral
statement about the users of a traffic network who are postulated to take short-
est paths in the network. Another example is the physical contact of mechanical
structures; here complementarity is between the contact force and the gap (i.e., the
distance) between the bodies in contact: the contact force is positive only if there is
contact (that is, if the gap is zero). A major objective of this paper is to elucidate
the pervasiveness of complementarity in these and other important engineering and
economic applications.

Among the many facets of research in complementarity problems, one that has
received wide attention in recent years is the development of robust and efficient
algorithms for solving the ever increasing applications of these problems. There is
presently a wide variety of computational methods for solving complementarity prob-
lems. Unlike the fixed-point homotopy methods [63, 197] some of which are known
to be practically deficient for solving realistic equilibrium applications of the com-
plementarity problem (see [72] and the references therein) most of the contemporary
computational schemes are designed with the goal of removing these deficiencies and
meeting the need of solving large-scale applications efficiently. These computational
methods include the following:

• extensions of Newton’s method for nonlinear equations [73, 84, 129, 147, 163]
that replace the direction finding routines with complementarity problems,

• a path search method [41, 42, 162] that uses a generalization of a line search
technique,

• quadratic programming-based algorithms [15, 59, 60, 149] that derive exten-
sions of the Gauss–Newton methodology,

• differentiable optimization based descent methods [55, 88, 123, 125, 199] that
reformulate the complementarity relationships as a nonlinear equation or pro-
gram,

• projection and proximal methods [8, 9, 48, 132, 182] that extend projected
gradient methods,

• smoothing techniques [22, 21, 23, 24, 89, 58, 160] that replace the nonsmooth
equations with differentiable approximations,

• and interior point methods [5, 14, 22, 21, 66, 81, 99, 100, 101, 102, 131, 180,
204, 207] based on removing inequalities by an interior penalty.

Along with the research in the design and analysis of algorithms comes the recog-
nition that the linkage of these algorithms with such mathematical programming
modeling languages as GAMS [19] and AMPL [51] is extremely important for the al-
gorithms to become easily accessible to practitioners and academic researchers. Mo-
tivated by the desire to solve complex economic equilibrium problems, Rutherford
[172] developed a modeling system for applied general equilibrium systems and sub-
sequently [174, 175] extended the original GAMS modeling language to enable the
treatment of complementarity constraints. Further work on modeling language inter-
faces of complementarity algorithms can be found in the Ph.D. thesis of Dirkse [39]
and the paper [43].

Numerical experimentation has always been an important part of algorithmic
development. The paper [73] is perhaps the first to report extensive computational
results with an algorithm for solving realistic nonlinear complementarity problems
arising from various economic applications. This set of test problems has since been
augmented in [59, 105, 149, 208]; a model library containing a summary of these
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problems is formulated in the GAMS [40] and AMPL languages [39, Chapter 3].
Computational results comparing several algorithms on these test problems can be
found in [13].

Fueled by a desire to expand such a model library and to provide a basis for
the continued research on complementarity problems, we decided to undertake the
daunting task of uncovering all interesting applications of these problems known to
us. The result of our effort is a large collection of realistic complementarity problems
of various type, size, complexity, and computational difficulty. Collectively, these
problems are expected to pose new challenges for a general researcher in the field and
particularly for an algorithm designer.

The rest of this paper is divided into three major sections. The next section sets
up the notation used in the paper and describes the various types of complemen-
tarity problems that appear later. Section 3 describes the engineering problems and
gives their complementarity formulations. Section 4 does the same for the economic
equilibrium problems. Finally we give some concluding remarks in the fifth and last
section.

2. Types of complementarity problems. Complementarity problems come
in different types. In addition to the familiar ones—linear, nonlinear, generalized—
such adjectives as “mixed, horizontal, vertical, extended” have been coined to describe
a complementarity problem of a particular type. In this section we give an overview
of the various problems that we consider collectively as complementarity problems.
Many of the applications that we detail in the sequel have naturally occurring comple-
mentarity forms, and in our description of the problems we will maintain this natural
form.

2.1. Nonlinear complementarity problems. This classical problem, defined
by a nonlinear function F : Rn → Rn, is to find an x ∈ Rn such that

NCP(F ) : 0 ≤ x ⊥ F (x) ≥ 0,

where we use the perp notation “⊥” to signify that in addition to the stated inequal-
ities, the equation xT F (x) = 0 also holds. Note that since xT F (x) =

∑n
i=1 xiFi(x),

this can be equivalently stated as

x ≥ 0, F (x) ≥ 0, xiFi(x) = 0, i = 1, 2, . . . , n.

In effect then complementarity states that either xi or Fi(x) must be zero for each
i = 1, 2, . . . , n. It is easy to see that NCP(F ) is equivalent to the following problem
of solving the nonsmooth equation

min(x, F (x)) = 0,

where the min operation is taken componentwise. Complementarity problems of this
form arise as the Karush–Kuhn–Tucker (KKT) conditions of a constrained nonlinear
program

minimize θ(x)

subject to g(x) ≤ 0, x ≥ 0,

where θ : Rn → R is a continuously differentiable real-valued function and g : Rn →
Rm is a continuously differentiable vector-valued function.
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2.2. Variational inequalities. In practice, many problems have lower and/or
upper bounds on the variables, instead of the standard nonnegativity shown above.
Most generally, a problem may have both lower and upper bounds on some variables,
only lower or upper bounds on other variables, and no such bounds at all on the re-
maining variables. To accommodate such a general problem, the following variational
inequality format has been frequently used in the literature:

VI (F, [l, u]) : find x ∈ [`, u] such that (y − x)T F (x) ≥ 0 ∀y ∈ [`, u],

where ` and u are n-dimensional vectors with `i ∈ [−∞,∞) and ui ∈ (`i,∞], and

[`, u] ≡ {x ∈ Rn : ` ≤ x ≤ u}.

If `i = 0, ui = ∞ for each i = 1, 2, . . . , n, it follows easily that VI (F, [0,∞]) is
precisely NCP(F ). In several places the VI (F, [`, u]) is termed a box-constrained or
a rectangular variational inequality, the box referring to the set [`, u].

In many applications, some of the underlying conditions are defined by a system
of nonlinear equations, while the complementarity conditions are only applied to some
of the variables and functions. This leads to a type of problem generally termed a
mixed nonlinear complementarity problem and can be written in the following form:

FI(x) = 0, xI free,

0 ≤ xJ ⊥ FJ (x) ≥ 0,

where I and J form a partition of {1, 2, . . . , n}. To incorporate a free variable xi into
a model, we would set `i = −∞ and ui = ∞. The mixed nonlinear complementarity
problem can be recovered as a special case of VI (F, [`, u]) by setting `i = −∞,
ui = ∞ for i ∈ I, and `i = 0, ui = ∞ for i ∈ J . Due to this fact, the box-constrained
variational inequality is typically termed a mixed complementarity problem. Notice
that the bounds ` and u on the variables implicitly define the constraints associated
with the function F .

A special case of a mixed complementarity problem is where I = {1, 2, . . . , n},
resulting in a system of nonlinear equations:

NE : F (x) = 0.

The VI (F, [l, u] ∩ X), where X = {x : Ax = b} and A is an m × n matrix, is
also easily transformed into a box-constrained variational inequality by introducing
multipliers for the linear equality constraints. It is easy to show that VI (F, [l, u]∩X)
is equivalent to VI (H, [l, u] × Rm), where

H(x, λ) =

[
F (x) + AT λ

−Ax + b

]
.(2.1)

More generally, if X = {x : g(x) ≤ 0, h(x) = 0}, where g : Rn → Rm and h :
Rn → Rs are continuously differentiable functions, then under a suitable constraint
qualification, for any solution x of the VI (F, [l, u] ∩ X), there must exist multipliers
λ ∈ Rm and η ∈ Rs such that the triple (x, λ, η) is a solution of the VI (H, [l, u] ×
[0,∞) × Rs), where

H(x, λ, µ) =

 L(x, λ, µ)

−g(x)

h(x)


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with

L(x, λ, µ) ≡ F (x) +
m∑

i=1

λi∇gi(x) +
s∑

j=1

µj∇hj(x)

is the vector-valued Lagrangian function for the VI (F, [l, u] × X).

2.3. Vertical complementarity problems. There is a certain lack of sym-
metry in the nonlinear complementarity problem as can be seen in the formulation
min(x, F (x)) = 0. One of the functions in this formulation is quite arbitrary while
the other is the identity. Many commonly occurring problems actually have a more
general form

min(F 1(x), F 2(x)) = 0(2.2)

for two given functions F 1, F 2 : Rn → Rn. Of course, it is possible to have more
than two functions in the above equation; the resulting problem is called the vertical
nonlinear complementarity problem:

VCP(F ) : min(F 1(x), F 2(x), . . . , Fm(x)) = 0.

Clearly, this means that F j
i (x) ≥ 0 for all i = 1, 2, . . . , n and j = 1, 2, . . . , m and for

each component i, F j
i (x) = 0 for at least one j. The affine version of this problem

(that is when all the functions F i are affine) was introduced by Cottle and Dantzig
[31]; it has been treated in several studies [44, 65, 80, 124].

The VCP can be equivalently cast as a box-constrained variational inequality
(more precisely, a mixed nonlinear complementarity problem) by introducing extra
variables zj ∈ Rn, j = 2, 3, . . . , m; the equivalent formulation is∑m

k=2 zk = F 1(x),

0 = min
(
zj , F j(x) −

∑m
k=j+1 zk

)
, j = 2, . . . , m − 1,

0 = min(zm, Fm(x)).

(2.3)

It can be seen that if x solves the VCP(F ), then the above equations are satisfied
with

zj ≡ min(F 1(x), . . . , F j−1(x)) −
∑m

k=j+1 zk, j = 2, . . . , m − 1,

zm ≡ min(F 1(x), . . . , Fm−1(x));

conversely, if (2.3) holds, then x solves the VCP(F ). (Danny Ralph at the University
of Melbourne had previously communicated to the authors a related formulation of
the VCP as a normal equation.)

Notice that the number of variables in problem (2.3) is mn, compared with just
n in the original min formulation of the VCP(F ). Some algorithms for solving the
VCP (e.g., the Gauss–Newton method for nonsmooth equations in [150]) may exploit
the particular structure of the min formulation much more effectively than treating
the variational inequality directly. However, many of the variables introduced in (2.3)
arise in a purely linear fashion, so a general purpose solver for the VI may be able to
exploit this fact.
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2.4. Saddle-point problems. These problems are generalizations of nonlinear
programs and provide a rich source of complementarity problems and variational
inequalities. In general, given two nonempty sets X ⊆ Rn and Y ⊆ Rm and a
function L : Rn × Rm → R, the saddle-point problem associated with the triple
(X, Y,L) is to find a pair of vectors (x∗, y∗) ∈ X ×Y , called a saddle point, such that

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) for all (x, y) ∈ X × Y .

Suppose that L is a continuously differentiable convex–concave function (convexity–
concavity means that L(x, y) is a convex function in x for each fixed y and a concave
function in y for each fixed x), and also that X and Y are convex sets; then (x∗, y∗)
is a saddle point if and only if it solves the VI (F, K), where

K = X × Y and F (x, y) =

(
∇xL(x, y)

−∇yL(x, y)

)
.

The proof of this equivalence is elementary; see [164, section 36] for more discussion
of these saddle-point problems.

In a series of recent papers [165, 167, 168, 169], an important special case of the
above saddle-point problem was introduced as a modeling tool for various stochastic
programming, multistage optimization, and optimal control problems. In this case,
X and Y are both polyhedral sets and L is a linear-quadratic function:

L(x, y) = pT x + 1
2xT Px − xT Ry + qT y − 1

2yT Qy(2.4)

for some matrices P, Q, and R and vectors p and q of appropriate dimensions. This
special saddle-point problem leads to an affine VI (F, K) in which the defining set K is
polyhedral and the function F is affine; the name “extended linear-quadratic program”
(ELQP) was used by the authors of the cited papers to signify the connection of this
problem with standard linear and quadratic programming in classical optimization
theory. Special computational schemes for solving the ELQP were developed in [45,
166, 210, 211].

All of the problems that we give in sections 3 and 4 will have one of the above
forms. We have shown that all these forms can be reduced to VI (F, [`, u]) for particu-
lar choices of ` and u and perhaps with the addition of extra variables and constraints.
This paper does not address the issue of what form will be the best for any particular
algorithm. This area of research is the subject of a separate investigation.

2.5. Mathematical programs with equilibrium constraints. Complemen-
tarity problems and, more generally, variational inequalities, often appear as con-
straints of an optimization problem. In [71], the term “mathematical programs with
equilibrium constraints” or, simply, MPECs, was coined for this class of constrained
optimization problems. In what follows, we will state the general formulation of the
MPEC and refer the reader to the recent monograph [117] for a comprehensive study
of this problem, including some historical accounts, an extensive theory, and several
iterative algorithms for computing stationary points.

In general, an MPEC consists of two sets of variables: the “first-level” variable x ∈
Rn and the “second-level” variable y ∈ Rm. In a typical application, x contains the
design variables whereas y contains the primary variables of a variational inequality
that is parametrized by x. The following are given: the first-level objective function
f : Rn+m → <, the joint feasible region Z ⊆ Rn+m, the second-level “equilibrium
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function” F : Rn+m → <m, and a set-valued mapping C : Rn+m → Rm where for
each x ∈ Rn, C(x) ⊆ Rm is the (possibly empty) constraint set of the second-level
VI. The MPEC is

minimize f(x, y)

subject to (x, y) ∈ Z

and y solves VI (F (x, ·), C(x)).

In the important case where the VI (F (x, ·), C(x)) is equivalent to a complementarity
system, the above MPEC can be formulated equivalently as a minimization problem
with mixed complementarity constraint:

minimize f̃(x, u, v, w)

subject to (x, u, v, w) ∈ Z̃,

H(x, u, v, w) = 0,

and 0 ≤ u ⊥ v ≥ 0,

where (u, v, w) is the concatenation of the second-level variables, namely, y, the slacks
and multipliers of the constraints that define the set C(x), f̃ and Z̃ are, respectively,
the function f and set Z redefined in terms of the variables (x, u, v, w), and H is a
vector-valued function that summarizes the functional constraints of the second-level
VI.

The MPEC has many important applications in the areas of engineering design
and economic planning. Indeed many of the problems described in the next two
sections contain data that are design variables of an MPEC; these applications are
therefore the second-level problems of the MPECs. An example is the Stackelberg
game problem [184] which can be formulated as an MPEC with the second-level VI
being a Nash game (see subsection 4.3). Since a full discussion of the diverse applica-
tions of the MPEC is beyond the scope of this paper, subsequently, we will mention
a couple of these applications. We refer the interested reader to the monograph [117]
for an extensive treatment of the MPEC.

3. Engineering applications. We divide the engineering problems discussed in
this section into several categories: contact mechanics problems, structural mechanics
problem, nonlinear obstacle problems, elastohydrodynamic lubrication problems, and
traffic equilibrium problems. We also include a discrete-time optimal control applica-
tion that can be formulated as an extended linear-quadratic programming problem.
For each of these classes of problems, there is a substantial amount of literature, and
other solution approaches have been suggested. The focus of our discussion is on the
complementarity approach to these problems. In each case, we will give some back-
ground and a brief description of the physical problem, explain the defining equations,
and present the complementarity formulations along with their functional expressions.

Since we are not experts in the disciplines of the problems described herein, our
classification of the problems is perhaps not the most appropriate, especially in view of
the fact that several of them are based on related physical and mechanical principles.
Also, in describing the problems we have relied heavily on selected references which are
most comprehensible to us, as well as on our own work pertaining to these applications.

3.1. Contact mechanics problems. Physical contacts between two or more
solid bodies is a pervasive phenomenon in mechanics. According to [94], the treatment
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of frictionless contact problems by a mathematical programming approach dates back
to [30, 52]. Solution methods for such problems were based on quadratic program-
ming formulations. Recent references on these problems include [3, 16, 17, 91, 92].
Contact problems with Coulomb friction have been treated extensively by Klarbring
and his colleagues [18, 82, 90, 93, 94, 95, 96, 97] as well as in [4, 108, 109, 111, 115,
116, 145, 187, 191]. Mathematical programming techniques used for solving the latter
problems include linear complementarity methods, sequential quadratic programming
algorithms, Newton methods for generalized equations, and B-differentiable equations.
One recent area of applications of frictional contact problems occurs in robotics re-
search; see [11, 12, 151, 153, 161, 177, 198] and [145, section 14.1].

In their general form, frictional contact problems are modeled in terms of some
abstract mappings describing the contact surfaces and body motions; their formu-
lations are based on continuum mechanics principles. For computational purposes,
these continuum formulations are often discretized by finite-element methods and in
the case of time-dependent problems, by a stepwise incremental procedure which di-
vides the time duration into several intervals. Such discretizations result in some
finite-dimensional problems solvable by numerical methods. In what follows, we
describe two contact problems in a finite-dimensional setting, one in the context
of robot task planning and the other pertaining to contact between two elastic
bodies.

3.1.1. A dynamic rigid-body model. In the three-dimensional rigid-body
frictional contact model described in [151, 198], a rigid object comes into contact
with a number of manipulator links at a finite number of points, and the contact
forces obey a Coulomb friction law. At the instant the model is formulated (i.e., the
current time), there are nc contact points which are classified as rolling contacts or
sliding contacts. By definition, the normal components of the relative velocity at all
contact points are zero. A contact point i is rolling if the tangential and orthogo-
nal components of velocity at that point are also zero; a contact point i is sliding if
either the tangential component vit or the orthogonal component vio of the velocity
(which are given) is nonzero. Let R and S be two partitioning subsets of {1, . . . , nc}
denoting, respectively, the rolling and sliding contacts. Given a set of external forces
(gravitational, centripetal, joint torques), the model calls for the determination of the
linear accelerations {ain, ait, aio} and the contact forces {cin, cit, cio} at all contact
points i = 1, . . . , nc, where the subscripts n, t, o denote the three components (nor-
mal, tangential, orthogonal) of the accelerations and forces, so that certain kinematic
acceleration constraints, the Signorini nonpenetration condition, and Coulomb’s fric-
tion law are satisfied. Specifically, letting

an ≡ (ain)nc
i=1, at = (ait)nc

i=1, ao ≡ (aio)nc
i=1,

cn ≡ (cin)nc
i=1, ct = (cit)nc

i=1, co ≡ (cio)nc
i=1,

we may write the kinematic constraints as the system of linear equations

 an

at

ao

 = A

 cn

ct

co

 +

 bn

bt

bo

 ,(3.1)
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where the matrix A and vector b contain given data, defined as follows:

A =

 Ann Ant Ano

Atn Att Ato

Aon Aot Aoo



≡

 WT
n Jn

WT
t Jt

WT
o Jo

[
M−1

obj 0

0 M−1
man

] [
Wn Wt Wo

JT
n JT

t JT
o

]
,

(3.2)

 bn

bt

bo

 ≡


ẆT

n J̇n

ẆT
t J̇t

ẆT
o J̇o


[

q̇

−θ̇

]

+

 WT
n Jn

WT
t Jt

WT
o Jo

[
M−1

obj 0

0 M−1
man

] [
gobj + hobj

gman + hman − τ

]
.

(3.3)

We refer the reader to [198] for the mechanical interpretation of the entries of the
matrix A, the vector b, and for a description of the generation of these data from
realistic contact problems. Here we simply mention that the matrices Mman and
Mobj are symmetric positive definite; thus A is symmetric positive semidefinite.

The Signorini nonpenetrating condition stipulates that the normal accelerations
are nonnegative and the normal forces are nontensile and that these accelerations and
forces are complementary in the following sense:

0 ≤ an ⊥ cn ≥ 0.(3.4)

There are no such requirements on the nonnormal accelerations and forces; instead
the latter variables must obey Coulomb’s friction law which states that for given,
positive friction coefficients µi, i = 1, . . . , nc,

µicin(vit, vio) +
√

v2
it + v2

io(cit, cio) = 0 for i ∈ S,(3.5)

µicin(ait, aio) +
√

a2
it + a2

io(cit, cio) = 0

c2
it + c2

io ≤ µ2
i c

2
in

}
for i ∈ R.(3.6)

Equations (3.1), (3.4), (3.5), and (3.6) define the dynamic rigid-body contact problem
with Coulomb friction. As shown in [151], this problem can be equivalently formulated
as a mixed nonlinear complementarity problem of the type (2.2) by (i) eliminating the
sliding force variables (cit, cio), i ∈ S using equation (3.5), (ii) removing the constraints
defining the sliding acceleration variables (ait, aio), i ∈ S, and (iii) expressing each
of the unrestricted rolling variables (ait, aio, cit, cio), i ∈ R as the difference of two
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nonnegative variables. The resulting complementarity formulation is defined by the
variables (an, a±

Rt, a
±
Ro, cn, a±

Rt, a
±
Ro) and has the following equation form:

 an

a+
Rt

a+
Ro

 = B



cn

c+
Rt

c−
Rt

c+
Ro

c−
Ro

a−
Rt

a−
Ro


+

 bn

bRt

bRo

 ,

min(an, cn) = 0,

min(a+
Rt, c

+
Rt) = min(a+

Ro, c
+
Ro) = 0,

min(a−
Rt, c

−
Rt) = min(a−

Ro, c
−
Ro) = 0,

(a+
Rt − a−

Rt) ◦ (c+
Ro − c−

Ro) − (a+
Ro − a−

Ro) ◦ (c+
Rt − c−

Rt) = 0,

min
(
µ2

Rc2
Rn−(c+

Rt−c−
Rt)

2−(c+
Ro−c−

Ro)
2, (a+

Rt−a−
Rt)

2+(a+
Ro−a−

Ro)
2
)

= 0,

where in the next-to-last equation, the circle ◦ denotes the Hadamard product of two
vectors, and in the last equation, the subscript R is an abuse of notation with the
meaning of “for each i ∈ R.” The matrix B is obtained from the matrix A in (3.2)
after the aforementioned reduction steps; see the reference for details. We point out
that unlike A, B is neither symmetric nor positive semidefinite.

A modification of the above model leads to a standard linear complementarity
problem. The modified model replaces the (nonlinear) friction cone constraint (3.6)
at the rolling contacts with the following friction pyramid constraints:

µicin(|ait|, |aio|) + (aitcit, aiocio) = 0

max(|cit|, |cio|) ≤ µicin

}
for i ∈ R.(3.7)

The resulting linear complementarity problem is as follows:

aSn

aRn

a+
Rt

a+
Ro

s−
Rt

s−
Ro


= M



cSn

cRn

s+
Rt

s+
Ro

a−
Rt

a−
Ro


+



bSn

bRn

bRt

bRo

0

0


,

min(aRn, cRn) = 0,

min(aSn, cSn) = 0,

min(a+
Rt, s

+
Rt) = min(a+

Ro, s
+
Ro) = 0,

min(a−
Rt, s

−
Rt) = min(a−

Ro, s
−
Ro) = 0,
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where

M ≡



(Mnn)SS (Mnn)SR (Ant)SR (Ano)SR 0 0

(Mnn)RS (Mnn)RR (Ant)RR (Ano)RR 0 0

(Mtn)RS (Mtn)RR (Att)RR (Ato)RR I 0

(Mon)RS (Mon)RR (Aot)RR (Aoo)RR 0 I

0 2UR −I 0 0 0

0 2UR 0 −I 0 0


(3.8)

with UR being the diagonal matrix with diagonal entries µi, i ∈ R. We refer to
[151] for the explicit expressions of the other block submatrices in M . We point out
here that when the matrix A is positive definite and all frictional coefficients µi are
sufficiently small, M is copositive and belongs to the class of P0-matrices; moreover,
the above LCP can be solved by the classical Lemke method and a feasible interior
point method. Details and numerical results can be found in [198]. An extension
of the models described herein to include soft finger contacts is described in [152].
Related work on elastic body, soft finger contact with friction can be found in [2] and
[145, Chapter 14].

Alternative rigid-body frictional contact models that allow for impulsive forces
have recently been proposed in [6, 189]; these models lead to complementarity prob-
lems that always have a solution. Further models involving impulses can be found in
the recent text [159].

3.1.2. A discretized large displacement frictional contact problem. The
following formulation of a discretized, three-dimensional, time incremental, large
displacement contact problem with Coulomb friction is based on the discussion in
[94, 96, 97]. This problem is the result of a time-space discretization and the numer-
ical integration of a continuum contact problem involving a deformable body and a
rigid surface S in R3. It is assumed that this surface S is described by a smooth
function Ψn : R3 → R with the gradient ∇Ψn defining the normal fields. We have
x ∈ S if and only if Ψn(x) = 0. The motion of the body is restricted to be on or
above the surface S. The tangential directions of the rigid surface are described by
two smooth functions Ψt,Ψo : R3 → R satisfying the orthogonal condition:

∇Ψn(x)T ∇Ψα(x) = 0 for α ∈ {t, o}

for all x ∈ R3. Let M denote the number of integrating points in approximating
certain surface integrals (these can be thought of as the contact points), and let N
denote the total number of displacement degrees of freedom. For each i = 1, . . . , M ,
let (pi

n, pi
t, p

i
o) ∈ R3 denote the coordinates of the contact force at the ith contact

point with respect to the coordinate chart (Ψn,Ψt,Ψo) on the contact surface S.
For α ∈ {n, t, o}, let pα ≡ (pi

α)M
i=1 be the vector of contact forces that corresponds

to the direction α at the various contact points. Let u ∈ RN denote the vector
of nodal point displacements, and let uc be the subvector of u that pertains to the
contact points; we may write u = (uc, u

′) and uc = (ui
c)i=1 where each ui

c is a
three-dimensional vector, with components (ui

c)α, for α ∈ {n, t, o}. Let H(u) be a
vector-valued, displacement dependent function representing the internal forces, and
let F be a vector of external forces; both H(u) and F are of dimension N . The
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following equation is an equilibration of the contact, external, and internal forces:

H(u) +

[ ∑
α∈{n,t,o} ∇Ψα(uc)T pα

0

]
= F,(3.9)

where for each α, the boldface function Ψα(uc) is the M -dimensional vector-valued
function with components Ψα(ui

c) for i = 1, . . . , M ; thus ∇Ψα(uc) is a block diagonal
matrix with blocks consisting of 1 × 3 matrices (∇Ψα(ui

c))
T for i = 1, . . . , M . The

contact conditions are expressed by the following complementarity restrictions on the
normal forces and coordinates: for i = 1, . . . , M ,

0 ≤ pi
n ⊥ Ψn(ui

c) ≤ 0.(3.10)

In the references [94, 96, 97], the frictional constraints are described as a varia-
tional inequality. Nonpolyhedral friction cones and their polyhedral approximations
have been used (similar to the situation described in the last subsection). In what
follows, we shall describe both kinds of friction cones. For given (pn, uc), let

K(pn, uc) ≡
{(

p′
t

p′
o

)
∈ R2M : φi(pi

n, pi
t, p

i
o, u

i
c) ≤ 0, i = 1, . . . , M

}
,

where

φi(pi
n, pi

t, p
i
o, u

i
c)

≡
(

∂Ψt(ui
c)

∂(ui
c)t

pi
t + ∂Ψt(ui

c)
∂(ui

c)o
pi

o

)2
+

(
∂Ψo(ui

c)
∂(ui

c)t
pi

t + ∂Ψo(ui
c)

∂(ui
c)o

pi
o

)2
− µ2

i

(
∂Ψn(ui

c)
∂(ui

c)n
pi

n

)2
,

where µi > 0 is the friction coefficient at the ith contact point. The Coulomb friction
law is the requirement that (pt, po) ∈ K(pn, uc) and(

Ψt(uc) − Ψt(ugiv
c )

Ψo(uc) − Ψo(ugiv
c )

)T (
p′

t − pt

p′
o − po

)
≥ 0 ∀(p′

t, p
′
o) ∈ K(pn, uc),(3.11)

where ugiv
c is a known displacement vector computed at the preceding discretized time.

It has been mentioned in [94, section 6] that an alternative inequality which replaces
the first parenthesis in (3.11) by(

∇Ψt(uc)(uc − ugiv
c )

∇Ψo(uc)(uc − ugiv
c )

)

can also be used to describe the time discretized Coulomb friction law.
Let φ(pn, pt, po, uc) denote the M -dimensional function with components

φi(pi
n, pi

t, p
i
o, u

i
c), i = 1, . . . , M.

By introducing multipliers λi, i = 1, . . . , M , the inequality (3.11) is equivalent to the
following complementarity system:(

Ψt(uc) − Ψt(ugiv
c )

Ψo(uc) − Ψo(ugiv
c )

)
+

M∑
i=1

λi

(
∇pt

φi(pn, pt, po, uc)

∇po
φi(Pn, pt, po, uc)

)
= 0(3.12)
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and

0 ≤ λi ⊥ φi(pi
n, pi

t, p
i
o, u

i
c) ≤ 0, i = 1, . . . , M.(3.13)

The three-dimensional, time incremental, large displacement, frictional contact prob-
lem is to find force vectors (pn, pt, po) and displacement vector u = (uc, u

′) such that
(pt, po) ∈ K(pn, u) and (3.9), (3.10), (3.12), and (3.13) hold. In general this is a highly
nonlinear problem; there are three sources of nonlinearity: the displacement function
H, the coordinate chart (Ψn,Ψt,Ψo), and the Coulomb friction law. The theory of
“quasi-variational inequality problem” [20] can be applied to study the question of
solution existence for this problem. However, there remain a lot of theoretical and
algorithmic issues that await treatment.

Simplifications of the above model result when one considers the small displace-
ment contact problem coupled with a piecewise linearization of the friction cone. In
what follows, we describe a model of this type that leads to a mixed linear comple-
mentarity problem. This linearized model is discussed in the cited references also; in
particular, the papers [90, 96] described some pivotal methods for solving the resulting
(linear) complementarity problem.

In the small displacement contact problem, it is assumed that the function H is
linear and given by

H(u) = Ku,

where K is a symmetric, positive semidefinite stiffness matrix. For simplicity, we
assume that u = uc. The coordinate functions (Ψn,Ψt,Ψo) are approximated by their
linearization at ugiv

c ; i.e.,

Ψα(uc) ≈ Ψα(ugiv
c ) + ∇Ψα(ugiv

c )(uc − ugiv
c ) ≡ gα + Cαuc for α ∈ {n, t, o}.

The friction cone K(pn, uc) is approximated by a polytope of the type

K lin(pn) ≡
M∏
i=1

{
(pi

t, p
i
o) ∈ R2 : (cos aij)pi

t + (sin aij)pi
o − µip

i
n ≤ 0, j = 1, . . . , ri

}
,

where for each i = 1, . . . , M , ri is positive integer, and

aij ≡ (j − 1)
2π

ri
, j = 1, . . . , ri,

with ri > 0 being a positive integer. Notice that in K(pn, uc), there is only one
constraint φi(pi

n, pi
t, p

i
o, u

i
c) ≤ 0 for each index i; this single constraint is replaced by

ri constraints:

(cos aij)pi
t + (sin aij)pi

o − µip
i
n ≤ 0, j = 1, . . . , ri.(3.14)

In the cited references, this problem has been formulated as a standard LCP. This
formulation relies on the assumption that K is positive definite. In what follows,
we give a complete formulation of the small-displacement contact problem as a mixed
LCP for a general matrix K. For each i = 1, . . . , M , let λi ∈ Rri denote the multiplier
vector associated with the constraints (3.14); also define two ri-dimensional vectors:

Gi
t ≡


cos ai1

...

cos airi

 , and Gi
0 ≡


sin ai1

...

sin airi

 .
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Finally let ei denote the ri-dimensional vector of all ones. The three-dimensional,
small displacement, frictional contact problem is to find force vectors (pn, pt, po), a
displacement vector u, and multiplier vectors λi, i = 1, . . . , M such that

Ku + CT
n pn + CT

t pt + CT
o po = F,

0 ≤ pn ⊥ gn + Cnu ≤ 0,

0 ≤ λi ⊥ Gi
tp

i
t + Gi

op
i
o − µip

i
nei ≤ 0

(Ctu)i + (Gi
t)

T λi = 0

(Cou)i + (Gi
o)

T λi = 0

 i = 1, . . . , M.

(3.15)

Sufficient conditions are known under which the above problem has a solution [98];
however, conditions for solution existence that are both necessary and sufficient are
not available now. Moreover, it would be useful to have algorithms that are guaranteed
to compute a solution to the problem whenever it exists. These issues and several
others remain to be investigated.

3.2. Structural mechanics problems. The application of mathematical pro-
gramming (particularly, complementarity) theory and methods to analyze elastoplas-
tic structures dates back to the late 1960s and early 1970s. Maier and his colleagues
from the Italian school [37, 119, 120, 121] were the pioneers in this approach. Kaneko
[85, 86, 87] and Wakefield and Tin-Loi [201, 202] focused on the linear complemen-
tarity approach. The recent papers [28, 122, 192, 193, 194] employed the nonlinear
complementarity problem to model nonlinear hardening laws and static-kinematic
relations in these structural problems.

In what follows, we consider a discretized, elastoplastic structure undergoing de-
formation when it is acted upon by external loads. Our discussion follows the reference
[194], which concerns a semirigidly connected plane structure in the presence of both
material and geometrical nonlinearities. This structure is discretized into n finite el-
ements. For each element m ∈ {1, . . . , n}, let Qm, qm ∈ R3 denote, respectively, the
(unknown) vectors of generalized stresses and strains and um ∈ R6 the (unknown)
vector of nodal displacements. Let Fm ∈ R6 be a vector of external forces acting on
the mth member element which is of length Lm and at angle θm to some horizontal
reference axis; Fm, Lm, and θm are given. Let

cm ≡ cos θm and sm ≡ sin θm.

It is convenient to define two matrices

Am ≡



cm −sm/Lm −sm/Lm

sm cm/Lm cm/Lm

0 1 0

−cm sm/Lm sm/Lm

−sm −cm/Lm −cm/Lm

0 0 1


and Am

π ≡



cm −sm

sm cm

0 0

−cm sm

−sm −cm

0 0


.

We introduce the auxiliary displacement vector

δm =

[
δm
n

δm
t

]
≡ (Am

π )T um.(3.16)
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In terms of δm, we define the angle of member chord rotation and the length of
deformed member chord:

ρm ≡ arctan
δm
t

Lm − δm
n

and L′
m ≡

√
(Lm − δm

n )2 + (δm
t )2.

Let

c′
m ≡ cos ρm and s′

m ≡ sin ρm,

Zm ≡
[

1 − c′
m −s′

m/L′
m −s′

m/L′
m

s′
m 1/Lm − c′

m/L′
m 1/Lm − c′

m/L′
m

]
.

Finally, we define

(Cm)T ≡ Am − Am
π Zm.

Notice that through the relation (3.16), the matrix Cm is a function of the displace-
ment vector um.

Simple equilibrium considerations in the deformed state lead to the following
balancing equation of forces and stresses:

Fm = (Cm)T Qm.(3.17)

The element kinematic relations between member deformations qm and nodal dis-
placements um can be written in the form

(Am)T um = qm +

 δm
n − qm

1

δm
t /Lm − ρm

δm
t /Lm − ρm

 .(3.18)

The expressions (3.17) and (3.18) are the static-kinematic equations of the structural
model at each member element. We next describe the constitutive laws; these are
summarized by the following equations:

qm = em + pm,(3.19)

Qm = Smem + Rm
b ,(3.20)

pm = Nmλm,(3.21)

φm = (Nm)T Qm − Hmλm − Rm,(3.22)

min(−φm, λm) = 0.(3.23)

We refer to [194] for a detailed explanation of these equations. Here a brief description
is given. Equation (3.19) expresses the total element strains qm as the sum of elastic
em and plastic pm strains; Sm is a symmetric, but not necessarily positive semidefinite,
matrix of element elastic stiffnesses which are nonlinear functions of the element axial
force Qm

1 and involve some constants pertaining to the semirigid connections at the two
ends of the element; Rm

b accounts for the “bowing” effect and is a three-dimensional
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vector with the last two components equal to zero and the first component being a
highly nonlinear function of Qm

1 . Thus (3.20) is in fact a nonlinear equation. Relations
(3.21)–(3.23) describe the plastic holonomic (path-independent) constitutive laws as
introduced by Maier [119]. It is assumed in these laws that the plastic strains pm

are linear functions of the plastic multipliers λm, where Nm is a constant matrix
containing the unit outward normals to the piecewise linearized yield hyperplanes;
φm is the yield function that is restricted to be nonpositive and complementarity to
the multiplier vector λm; in essence complementarity in this context stipulates that
yielding can only occur for a stress point on the yield surface and implies that no
local loading is allowed (i.e., φm

i < 0 and λm
i > 0 is not acceptable). Finally, the

matrix Hm (which is constant and positive semidefinite) and the constant vector Rm

together define a linear hardening law.
From equations (3.18)–(3.21), we can eliminate and substitute the variables qm,

em, Qm, and pm into equations (3.17), (3.22), and (3.23); after some algebraic ma-
nipulations, we obtain the following mixed nonlinear complementarity system for the
member element m:[

−φm

0

]
=

[
Km

λλ Km
λu

Km
uλ Km

uu

] [
λm

um

]
+

[
(Nm)T

−(Cm)T

]
(SmRm

q − Rm
b ) +

[
Rm

−Fm

]
,

min(−φm, λm) = 0,

where [
Km

λλ Km
λu

Km
uλ Km

uu

]
≡

[
(Nm)T SmNm + Hm −(Nm)T SmCm

−(Cm)T SmNm (Cm)T SmCm

]
,

and

Rm
q ≡ Cmum − qm.

Although written in the form similar to that of a mixed linear complementarity prob-
lem, the above system is actually a highly nonlinear problem because of the nonlinear
dependence of the matrix functions Sm and Cm on the variables um and Qm

1 . One
advantage of this form is that it facilitates the application of a particular iterative
algorithm as described in [194].

The overall structural model is derived from the above element models and can
be stated as the following mixed NCP:[

−Φ

0

]
=

[
Kλλ Kλu

Kuλ Kuu

] [
Λ

u

]
+

[
NT

−CT

]
(SRq − Rb) +

[
R

−F

]
,

min(−Φ,Λ) = 0,

where

Kλλ ≡ NT SN + H, Kuu ≡ CT SC, Kuλ = KT
λu ≡ −CT SN,

the matrices S, N , and H are block diagonal matrices with diagonal blocks Sm, Nm,
and Hm, respectively, and the vectors Φ, Λ, R, Rq, and Rb are concatenations of the
element vectors φm, λm, Rm, Rm

q , and Rm
b , respectively. The vector u consists of
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2 2 2

1.5
1.5

element 4element 3

element 2
element 1

node a
node b

node c

fixed

L = 4m

FIG. 3.1. Four-element structure with loading.

the nodal displacements of the structure; the mth element displacement vector um

can be extracted from u according to the particular structure and the finite element
discretization. The matrix C is assembled from the element matrices Cm resulting in
the vector Cu being the concatenation of the element vectors Cmum.

To more fully explain the assembly outlined above, we need to focus on a par-
ticular structure. In Figure 3.1, a simple four element structure is shown that was
communicated to us by Tin-Loi. This three-dimensional structure has four elements,
each of length 4 meters. The bottom ends of elements 1 and 2 are fixed to the
ground. The nodes a, b, and c represent places where external forces are applied
as shown in the figure. The nodal displacements are (u1, u2, u3), (u4, u5, u6), and
(u7, u8, u9) for nodes a, b, and c, respectively, and together these comprise the vector
u = (u1, . . . , u9). The element displacements, u1, u2, u3, and u4 are thus given by

u1 =


·
·
·

u1
u2
u3

 , u2 =


·
·
·

u7
u8
u9

 , u3 =


u1
u2
u3
u4
u5
u6

 , u4 =


u4
u5
u6
u7
u8
u9

 .

To construct the matrix C from the element matrices Cm, the following relationship
is used:

Cu =


C1u1

C2u2

C3u3

C4u4

 .
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Thus in the above example

C =



c1
14 c1

15 c1
16 · · · · · ·

c1
24 c1

25 c1
26 · · · · · ·

c1
34 c1

35 c1
36 · · · · · ·

· · · · · · c2
14 c2

15 c2
16

· · · · · · c2
24 c2

25 c2
26

· · · · · · c2
34 c2

35 c2
36

c3
11 c3

12 c3
13 c3

14 c3
15 c3

16 · · ·
c3
21 c3

22 c3
23 c3

24 c3
25 c3

26 · · ·
c3
31 c3

32 c3
33 c3

34 c3
35 c3

36 · · ·
· · · c4

11 c4
12 c4

13 c4
14 c4

15 c4
16

· · · c4
21 c4

22 c4
23 c4

24 c4
25 c4

26

· · · c4
31 c4

32 c4
33 c4

34 c4
35 c4

36



,

where cm
ij refers to the (i, j) element of Cm.

3.3. Structural design problems as MPECs. Many optimal design prob-
lems of discrete or discretized structures in unilateral contact lead to MPECs. The
recent doctoral thesis [157] treats several important frictionless contact, truss topol-
ogy optimization problems which, due to the special first-level objective functions,
have an equivalent saddle-point formulation. Extensive review and references are also
contained in this thesis. Design problems with friction and more general first-level
objective functions lead to two-level optimization problems with complementarity
constraints that cannot be formulated as saddle-point problems; some articles that
discuss these applications and their numerical solution include [27, 107, 106, 146,
170, 185, 186]. In what follows, we give the formulation of a minimum weight design
problem in truss topology optimization with unilateral, frictionless contact.

The state equations of this design problem are obtained from the system (3.15) by
letting µ = 0 (frictionless contact); the stiffness matrix K is a function of the design
variable t ∈ Rm which is the vector of bar volumes. A common assumption is

K(t) ≡
m∑

i=1

tiKi,

where each Ki is a symmetric positive definite matrix. The minimum weight design
problem can now be defined as follows:

minimize w(u, pn, t)
subject to t ∈ T ,

h(u, pn, t) ≤ 0,

K(t)u + CT
n pn = F,

0 ≤ pn ⊥ gn + Cnu ≤ 0,

where w is a generalized weight function, T is the constraint set of the variable t of
bar volumes (examples of T include {t ∈ <m

+ :
∑m

i=1 ti = V }, where V > 0 is the
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given total volume of the bars and {t ∈ <m : t ≥ t ≥ t}, where t > t > 0 are upper
and lower bounds on the volume of the bars, respectively), and usual instances of
the constraint function h are bounds on displacements and stresses (in which case h
will be independent of pn) and/or bounds on contact forces. Clearly, this problem
is an instance of the MPEC with mixed linear complementarity constraints; t is the
upper-level variable and (u, pn) are the lower-level variables.

3.4. Nonlinear obstacle problems. Many obstacle problems in mathematical
physics naturally lead to complementarity problems. The monograph [171] gives
a detailed account of the applicability of variational inequalities to these obstacle
problems. In this context, the complementarity condition is intimately related to the
notion of a free boundary; indeed, part of the objective of solving an obstacle problem
is to determine this so-called free boundary.

Quadratic programming and linear complementarity methods for solving cer-
tain obstacle problems have been well documented [32, 133]. Obstacle problems
that lead to (mixed) NCPs include the obstacle Bratu problem [77, 130], the ob-
stacle von Kármán problem [209] and [144, Chapter 7], and several related prob-
lems in nonlinear elastic beam theory [62]. Typically, these problems are formulated
in infinite-dimensional function spaces and their discretizations could easily lead to
finite-dimensional problems of very large size. Numerical solution of the discretized
obstacle Bratu problem is discussed in the two cited references and in several recent
papers [24, 41, 59]. In what follows, we give the formulation of the obstacle von
Kármán problem as given in [144, 209].

The von Kármán equations are of fundamental importance in the theory of thin
elastic plates. The points of the plate are given a fixed, right-handed Cartesian
coordinate system 0x1x2x3. The middle plane of the undeformed plate, which is
assumed to have a constant thickness h, coincides with the 0x1x2 plane. The points
(x1, x2, 0) of the undeformed plate constitute an open, bounded, connected subset
Ω ⊂ R2 with a Lipschitz boundary ∂Ω. We denote by u = (u1, u2) the horizontal
and by ξ the vertical displacements of the point x ∈ Ω. The plate is subjected to a
distributed load (0, 0, f), f = f(x) ∈ L2(Ω), per unit area of the middle surface. The
shape of the obstacle is given by a prescribed strictly concave function ψ(x) ∈ H2(Ω).
An example is ψ(x1, x2) ≡ −(x2

1 + x2
2). Let

K ≡ Eh3

12(1 − ν2)

be the plate’s bending rigidity with E the modulus of elasticity and ν ∈ (0, 1/2) the
Poisson ratio.

In the following formulation of the obstacle von Kármán problem, the Einstein
summation convention with respect to a repeated index is employed: i.e., we write
aibij to mean

∑
i aibij . Other notation used is as follows: for a scalar-valued func-

tion φ(x1, x2), φ,i ≡ ∂φ/∂xi; ∂φ/∂n = (∇φ)T n is the directional derivative of φ
in the direction of the outward unit normal vector n to ∂Ω; for a vector-valued
function F (x1, x2), Fi,j ≡ ∂Fi/∂xj ; finally ∆∆ is the biharmonic operator with
∆ ≡

∑
i ∂2/∂x2

i being the Laplace operator.
The obstacle von Kármán problem is to find two functions u(x1, x2) and ξ(x1, x2)

satisfying the following system of partial differential equations and inequalities as well
as the given boundary conditions:

K∆∆ξ − h(σαβξ,β),α ≥ f(x) in Ω,(3.24)
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(σαβ),β = 0 in Ω,(3.25)

ξ(x) ≥ ψ(x) in Ω,(3.26)

(K∆∆ξ − h(σαβξ,β),α − f(x))(ξ(x) − ψ(x)) = 0 in Ω,(3.27)

ξ(x), uα,
∂ξ

∂n
all given on ∂Ω,(3.28)

where σ ≡ (σαβ) and ε ≡ (εαβ) denote, respectively, the stress and strain tensor in
the plane of the plate that are linked by the elasticity tensor C ≡ (Cαβγδ); i.e.,

σαβ = Cαβγδ(εγδ(u) + 1
2ξ,γξ,δ)

with

εγδ(u) ≡ 1
2 (uγ,δ + uδ,γ) = 1

2

(
∂uγ

∂xδ
+ ∂uδ

∂xγ

)
.

In general, each component Cαβγδ ∈ L∞(Ω) and the tensor C satisfies the symmetry
and ellipticity properties; i.e.,

Cαβγδ = Cβαγδ = Cγδαβ ,

and there exists a constant c > 0 such that for all symmetric matrices ε = (εαβ),

Cαβγδεαβεγδ ≥ c εαβεαβ .

For an isotropic plate, C is a constant tensor and has the form

Cαβλµ =
E

2(1 − ν2)
((1 − ν)(δαλδβµ + δαµδβλ) + 2νδαβδλµ) ,

where δαβ is the standard Kroneker delta notation.
Upon discretization, problem (3.24)–(3.28) leads to a large, mixed NCP where

the defining function is a multivariate cubic polynomial. To date, there is no reported
numerical results for solving this highly complex complementarity problem.

A simplified one-dimensional version of the above problem was communicated
to the authors by David Gao. This is an obstacle large deformed beam problem
with boundary conditions; it pertains to the computation of a scalar function w(x)
satisfying

w′′′′ − c(w′)2w′′ ≥ f ∀x ∈ (0, L),(3.29)

w(x) ≥ ψ(x) ∀x ∈ (0, L),(3.30)

(w′′′′ − c(w′)2w′′ − f)(w − ψ) = 0 ∀x ∈ (0, L),(3.31)

and given boundary conditions at x = 0, L, where c and L are two given positive
scalars, f(x) and ψ(x) are given functions, and ′ denotes standard one-dimensional
derivative.

3.5. Elastohydrodynamic lubrication problems. The theory of elastohy-
drodynamic lubrication (EHL) addresses the important effects of elastic deformation
and pressure-sensitive viscosity on the operational characteristics of lubricated sur-
faces [140]. Previous work in this area by complementarity methods has been doc-
umented in [33, 35, 41, 78, 104, 105, 137, 138, 139, 140, 141, 190]. As noted by a



APPLICATIONS OF COMPLEMENTARITY 689

referee, it was reported in [29] that the nonlinear programming package LANCELOT
was unable to solve the complementarity problems arising from these applications.

Typically, the defining equations of an EHL problem are of the following kinds:
a Reynolds equation that relates the lubricant pressure and the fluid film thickness,
when such a film is present; a linear integral equation that explicitly defines the film
thickness as a displacement of points on the bearing surfaces due to the lubricant
pressure; some equilibrium conditions balancing the lubricant pressure and applied
loads; an equation relating the gap between the contact surfaces and contact pressure,
when solid-to-solid contact is allowed to coexist. The reference [139] discusses a
mixed lubrication problem that combines solid-to-solid contact and hydrodynamic
lubrication. In such a problem, complementarity arises in two ways. One source
for complementarity is due to the cavitation phenomenon. That is, a fluid film may
not develop in some portion of the load-bearing surface. In the cavitated region, the
pressure is zero and Reynolds equation fails; in the lubricated region, the pressure
is positive and Reynolds equation applies. The identification of the unknown (also
called free) boundary separating these two regions is an important issue in an EHL
study. Another source where complementarity arises is due to solid-to-solid contact
at points where no fluid film is formed; at such contact points, contact (instead of
lubricant) pressure is developed and this is governed by the laws of solid elasticity.
The resulting complementarity problem is of the vertical type.

The complete formulation of a two-dimensional EHL problem as a finite-dimen-
sional (mixed) complementarity problem is very complicated. This is because partial
differential and multiple integration operators are involved. Although the numerical
solution of such a problem by a complementarity algorithm of the pivotal type has
been reported, much work remains to be done in order for the recent iterative methods
to be applicable. A one-dimensional problem is formulated as a GAMS model in [40].

3.6. Traffic equilibrium problems. Underlying all models used for analysis
of traffic congestion, there is a transportation network given by a set of nodes N and
a set of arcs A. The models are used to predict the steady-state volume of traffic
on this network. It is usually assumed that drivers compete noncooperatively for the
resources of the network in an attempt to minimize their costs, where the cost of
traveling along a given arc a ∈ A is a nonlinear function ca(f) of the total flow vector
f with components fb, b ∈ A. Let c(f) denote the vector with components ca(f),
a ∈ A. There are two subsets of N that represent the set of origin nodes O and
destination nodes D, respectively. The set of origin-destination (O-D) pairs is a given
subset W of O ×D; associated with each such pair is a travel demand that represents
the required flow from the origin node to the destination node.

There are two techniques used for generating models of traffic congestion on
the given network. The first model is based on considering all the paths between
the O-D pairs, and the second uses a multicommodity formulation representing each
origin or destination node as a different commodity. Both of these formulations use
the Wardropian characterizations of equilibria [205] that may be considered as a
special case of a Nash equilibrium (see subsection 4.3 and [75]). Many papers have
discussed the formulation and solution of traffic equilibrium problems by the methods
of complementarity and variational inequality as well as the applications of these
problems in urban planning; see [49, 50, 54, 118, 181].

3.6.1. A path-based formulation. The description of this formulation follows
[53]. For each w ∈ W, let Pw represent the set of paths connecting the O-D pair w,
and let P represent the set of all paths joining all O-D pairs of the network. Let ξp
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denote the flow on path p ∈ P; let γp(ξ) be the cost of flow on this path which is
a function of the path flow vector ξ. Let ∆ be the arc-path incidence matrix with
entries

δap ≡
{

1 if path p ∈ P traverses arc a ∈ A,

0 otherwise.

It is clear that f and ξ are related by

f = ∆ ξ.

When the path cost γp(ξ) on each path, p is assumed to be the sum of the arc costs
on all the arcs traversed by p; that is, if

γ(ξ) ≡ ∆T c(f),

the model is called additive. Finally, we introduce variables τw that depict the min-
imum transportation cost (or time) between O-D pair w ∈ W. The travel demand
between O-D pair w is assumed to be a function dw(τ) of the vector τ in the path
formulation. The model is called a fixed-demand model if each dw(τ) is a constant
function; the general model is often called the elastic demand model.

The Wardrop equilibrium principle [205] states that each driver will choose the
minimum cost path between every origin destination pair, and through this process
the paths that are used will have equal cost; paths with costs higher than the minimum
will have no flow. Mathematically, this principle can be phrased succinctly as

0 ≤ γp(ξ) − τw ⊥ ξp ≥ 0 ∀w ∈ W, p ∈ Pw.(3.32)

The demand is satisfied if ∑
p∈Pw

ξp ≥ dw(τ) ∀w ∈ W,

and the equilibrium condition of zero excess demand can be stated as follows,

0 ≤
∑

p∈Pw

ξp − dw(τ) ⊥ τw ≥ 0 ∀w ∈ W.(3.33)

Conditions (3.32) and (3.33) clearly define a nonlinear complementarity problem with
(ξ, τ) as the variables.

For networks of reasonable size, the enumeration of all paths connecting elements
of W is prohibitive, if there are many O-D pairs. Thus the above path-flow formulation
is not suitable for direct computational use. Nevertheless, there are path-generation
schemes [56, 76, 154] that utilize this formulation and generate the paths only if
they are needed. The alternative multicommodity formulation to be discussed below
completely removes the necessity of enumerating the paths.

3.6.2. A multicommodity formulation. In this alternative formulation of the
traffic equilibrium problem, a commodity is associated with each destination node. For
simplicity, we assume that each node in D is a destination. Let K be the cardinality
of D. The variable x = (x1, x2, . . . , xK) represents the flows of the commodities
1, 2, . . . , K with xk

a denoting the flow of commodity k on arc a ∈ A. The variable
t = (t1, t2, . . . , tK) is composed of components tki that represent the minimum cost (or
time) to deliver commodity k (i.e., to reach destination k) from node i. Associated
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with each pair (k, i) with k ∈ D and i ∈ N is the travel demand dk
i , which is a function

of the minimum cost vector t. For each node i, let A+
i and A−

i denote, respectively,
the sets of outgoing and incoming arcs at node i. There are two sets of equilibrium
conditions. The first represents conservation of flow of commodity k at node i and is
given by ∑

a:a∈A+
i

xk
a −

∑
a:a∈A−

i

xk
a = dk

i ∀i ∈ N , k ∈ D.

In terms of the standard node-arc incidence matrix A of the network and the demand
function dk(t), these constraints can be rewritten as

Axk = dk(t) ∀k ∈ D.(3.34)

The second condition ensures that if there is positive flow of commodity k along arc
a, then the corresponding time to deliver that commodity is minimized:

0 ≤ ca(f) + tkj − tki ⊥ xk
a ≥ 0 ∀a = (i, j) ∈ A, k ∈ D,(3.35)

where the arc flow vector f is given by

f ≡
∑
k∈D

xk.

This is typically termed “Wardrop’s second principle,” although it appears first in his
article [205]. It is clear that given an enumeration of the paths, the solution generated
from a path-based formulation can easily yield a solution to the multicommodity
formulation, and vice versa.

Eliminating the flow vector f , conditions (3.34) and (3.35) defined a mixed NCP
in the arc flow vector x and minimum travel cost vector t. In what follows, we discuss
some special cases of this general multicommodity equilibrium flow problem that are
derived from particular cost functions ca(f) and demand functions dk(t).

Early studies of the traffic equilibrium problem have focused on the case of a
separable cost function and constant demand function (see, e.g., [188]); that is, for all
a ∈ A and k ∈ D,

ca(f) = ca(fa) and dk(t) = dk (a constant).

In this case, letting Ca(fa) be the integral of ca(fa), we see that the equilibrium
conditions (3.34) and (3.35) are the first-order optimality conditions of the nonlinear
program

minimize
∑

a∈A Ca(
∑

k∈D xk
a)

subject to Axk = dk, xk ≥ 0 ∀k ∈ D.
(3.36)

If each Ca(·) is a convex function, then this nonlinear program is a convex multi-
commodity network flow problem [110]. Recent algorithmic work has used parallel
machines to exploit the network structure further. In many practical instances, there
are upper bounds on the arc flow variables fa since the arcs have finite capacities;
these bounds would impose additional constraints to the formulation (3.36).

A specific example of a separable cost function ca is given by

ca(fa) = Aa + Ba

[
fa

γa

]4

∀a ∈ A
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for particular data Aa, Ba, and γa. Cost functions of this kind have been used exten-
sively in transportation research. Further details can be found in [46]. Nonseparable
and nonintegrable cost functions c(f) have also been used in the literature; see, for
example, [54]. For such functions, the equilibrium conditions (3.34) and (3.35) do not
correspond to the first-order optimality conditions of an optimization problem.

When the travel demand is not a constant, that is, when dk(t) depends on t, the
optimization problem (3.36) is no longer a valid formulation of the multicommodity
equilibrium flow problem defined by conditions (3.34) and (3.35), even if the cost
function ca(f) is separable. However, if both ca(f) and dk(t) are separable for all
a ∈ A and k ∈ D, say

dk
i (t) = dk

i (tki ) ∀k ∈ D, i ∈ N ,

and if dk
i (tki ) has an inverse function tki (dk

i ), then (3.34) and (3.35) are in fact the
first-order optimality conditions of the following nonlinear program in the variables
(x, f, d):

minimize
∑

a∈A Ca(fa) −
∑

i∈N ,k∈D T k
i (dk

i )

subject to Axk − dk = 0, xk ≥ 0 ∀k ∈ D,

f −
∑

k∈D xk = 0,

(3.37)

where Ca(fa) and T k
i (dk

i ) are, respectively, the integral of ca(fa) and tki (dk
i ).

An example of a separable demand function is

dk
i (tki ) = d̄k

i

exp(−ρtki )
exp(−ρtki ) + exp(−ρt̄ki )

,

where ρ, d̄k
i , and t̄ki are given constants. The inverse of this function is

tki (dk
i ) = t̄ki + 1/ρ ln

(
d̄k

i

dk
i

− 1
)

for 0 < dk
i < d̄k

i . Note the potential numerical difficulty when dk
i is close to the two

bounds.
In summary, we see that the traffic equilibrium models are not always repre-

sentable as nonlinear programs, since there are many instances where the arc cost
and travel demand functions are not integrable or the inverse demand functions can-
not be expressed in closed form. For more discussion of the complementarity approach
to traffic equilibrium, see [70].

3.6.3. Network design problems. The traffic equilibrium problems described
above have appeared as constraints of an MPEC in at least two instances of optimal
network design. In [127], the arc cost function c(f, γ) is assumed to depend on a
vector of design variables γ ∈ R|A| (e.g., arc capacities). The first-level objective
function is taken to be the sum of the investment cost g(γ), where g : R|A| → R is
given, and the system cost fT c(f, γ). The overall design problem can be formulated
as the following MPEC:

minimize fT c(f, γ) + g(γ)

subject to γ ∈ Γ

and either [(3.32) and (3.33)] or (3.37),

where Γ ⊆ <|A| is the constraint set of the arc capacities (e.g. a rectangular box).
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In [25], Chen and Florian have proposed a two-level optimization approach for the
O-D demand adjustment problem. In what follows we shall use the multicommodity
formulation of the traffic flow problem to describe this two-level optimization problem.
The underlying setting is that a set of O-D demands dk

giv, k ∈ D is available, and
the network planner wishes to adjust these demands minimally in order to satisfy
the equilibrium conditions. Using a least-squares measure of deviation, the MPEC
formulation of this O-D demand adjustment problem is as follows:

minimize
∑

(i,k)∈N×D(dk
i − (dk

giv)i)2

subject to (3.36).

3.7. Optimal control problems. We briefly discuss a continuous-time optimal
control problem whose discretization results in an ELQP; more details are given in
[40]. A fixed interval [t0, t1] is divided into n segments over which control variables
u(t) and state variables z(t) are discretized. Under this discretization, the variables
x = (uL, u1, . . . , un, z1, . . . , zn, zR) and y = (v1, . . . , vn, vR, wL, w1, . . . , wn) are con-
strained to lie in simple boxes X and Y . Here, v and w correspond to dual control and
state variables, respectively, and the subscripts L and R denote data and variables
used to define boundary conditions at the left and right endpoints. The resulting
linear quadratic function L is given by (2.4), where the matrices P , p, Q, q, and R
are given by

P ≡



P̃L 0
P̃ /n 0

. . . . . .
P̃ /n 0

0 0
0 0

. . . . . .
0 0


, p ≡



p̃L

p̃/n

...

p̃/n

−c̃/n

...

−c̃/n

−c̃R



,

Q ≡



Q̃/n 0
. . . . . .

Q̃/n 0
Q̃R 0

0 0
0 0

. . . . . .
0 0


, q ≡



−q̃/n

...

−q̃/n

−q̃R

b̃L

b̃/n

...

b̃/n



,
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and

R ≡



0 D̃/n C̃/n

0
. . . . . .
. . . D̃/n C̃/n

0 C̃R

B̃L −I

B̃/n I + Ã/n −I
. . . . . . . . .

B̃/n I + Ã/n −I


,

and the dots represent replication n times. The tilde notation is used to signify data
that arises in the continuous-time problem. The GAMS implementation described in
[40] generates the data elements from the continuous-time problem randomly, with
the matrices P and Q being positive semidefinite. While it is possible to express
the discrete-time problem without using the state variables, their elimination results
in a dense problem. For this reason, the state variables are retained in the GAMS
formulation.

4. Economic applications. In many economic applications, a model is gener-
ated in order to gain insight into the complex workings of an economic system or to
determine the effects of a certain action such as taxation. Different assumptions on
the behavior of the agents in the economy determine different forms of equilibria.

An economy can be broadly modeled as follows. It is assumed that the economy
deals in a finite number ` of commodities, which are determined not only by what type
of good is being considered but also by date and location. Thus wheat in Chicago
on Saturday may be distinguished from wheat in Chicago on Sunday and wheat in
Minneapolis on Saturday. Associated with each commodity is a price, the amount
paid now for every unit of the given commodity. There are two sets of economic
agents dealing in these commodities: sectors (or firms or producers) and consumers.
The wealth or budget of a consumer is typically determined from an initial endowment
of the goods. In this description the economy is assumed to have n sectors and m
consumers. Subscripts will be used to index elements of vectors and superscripts to
index vector quantities associated either with the sector or the consumer. The case
where there are no sectors of production is called a pure exchange economy.

Scarf [176] originally demonstrated the feasibility and potential of numerical mod-
eling in the Arrow–Debreu general equilibrium framework using fixed-point methods.
More recent work [129] has used pivotal techniques based on Lemke’s algorithm [112].
The scope of economic questions has been extended to include public finance [10], in-
ternational trade [67, 158, 183] and development planning [1, 38, 64]. Other extensions
will be noted in what follows.

4.1. General equilibrium. A general equilibrium problem (that is commonly
attributed to Arrow–Debreu [7] and Walras [203]) is to find commodity prices, sector
activities, and consumer consumption vectors such that

each sector maximizes its profit;(4.1)

supply exceeds demand;(4.2)

expenditure equals income.(4.3)
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All these statements make intuitive sense. The first statement describes the be-
havior of the producers; namely, their goal is to maximize the firm’s profit. The second
statement is natural from the first; namely, if some commodity were in excess demand,
then it would be profitable for some sector to produce that commodity, resulting in
a supply increase until the demand becomes satisfied; the last statement is usually
termed the Walras law; it stipulates that the total expenditure of the consumers is
equal to the income generated by the trade of the commodities.

An underlying assumption is that there is perfect competition: consumers do not
have a favorite producer, everyone is a price taker, and each consumer and sector
has perfect information about these prices. Under specific forms of production and
consumption, the above statements lead to a complementarity formulation of the
economic model. Several examples are given below.

4.1.1. Production. The production side of an economy can be described using
a production vector yj ∈ Rl of each sector j. The components of this vector are
positive if the sector produces more of the commodity than it consumes and are
negative if the sector consumes more than it produces. Each sector is constrained by
its technology, which is conceptually modeled using the production set Y j ⊆ R`. It
is assumed that Y j is a closed set and contains the vector 0, so that zero production
is possible. In a competitive marketplace, the jth sector makes the profit πj(p) by
solving the optimization problem

πj(p) = max{pT yj : yj ∈ Y j}.(4.4)

It is assumed that sector j is a price taker; that is, its actions do not affect the prices in
the economy. This is a special case of general equilibrium: in this economy, prices are
determined by technology alone; levels of production are determined by consumers.

The variables yj are sometimes referred to as netput vectors, since they give
the net output of sector j. In many models, these netput vectors are determined
from vectors of input and output commodities. Frequently, the production set Y j

is specified by a functional relationship between these inputs and outputs and the
activity level of the sector.

The standard example uses a technology matrix

A =
[

a1 a2 · · · an
]

∈ R`×n,

whose entries are typically a nonlinear function of the price vector p. Later, we will
describe a widely used scheme to determine the technology matrix A using production
functions. The matrix A converts levels of activity of producers z ∈ Rn into netput
vectors of commodities. To see how this works, consider a linear activity analysis
model [61, 103]. The activity of sector j, zj ≥ 0 is converted into commodities yj by

yj = ajzj .

Each sector must maximize profits at prices p, so (4.4) becomes

max{pT ajzj : zj ≥ 0}.

The necessary and sufficient optimality conditions for all the sectors are

0 ≤ z ⊥ AT p ≤ 0.(4.5)

In essence this last condition stipulates the (nonnegativity and) complementarity be-
tween the two vectors z and AT z.
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We will now describe how the technology of the sectors is determined in a large
class of economic models using production functions. These functions determine a
scalar output level f(x) from an input x. Normally an additional assumption regard-
ing constant returns to scale for production is made. When a sector’s production is
modeled using a production function f , constant returns to scale means the produc-
tion function is positively homogeneous of degree 1; that is, f(ηx) = ηf(x) for all
η > 0. Typically, large numbers of sectors and consumers are modeled, so that any
sector can be assumed to be small compared with the size of the market, making this
a reasonable assumption.

The relation (4.1) can be replaced under constant returns to scale by the following
statement:

each sector makes no excess profit.(4.6)

This is due to the fact that if some sector were to make a positive profit, then by
replicating its activity, the sector would make twice the profit, and thus its total
profit would be unbounded. Intuitively, the mimicking behavior drives the price of the
corresponding commodity down and hence reduces the profitability of that commodity.
Of course, if the activity is unprofitable, then the corresponding activity of the sector
is zero and therefore profit is zero.

The most widely used class of functions in the economics literature is the so-
called CES (constant elasticity of substitution) functions. The general form of CES
functions is (

l∑
i=1

λix
ρ
i

)1/ρ

, λi ≥ 0, i = 1, . . . , `.(4.7)

The domain of these functions is normally assumed to be R`
+, with the values on the

boundaries defined by continuity. It can be shown that such functions are convex for
ρ ≥ 1 and concave for ρ ≤ 1.

Notice the following special cases.
1. Letting ρ = 1 gives the linear production function:

l∑
i=1

λixi.

2. When
∑l

i=1 λi > 0, we can determine the limit as ρ ↓ 0 using l’Hôpital’s rule
as

l∏
i=1

xµi

i ,

where µj ≡ λj/
∑l

i=1 λi. This is the Cobb–Douglas production function.
3. We can determine the limit as ρ → −∞ as

min
1≤i≤`

λixi.

This is the Leontief production function. Note that it is a concave function.
Typically the parameters of the CES functions are calibrated using a reference

point to match function and gradient information supplied by the modeler at a bench-
mark [179]. Furthermore, in many larger examples, CES functions are nested to
several levels to model “local” interactions as well as “global” interactions [156].
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Most of the practical models use one of these production functions to determine
the technology matrix of the sector in the following manner. The netput vector yj of
a given sector j is split into its inputs x and outputs q. Assuming the sector runs at
an activity level zj , the profit is given by

max
x,q

{pT (q − x) : f j(x) = zj , gj(q) = zj , x, q ≥ 0}.

Here f j is a concave CES function and gj is a convex CES function that has ρ ≥ 1 in
(4.7). The latter is commonly termed a constant elasticities of transformation (CET)
function. Note that the inputs and outputs are generated from an activity level zj

using elasticities of substitution from these CES functions. Of course, gj can include
the special case of a single output good. Since f j and gj are positively homogeneous
of degree 1, the profit can be calculated as

πj(p) = pT aj(p)zj ,

where

aj(p) ≡ qj − xj ,(4.8)

and (xj , qj) solve

max
x,q

{pT (q − x) : f j(x) = 1, gj(q) = 1, x, q ≥ 0}.(4.9)

The solution for this optimization problem is generally determined analytically to give
an expression for aj(p). The conditional factor demands for unit output xj and the
conditional outputs of the sector qj can be determined separately by solving

min
x

{pT x : f j(x) = 1, x ≥ 0}

and

max
q

{pT q : gj(q) = 1, q ≥ 0},

respectively. As a particular example, if f is a Cobb–Douglas function, then

xj
k(p) =

λk

∏`
j=1(pj/λj)λj

pk
.

Note that as a function of p, xj is positively homogeneous of degree 0. The optimal
activity levels z are then determined from (4.5). The supply from sector j is aj(p)zj ,
giving total supply A(p)z. It remains to calculate the consumers demand, which is
the subject of the next section.

4.1.2. Consumption. The consumption side of the economy is similarly de-
fined. The consumption vector di ∈ R`

+ of each consumer i indicates the quantity of
the commodity that is consumed. The consumption set Xi ⊆ R`

+ models the minimal
consumption constraints imposed on the ith consumer. A key notion for consumers
is the idea of preferences, that is, a complete preordering on the set of commodities.
Thus a consumer may prefer a bundle of commodities d to the bundle e or may be
indifferent between them or may prefer e to d. Normally, this is represented by a util-
ity function ui, with the property that ui(d) > ui(e), ui(d) = ui(e), or ui(d) < ui(e),
respectively. In most cases, u is continuous and is generally assumed to be a CES,
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Cobb–Douglas, or Leontief function. Further, nonsatiation is normally assumed; that
is, given any bundle of commodities di ∈ Xi, there is always another bundle ei ∈ Xi

that the ith consumer would prefer. The ith consumer is endowed with an initial
wealth wi, and assuming that he is also a price taker, he will maximize his utility in
the competitive paradigm, subject to his budget and consumption constraints. Thus,
the ith consumer would solve

max{ui(di) : pT di ≤ wi, di ∈ Xi}.(4.10)

Under local nonsatiation (more precisely, the fact that with most utility functions,
every commodity is desirable), the budget constraint will be binding at the optimal
solution.

Typically, wealth is determined from an initial endowment of commodities ei, so
that wi = pT ei. Unfortunately, in many models, Xi = R`

+, and thus (4.10) is not
solvable when some pi = 0 and commodity i is desirable. It is therefore assumed that
p > 0 and Xi = R`

+ in these modeling applications, although compactness of Xi and
the feasibility of (4.10) would remove the solvability difficulties when pk = 0 for one or
more k. Under these assumptions, the demand of consumer i depends on the utility
function, prices, and endowment as follows. Using the Leontief utility,

di
k(p, wi) =

wi

λk

∑`
j=1 pj/λj

.(4.11)

For the case of Cobb–Douglas utility,

di
k(p, wi) =

λkwi

pk
,(4.12)

whereas for CES utility,

di
k(p, wi) =

(pk/λk)r−1wi∑`
j=1 pr

j/λr−1
j

,(4.13)

where r = ρ/(ρ − 1). Note that d is positively homogeneous of degree 0 in all the
above cases. Furthermore, when wi = pT ei, then d, considered as a function of p
alone, is still positively homogeneous of degree 0.

Summing all the information regarding production and consumption results in
the following complementarity problem, we have

0 ≤ z ⊥ −A(p)T p ≥ 0,

0 ≤ p ⊥ A(p)z −
∑m

i=1(d
i(p, wi) − ei) ≥ 0,

wi = pT ei.

Here, A(p) is determined by (4.8) and (4.9) as sectors maximizing profit, and di(p, wi)
is determined by consumers maximizing utility using one of (4.11), (4.12), or (4.13).
It is interesting to note that there is an enormous amount of skew symmetry in the
above formulation that may be exploited by particular solution techniques.

If (p, z, w) solves the above problem, then so does (λp, z, λw) for any λ > 0. This
frequently causes algorithms difficulty in determining a solution. Several strategies
have been considered in the literature. One fixes the price of a particular good,
another fixes the sum of the prices, and yet another fixes an income level of one of
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the consumers. The first technique suffers from the fact that the fixed price may
be zero, while the second increases the dimension of the problem and introduces
an arbitrary column corresponding to the multiplier added for the extra constraint.
Fixing the income of a consumer reduces the size of the problem without the danger of
introducing inconsistencies into the model. Numerically, it is somewhat advantageous
to leave the income constraints explicit as opposed to substituting the values into the
demand function since the latter technique will generate much more dense Jacobian
matrices.

Note that a more general formulation is possible with fewer explicit assumptions
on the profit function π(p). Two standard results are used to generate a similar
formulation to that given above. The first is Hotelling’s lemma [200] which states that
if the profit function defined using (4.4) has a unique solution, then it is differentiable,
and the optimal solution vector (that is, the netput supply vector) is ∇π(p). This
solution can be substituted into (4.2). Frequently, the result is termed the envelope
theorem. The complementarity problem that results from substituting this into (4.1)
and (4.2) is

0 ≤ z ⊥ −π(p) ≥ 0,

0 ≤ p ⊥ ∇π(p)z −
∑m

i=1(d
i(p, wi) − ei) ≥ 0,

wi = pT ei.

Another result that enables the skew symmetry to be recaptured is Euler’s law [200].
This states that if π is a positively homogeneous function of degree 1 and is differen-
tiable, then

π(p) = ∇π(p)T p.

Many of the remarks above apply per se to this formulation as well.

4.1.3. Taxation and subsidies. When taxes are applied to inputs or outputs,
the profitability of the corresponding sectors and how the sectors technology is oper-
ated may be affected. Similar consequences occur with subsidies, but we note that
questions regarding subsidies can be answered using negative tax rates.

It is clear that the conditional factor demands, that is, an x which solves (4.9),
and the conditional outputs of the sector q can be determined separately. When input
costs are distorted by taxes, sector j solves the following problem:

min
x

{
l∑

i=1

(1 + ti)pixi : f j(x) = 1, x ≥ 0

}
,

where ti is the tax rate on inputs. Similarly, if τi is the tax rate on outputs, then the
sector determines its outputs q based on

max
q

{
l∑

i=1

(1 − τi)piqi : gj(q) = 1, q ≥ 0

}
.

Supply is given by A(p)z where the columns of A are defined using (4.8) and the
solutions of the above problems. However, the taxes affect the sector’s profit. If we
define

C(p) ≡
[

c1 c2 · · · cn
]
,



700 M. C. FERRIS AND J. S. PANG

with cj
i (p) = qj

i (1 − τi) − xj
i (1 + ti), then the after-tax profit is given by C(p)T p.

Furthermore, tax revenue of T ≡ (A(p) − C(p))T p per unit activity level is accrued
that is assumed to be shared among the consumers. Let θjk represent the share of
sector j taxes that accrue to consumer k.

The resulting set of equilibrium conditions are now given by

0 ≤ z ⊥ −C(p)T p ≥ 0,

0 ≤ p ⊥ A(p)z −
∑m

i=1(d
i(p, wi) − ei) ≥ 0,

wi = pT ei +
∑n

j=1 θjkTjzj .

Taxation effects in a single country were explored in the GEMTAP model described
in [10]. Similar models are currently being used to study taxation and other topics in
public finance [74].

Exchange rates, linkages between domestic and international economies and in-
tertemporal effects are currently being studied. The reader is referred to [173], which
describes a modeling framework for such issues. Some work on increasing returns to
scale can be found in [114]. Decreasing returns to scale can be modeled within the
constant returns to scale framework using specific factors [173]. Other computable
general equilibrium (CGE) models have considered the effect of carbon emission re-
strictions on international trade [83, 126, 155].

Although the conventional first assumption in applied general equilibrium mod-
eling starts with an assumption of perfect competition, there are instances that result
in a monopoly or an oligopoly. An example of modeling with imperfect competition
is given in [114].

4.2. Invariant capital stock. The problem of determining an invariant optimal
capital stock is considered in [36, 68]. An economy is assumed to evolve over an infinite
number of time periods with constant production and resources in each time period.
At the beginning of each time period, the economy invests its capital goods zt into the
production processes, which produce both capital goods and consumption goods xt.
The capital produced will be invested in the next period, while the consumption goods
produced determine the utility of the investment. The total utility is a discounted
sum; that is, the utility earned by consumption at time t is discounted by a factor of
αt, where the discount factor α ∈ (0, 1). The problem can be formulated as

maximize
∑∞

t=0 αtu(xt)

subject to

Axt ≤ zt

Bxt ≥ zt+1

Cxt ≤ w

xt ≥ 0,

 ∀t = 0, 1, . . . ,

(4.14)

where u(x) is the utility derived from the consumption specified as x. The feasibility
conditions ensure that the growth path {(zt, xt)} determining these utilities is consis-
tent with the given technology and resource constraints. A is the capital input matrix;
running production process j at unit level requires aij units of capital good i. B is
the capital output matrix; running production process j at unit level produces bij

units of capital good i. C is the resource input matrix; running production process j
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at unit level requires crj units of resource good r of which we have w available at the
beginning of every time period.

Notice that in (4.14), the initial capital stock z0 is given; this stock determines
the optimal growth path. The sequence of capital stocks {zt} is not fixed explicitly
by the constraints, but it is likely that, over time, some optimal pattern of investment
and return may evolve; that is, the growth path approaches a constant value.

This motivates the problem of finding an initial endowment of capital z0 for which
the investment strategy necessary to maximize the discounted sum of the utilities is
constant over all time periods. It should be noted that one cannot merely require
that the path be constant, and optimize the choice of z0. The invariance of the path
must be a result of the optimality conditions in (4.14) and the choice of z0, not of any
explicit constraint.

We will assume that the utility function to be maximized in (4.14) is concave and
continuously differentiable. The particular example given in [68] uses a utility func-
tion that is a nested CES function. The outer nest is Cobb–Douglas with decreasing
returns to scale, while each of the inner nests is linear. Under some reasonable con-
straints on the technology, and a regularity condition on z0, an initial capital stock
z0 yields a constant optimal growth path (zt, xt) if and only if there exists (x, y, v)
solving the NCP

0 ≤ x ⊥ −∇u(x) + (A − αB)T y + CT v ≥ 0,

0 ≤ y ⊥ (B − A)x ≥ 0,

0 ≤ v ⊥ −Cx + w ≥ 0,

and xt = x, zt = Ax for all t.

4.3. Game-theoretic models. A large number of economic models are formu-
lated in terms of an n-person noncooperative game [136]. In the general setting, such
a game consists of n players, each of whom has an associated strategy set Xi ⊆ Rni

and a utility function ui : Xi → R. The utility of any given player depends on the
strategies xj of all the players. When acting in a Nash manner, each player maximizes
his own utility assuming other players’ strategies are known. Thus for given strategies
zj , j 6= i, player i solves the following optimization problem:

max{ui(z1, . . . , zi−1, xi, zi+1, . . . , zn) : xi ∈ Xi}.(4.15)

The vector z = (zi) ∈ X ≡
∏n

i=1 Xi constitutes a Nash equilibrium for the game if
for each i = 1, . . . , n,

ui(z1, . . . , zi−1, xi, zi+1, . . . , zn) ≤ ui(z) ∀xi ∈ Xi.

It is well known that the problem of computing a Nash equilibrium can be formulated
as a variational inequality if each Xi is a closed convex set and each function

ui(x1, . . . , xi−1, ·, xi+1, . . . , xn)

is concave and differentiable in the ith argument for each fixed

(x1, . . . , xi−1, xi+1, . . . , xn).

Under these assumptions, by defining

F (x) ≡


−∇x1u1(x)

...

−∇xnun(x)

 for x = (xi) ∈ X,
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a vector z is a Nash equilibrium if and only if z is a solution of the VI (F, X). If in
addition each Xi is defined by a finite system of differentiable inequalities and equa-
tions satisfying appropriate constraint qualifications, then the latter VI is equivalent
to a complementarity system via its KKT conditions.

In general, the concept of a Nash equilibrium is somewhat deficient. One defi-
ciency is due to the possible existence of multiple equilibria as defined above, some
of which Pareto dominate others. Determining which equilibrium is the desired “so-
lution” of the game is generally not possible.

The Nash–Cournot production model is an application of the Nash equilibrium
concept. This model concerns a number of firms, each producing a common good in
a market. Each firm sets its production level so as to maximize its own profit, under
the assumption that the production of the other firms remains constant. Intuitively,
a Nash equilibrium is a production pattern in which no firm can increase its profit
by unilaterally changing its level of production. Since no firm chooses to change its
production, an equilibrium ensues. Here, equilibrium means that each firm does a
best response given others’ choices.

If we let n denote the number of firms, xi the quantity of the good that firm i
produces, ξ ≡

∑n
i=1 xi the total quantity being produced, then the problem relies on

two functions of these variables. The first, the inverse demand function p(ξ), gives the
unit price at which consumers will demand (and actually purchase) a quantity ξ. The
second, Ci(xi), is the production cost for firm i. In conformity with generally accepted
economic behavior, the inverse demand function p is assumed to be decreasing, the
cost function Ci to be convex, and the “industry revenue curve” ξp(ξ) to be concave
in the (scalar) variable ξ ≥ 0. Under these assumptions, the utility function of each
firm

xi p

xi +
∑
j 6=i

x∗
j

 − Ci(xi)

is concave in xi (see [134]) and the strategy set Xi = R+. The corresponding varia-
tional inequality is the nonlinear complementarity problem

0 ≤ x ⊥ F (x) ≥ 0,

where F (x) = (Fi(x)) with

Fi(x) ≡ C ′
i(xi) − p

(
n∑

i=1

xi

)
− xip

′

(
n∑

i=1

xi

)
for x ∈ Rn

+ and i = 1, . . . , n.

The actual functions p and C used in [134] are defined below: for given parameters
ci, Li, βi > 0, and γ > 1,

p(ξ) = 5000
1
γ ξ

−1
γ ,

Ci(xi) = cixi +
βi

1 + βi
L

1
βi
i x

βi+1
βi

i .

An application of Nash equilibrium in marketing is found in [26]. The variables
of this problem are prices; it is assumed that a consumer demand function dictates
the quantities consumed at a given price. As opposed to the general equilibrium
where the firms choose a quantity to produce, here they choose the price for their
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single output based on maximizing their profit in the Nash manner. This is called
the Bertrand model in the literature. Larger models are found in [128]. An extension
of this framework is given by von Stackelberg [184]; here it is assumed that one firm
is the leader and hence knows that all the other firms will act in a Bertrand fashion.
The leader can optimize his quantities using this information to obtain a different
solution. This alternate analysis is not known to be a complementarity problem
but is an example of an MPEC; references on the Stackelberg game problem include
[142, 143, 178, 196].

In the game theory literature, algorithms for finding equilibria in two-person non-
cooperative games are well known; see [113]. We now describe an n player extension
of bimatrix games. Suppose the players are indexed as j ∈ N ≡ {1, 2, . . . , n}. For
simplicity, we will assume that every player has a choice of pure strategy from the
set P = {1, 2, . . . , m}. A “strategy profile” s is an n vector whose jth element is
an element of P corresponding to the pure strategy assigned to player j. The payoff
to player j arising from strategy profile s is Ajs. In the game, player j chooses a
probability vector pj

i representing his probability of playing pure strategy i in the
equilibrium. Clearly,

pj
i ≥ 0 ∀i ∈ P, j ∈ N ,

∑
i∈P

pj
i = 1 ∀j ∈ N .

We now introduce some further notation. Let p−j represent the (n − 1) × m vector
(p1, . . . , pj−1, pj+1, . . . , pn) and i(j, s) denote the pure strategy assigned to player j in
the strategy profile s. The expected payoff to player j is given by

uj(p) ≡
∑

s

Ajsp(s),

where p(s), the probability of choosing strategy profile s, can be calculated using

p(s) =
∏

k∈N
pk

i(k,s).

Since the game is finite, the summation in the expectation can be rearranged so that

uj(p) =
∑
i∈P

pj
ix

j
i (p

−j),

where

xj
i (p

−j) ≡
∑

s:i(j,s)=i

Ajs

∏
k∈N\{j}

pk
i(k,s).

The nonlinear function xj
i represents the expected payoff to player j using pure strat-

egy i under the assumption that the other players choose strategies given by p−j .
The strategy sets are just unit simplices, Xj = {p ∈ Rm : p ≥ 0,

∑
i pi = 1}. The

resulting Nash equilibrium is the problem of finding p̄ = (p̄1, . . . , p̄n) such that for
j ∈ N ,

p̄j ∈ Xj ,
∑
i∈P

pj
ix

j
i (p̄

−j) ≤
∑
i∈P

p̄j
ix

j
i (p̄

−j) ∀pj ∈ Xj .

It is clear that this is just VI (F ,
∏

j∈N Xj) with F j
i (p) ≡ −xj

i (p
−j). The equivalence

given in (2.1) allows this problem to be rewritten as a complementarity problem,
where the matrices A and b are chosen to represent the constraints

∑
i∈P pj

i = 1.



704 M. C. FERRIS AND J. S. PANG

�
�

�
�

�
�

�
��@

@
@

@
@

@
@

@@

a •

b •

c •

d •

e •

f •

g •
L = {a, . . . , g}
Q = {1, 2, 3}
I1 = {a,b}
I2 = {c,d, e}
I3 = {f, g}

FIG. 4.1. Eight sites partitioned among three producers.

4.4. Spatial price equilibria. Some models are based on the spatial structure
as well as the competitive structure of the market and are frequently termed spa-
tial price equilibria. Examples of this format can be found in [69, 195]. Some of
these models are based on the general equilibrium framework; others use the Nash
equilibrium framework.

In [69], Harker gives a number of models which describe the spatial and com-
petitive structure of markets embedded in a network (such as those described in
subsection 3.6). Each node represents a unit or site separated spatially from the oth-
ers. One competitive structure modeled is an oligopoly, a market situation in which
a few producers (or firms) control the deliveries to and demands from a large number
of buyers. In the example below, each firm q ∈ Q tries to maximize the profit associ-
ated with his production of a single commodity common to all firms. We define the
following quantities (see Figure 4.1).

[L] set of distinct production units or sites
[W ⊆ L × L] set of transportation arcs between the sites in L
[Iq ⊆ L] set of sites controlled by firm q ∈ Q. The set of sites L is partitioned

among the sets Iq, q ∈ Q.
[sl, l ∈ L] amount of commodity produced at site l
[Cl(sl)] total cost of producing sl units of output at site l
[fa, a ∈ W ] flow on arc a
[ca(fa), a ∈ W ] unit transportation cost at level fa

[dlq] amount of commodity produced by firm q delivered to site l
[θl(

∑
q∈Q dlq)] purchase price dictated by the total delivery to site l (inverse de-

mand function).
We will assume that each firm q acts in a Nash manner when making decisions

regarding s, d, and f . The aggregation of these variables is firm q’s strategy vector
xq. The constraints on xq are those that ensure a conservation of flow at each site.
Constraints for sites that firm q controls are more complicated than those for sites
outside of firm q’s control. The supply, delivery, and transportation variables are
subject to lower and upper bounds, taken as 0 and +∞, respectively. Thus, the set
Xq of feasible strategies for the firm q is

Xq ≡

xq :

xq = (sl, dlq, flj) ≥ 0 ∀l ∈ Iq, j ∈ L

dlq +
∑

j∈L flj = sl +
∑

i∈Iq
fil ∀l ∈ Iq

dlq =
∑

i∈Iq
fil ∀l ∈ L \ Iq

 .

Let X ≡
∏

q∈Q Xq, so that x ∈ X is a feasible strategy for all firms. Firm q’s profit
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is given by the function πq:

πq(x) ≡
∑

l∈L
θl

∑
j∈L

fjl

 dlq −
∑
i∈Iq

Ci(si) −
∑
i∈Iq

∑
j∈L

cij(fij)fij .

Therefore, firm q wishes to find a strategy xq which maximizes πq(x) under the as-
sumption that all the other firms keep their strategies fixed at x̄p. If θl is decreasing,
Cl is convex, and cij is increasing, then πq is convex. As in the Nash model, a spatial
price equilibrium is therefore a vector x̄ ∈ X satisfying∑

q∈Q

∇πq(x̄)T (xq − x̄q) ≥ 0 ∀x ∈ X.

This variational inequality is easily transformed into a complementarity problem using
(2.1). A GAMS model for this problem is available in [40].

In [195], Tobin describes a spatial price equilibrium in a multicommodity market
modeled as a network. In this example, the variables are the prices at the various
nodes in the network. These prices determine supply and demand, and not conversely,
as in Harker’s model above. Furthermore, perfect competition is assumed, rather than
Nash behavior.

4.5. NEMS. NEMS stands for National Energy Modeling System. This is a very
complex, large-scale mathematical model created at the U.S. Department of Energy
that computes equilibrium fuel prices and quantities in the U.S. energy sector. The
model consists of many modules that are described by linear programs, nonlinear
equations, and econometric submodels which are linked together via some functional
equations.

Currently, the integrating module within NEMS performs the role of a Walrasian
auctioneer in the determination of equilibrium prices. It recursively invokes the in-
dependent submodels in a systematic fashion to obtain equilibrium market prices for
energy products. Essentially, the algorithm used is a Gauss–Seidel procedure with
some heuristics to improve robustness.

In a proposed complementarity formulation of NEMS [57], the conversion, trans-
mission, and distribution of energy are modeled by four separate nonlinear programs.
The mixed nonlinear complementarity problem is formed by augmenting the KKT
conditions of these nonlinear programs with various nonlinear equations that link the
solution vectors and multipliers to computed fuel prices and quantities.

5. Concluding remarks. We have given a fairly comprehensive summary of
numerous applications of complementarity problems. Although many of these ap-
plications are known to researchers in the field, several of them have received only
minimal attention in the complementarity literature. Indeed, we have recently learned
about an interesting application of the linear complementarity problem arising from
the financial field of option pricing [206, Chapter 7]. Further applications of the com-
plementarity problem and related problems as well as recent algorithmic advances for
solving these problems can be found in the Proceedings of the International Confer-
ence on Complementarity Problems held in November, 1995 [47]. Our hope with all
these efforts is to stimulate further research and utilization of the complementarity
approach to solving important engineering and economic problems.
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[132] J. J. MORÉ, Global methods for nonlinear complementarity problems, Math. Oper. Res., 21
(1996), pp. 589–614.
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(1992), pp. 123–141.
[210] C. Y. ZHU, Modified proximal point algorithm for extended linear–quadratic programming,

Comput. Optim. Appl., 2 (1992), pp. 182–205.
[211] C. Y. ZHU AND R. T. ROCKAFELLAR, Primal-dual projected gradient algorithms for extended

linear-quadratic programming, SIAM J. Optim., 3 (1993), pp. 751–783.


