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Abstract

An empirical technique has been developed that is used to
predict seafloor facies from multibeam bathymetry and
acoustic backscatter data collected in central Santa Monica
Bay, California. A supervised classification used backscatter
and sediment data to classify the area into zones of rock,
gravelly-muddy sand, muddy sand, and mud. The derivative
facies map was used to develop rules on a more sophisticated
hierarchical decision-tree classification. The classification
used four images, the acoustic-backscatter image, together
with three variance images derived from the bathymetry and
backscatter data. The classification predicted the distribution
of seafloor facies of rock, gravelly-muddy sand, muddy sand,
and mud. An accuracy assessment based on sediment sam-
ples shows the predicted seafloor facies map is 72 percent
accurate.

Introduction
Mapping surficial seafloor facies (sand, silt, muddy sand, rock,
and others) should be the first step in marine geological stud-
ies and is crucial when modeling sediment processes, pollu-
tion transport, deciphering tectonics, and defining benthic
habitats. Traditionally, the surficial facies of the seafloor is
determined by collecting a suite of bottom samples, analyzing
the samples for grain size and/or determining rock type, and
then mapping the results by interpolating or extrapolating the
gaps between samples. However, a detailed surficial facies
map is rarely achieved because generally too few samples are
collected to adequately describe the variability of the surficial
facies. Within the last few decades, acoustic systems have
been developed that collect wide swaths of seafloor data and
can map 100 percent of a study area. The most commonly
used of these systems are sidescan sonars and many attempts
have been made to transform the acoustic signals from these
into geological and biological meaningful information (Reed
and Hussong, 1989; Tamsett, 1993; Chavez and Gardner, 1994;
Davis, et al., 1996; Blondel and Murton, 1997; Barnhardt,
et al., 1998; McRea, et al., 1999; Cochrane and Lafferty, 2002).
The advent of high-resolution multibeam echosounders
(MBES) in the last decade has provided a new technique to
efficiently map large areas of the seafloor at meter-scale
horizontal, and centimeter-scale vertical resolutions (Hughes
Clarke, et al., 1996; Hughes Clarke, 2000a; Hughes Clarke,
2000b). The most advanced MBES systems collect a swath of
georeferenced soundings that provide geodetic-quality
bathymetry as well as calibrated acoustic backscatter values
co-registered with each of the bathymetric soundings. High-
resolution MBES systems are presently in use by most of the
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world’s hydrographic services, commercial marine surveyors,
and navies because of their accuracies, high-sounding densi-
ties, and their ability to efficiently cover 100 percent of the
seafloor. MBES systems are now gaining favor with the scien-
tific community for the same reasons. However, as with all
remote sensing data, these data require adequate ground truth
to derive geologically meaningful maps from them. Whereas
several studies use MBES data to outline geomorphic provi-
dences on the seafloor (Goff, et al., 1999; Van De Beuque,

et al., 1999; Gardner, et al., 2001), few studies have used the
MBES bathymetry and acoustic backscatter data together to
classify seafloor facies on a pixel by pixel basis, thus utilizing
the full resolution of the MBES data (Mitchell and Hughes
Clarke, 1994; Hughes Clarke, et al., 1996; Keeton and Searle,
1996), and we are unaware of any studies that have predicted
seafloor facies from MBES bathymetry and acoustic backscatter
data on a pixel by pixel basis, and validated the results with a
quantitative accuracy assessment.

This study outlines an empirical technique that uses
high-resolution multibeam bathymetry and co-registered cali-
brated backscatter correlated to ground truth sediment sam-
ples to predict the distribution of seafloor facies for a large
area offshore Los Angeles, California. The technique uses a se-
ries of procedures that involve supervised classification and a
hierarchical decision-tree classification that are now available
in advanced image analysis software packages. Derivative
variance images of both bathymetry and acoustic backscatter
are calculated from the MBES data and then used in a hierar-
chical decision-tree framework to classify the MBES data into
areas of rock, gravelly-muddy sand, muddy sand, and mud. A
quantitative accuracy assessment on the classification results
is performed using ground truth sediment samples. The pre-
dicted facies map is also ground truthed using bottom pho-
tographs and high resolution sub-bottom seismic profiles.

Study Area

The focus of the study is a marginal plateau, informally called
Short Bank, located in central Santa Monica Bay, offshore

Los Angeles (Figure 1). Short Bank was chosen for this study
because of the large amount of seafloor data available, includ-
ing high-resolution multibeam bathymetry and acoustic
backscatter, sediment samples, seafloor photographs, and
seismic profiles. Also, Short Bank supports a variety of ben-
thic organisms and fish, including brittlestars, Gorgonian
corals, rockfish, and sand dabs (Allen, et al., 1976; Bascom,
1981) that are the focus of ongoing habitat studies. Short Bank
is a relatively shallow continental shelf region (40 to 110 m
deep) that projects more than 18 km out from the coastline

Photogrammetric Engineering & Remote Sensing
Vol. 70, No. 9, September 2004, pp. 1081-1091.

0099-1112/04/7009-1081/$3.00/0
© 2004 American Society for Photogrammetry
and Remote Sensing

September 2004 1081



Y Point Dume
Santa Monic

Canyon

3355

33'50/

Redondo Canyon

m Verdes

335

Peninsula

L s s L L
118'50" 11895 11840 11835 11830 11825

Figure 1. Study area within Santa Monica Bay, offshore
Los Angeles California. The polygon indicates the extent of
the study area. Isobaths are in meters.

and is bounded by two large submarine canyons: Santa
Monica Canyon on the north and Redondo Canyon on the
south (Gardner, et al., 2003). The total study area covers
167.2 km? in water depths that range from 40 m on the east to
450 m on the northwest. Previous work on and around Short
Bank using seismic profiles and sediment samples identified
rocky outcrops with as much as 12 m of relief, as well as
areas of coarse-gravelly sand, muddy sand, and sandy mud
(Shepard and MacDonald, 1938; Terry and Stevenson, 1957;
Junger and Wagner, 1977; Haner and Gorsline, 1978; Vedder,
et al., 1986; and Kolpack, 1987).

Data

Multibeam bathymetry and calibrated acoustic backscatter
data (Figure 2) were collected using a Kongsberg Simrad
EM1000° MBES (Gardner, et al., 2003). A MBES system involves
the integration of four subsystems; the multibeam transmitter/
receiver electronics, a DGPS-aided inertial navigation system,

a vehicle-motion sensor, and a sound-speed profiler. The

95 kHz MBES transmitter/receiver used for this study was
designed for operation in water depths from 5 to 800 m. The
spacing between soundings (beam footprint) is a function of
receiver beam width, water depth, and angle of incidence, and
varied in the study area from approximately 3.6 to 40.5 m,
from 40 to 450 m water depths, respectively. The navigation
subsystems provided horizontal position accuracies of better
than =1 m. A vehicle motion sensor was used to compensate
for the ship’s roll and pitch during transmit and receive cycles
with an accuracy of £0.02° and yaw (heading) to =0.05°. A
conductivity, temperature, and depth instrument (CTD) was
used to determine the sound speed within the water column
several times each day so that each acoustic path could be ray
traced to the seafloor to correct for refraction in the water col-
umn. In addition, sound speed at the transducer was continu-
ously monitored. Shipboard processing corrected backscatter
levels for source level, angular response, spherical spreading,
attenuation in the water column, beam pattern, and ensonified
area. Bathymetry data were corrected for measured tides that
referenced all depth measurements to a mean-lower, low-
water datum.
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Figure 2. Multibeam shaded-relief bathymetry (top) of
Short Bank and surrounding seafloor, including the inner
shelf and Santa Monica Canyon (Gardner, et al., 2003).
Illumination azimuth, 315°, elevation 45°. Acoustic
backscatter imagery (bottom) of Short Bank and surround-
ing seafloor including the inner shelf and Santa Monica
Canyon. Light tones indicate a strong backscatter signal
and darker tones indicate weaker backscatter signals. Iso-
baths are in meters. The linear feature in the northeast
corner is the Hyperion-5 outfall pipe.

Although bathymetry can be interpreted using relatively
straightforward geomorphological principles, the interpreta-
tion of acoustic backscatter is more complicated because it
represents a complex interaction between the acoustic pulse
and the seafloor, as well as the subsurface. Backscatter
strength is dependent on the acoustic source level, the fre-
quency used to image the seafloor (95 kHz for this study), the
grazing angle, the composition of the seafloor including, grain
size, water content, bulk density, seafloor roughness, and vol-
ume reverberations to within a few meters depth (Urick, 1983;
Gardner, et al., 1991; Augustin, et al., 1996; Blondel and
Murton, 1997).

Backscatter strength varies with grazing angle across track
(Jackson, 1994). However, because each EM1000 backscatter
value is co-registered with a sounding, the backscatter strength
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is adjusted across-track by applying a Lambertian correction
that uses both calculated grazing angle and measured seafloor
slope. In addition to adjusting the backscatter angular re-
sponse, further post-processing during the Santa Monica Bay
survey removed residual acoustic ripples on the transmit to
receive beam pattern product. This was done by stacking
several thousand pings to average out the across-track ripple
variability (Hughes Clarke, personal communication, Decem-
ber 2002). Once both corrections are applied, the backscatter
signal better represents the across-track seafloor response
to 95 kHz sound.

Finally, backscatter strength was converted from decibels
(dB) to a non-dimensional 8-bit digital number (DN) using the
conversion,

DN = 255 — (dB X 2) (1)

where DN ranges from 0 to 255 and dB ranges from —127 to 0.
For a more in-depth discussion of multibeam systems see
Hughes Clarke, et al., (1996).

Individual soundings were gridded using a Butterworth
distance-weighted interpolation algorithm (Diaz, 1999). The
interpolation-determined cell values using a linear-weighting
function that decays from a value of 1 at the grid node to
nearly zero at a specified distance from the node. Therefore,
individual soundings close to the cell had a higher influence
on the cell’s value than soundings farther away. A cell size
was chosen to be no smaller than the acoustic footprint on
the seafloor.

Ground truth data used in this study primarily included
60 sediment samples collected from the surface layer of box
corers, but 35 mm color bottom photographs collected from a
towed camera sled, and 53 km of high-resolution Huntec DTS
seismic-reflection profiles were also used as ground-truth.

Classification Process

The prediction of the distribution of seafloor facies from
multibeam data required a two-step empirical process that
involved two classification procedures. The first step used a
supervised classification of the acoustic-backscatter with
grain-size data and rock locations, and the second step used
those results as rules for a hierarchical decision-tree classifica-
tion that included both bathymetry and acoustic backscatter.
Although the hierarchical decision tree is a classification
process in its own right, it is difficult to develop rules for the
classification without some prior knowledge of the composi-
tion of the seafloor.

Grain-size analyses from the 60 samples were used to
divide the samples into percentages of gravel, sand, and mud.
Four sediment classes (facies) were identified using the Folk
(1954) Classification (Table 1): gravelly muddy sand that has
greater than 5 percent gravel, greater than 50 percent sand,
and less than 50 percent mud; muddy sand that has less than
5 percent gravel, greater than 50 percent sand, and less than
50 percent mud; sandy mud that has less than 5 percent
gravel, less than 50 percent sand, and greater than 50 percent
mud; and mud that has less than 5 percent gravel, less than
10 percent sand and greater than 90 percent mud. The initial
supervised classification of the acoustic backscatter data was
made using the four sediment facies plus a rock facies. Rock

was defined as a very high-backscatter surface with high-
bathymetric relief as identified from the multibeam bathyme-
try data.

A seed pixel within the backscatter image was defined as
the 8-bit-backscatter value at each of 48 sediment-sample
locations (12 samples were held back for an accuracy assess-
ment). Each seed pixel was used as the center of a training
sample around the location of each sediment sample. A train-
ing sample is a polygon with a maximum number of pixels
that have a defined range of backscatter from the seed pixel.
For this study, a Euclidian distance of 400 pixels was used as
the maximum number of pixels and the backscatter range was
+5 DN from the seed pixel DN. A training sample can be any
shape of pixels and can vary in the total number of pixels up
to a maximum of 400. For example, a training sample built
from a seed pixel in a uniform region may contain 400 pixels
because all the surrounding pixels are within the =5 DN
range of the seed pixel DN. However, a training sample built
from a seed pixel in a highly variable area may contain only
100 pixels because only 100 pixels are within the =5 DN
backscatter range of the seed pixel DN. The maximum number
of pixels and backscatter-range values were determined from
trial-and-error tests to determine an internally uniform section
of seafloor around each seed pixel. A backscatter range of
+5 DN about the seed pixel DN was chosen because it defines a
homogeneous backscatter area around each seed pixel. Clear
breaks in the data occur between low and high backscatter
values. In some cases, a backscatter range of +6 DN about the
seed pixel DN crossed these breaks and created training sam-
ples with both low and high backscatter values, whereas an
acoustic range of =4 DN chose too small an area. A maximum
of 400 pixels per location was used because clusters with
more than 400 pixels grouped pixels located too far from the
seed pixel, whereas values much less than 400 pixels picked
too few pixels. A mean and standard deviation of DN was
calculated for each training sample, and each training sample
was assigned the seafloor facies class from the ground-truth
point (i.e., muddy-sand, sandy-mud, and others). Finally,
overall means and standard deviations of DN were calculated
for each facies from all the training samples (Table 2).

Two methods were used to investigate the differences
between the acoustic properties of the descriptive classes.
The first method used mean backscatter of the descriptive-
class training samples to investigate differences between the
backscatter properties (Figure 3). The training samples for
rock have the highest backscatter values and range from 203
to 211 DN, whereas the training samples for mud and sandy
mud have the lowest backscatter values and range from 175 to
197 DN. The second method used a Student’s T-test between
the backscatter statistics of the different descriptive classes to
determine whether each class was statistically dissimilar from
one another (Table 3). This analysis showed that the mud and
sandy-mud classes are not statistically different, so the mud
and sandy-mud classes were grouped together into a single
class called mud.

TABLE 2.  STATISTICS OF TRAINING SAMPLES. EACH TRAINING SAMPLE
CONSISTS OF A MAXIMUM OF 400 BACKSCATTER PIXELS WITH =5 DN
VALUES AROUND A SEED PIXEL

Gravelly Muddy Sandy
TABLE 1. DEFINITION OF SEDIMENT FACIES ON SHORT BANK Rock  Muddy Sand  Sand Mud Mud

Facies % Gravel % Sand %Mud Number of 6 3 25 11 3

Training
Gravelly Muddy Sand >5 >50 <50 Samples
Muddy Sand <5 >50 <50 Mean DN 207.45 202.30 192.00 185.80 187.17
Sandy Mud <5 <50 >50 Standard 2.73 2.00 8.45 5.15 8.96
Mud <5 <10 >90 Deviaton (DN)
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING September 2004 1083
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Figure 3. Scatter plot of the descriptive classes’ training
sample means.

TABLE 3. RESULTS OF STUDENT’S T-TESTS STUDYING THE DISSIMILARITY BETWEEN
THE DESCRIPTIVE CLASSES. CLASSES ARE STATISTICALLY DISSIMILAR IF T IS
GREATER THAN THE CRITICAL VALUE

Degrees of Critical
Comparison Freedom P Value T
Rock vs Gravelly 7 0.021 2.36 2.96
Muddy Sand
Gravelly Muddy Sand 26 0.048 2.06 2.07
vs Muddy Sand
Muddy Sand 34 0.031 2.03 2.25
vs Sandy Mud
Sandy Mud vs Mud 12 2.18 0.353

There are two possible explanations for the similarity
between mud and sandy-mud’s acoustic signals. First, the
acoustic impedances (p-wave velocity X bulk density) of the
finer grain-size classes may be similar. The second reason may
be that there were too few mud samples to statistically distin-
guish between the mud and sandy-mud classes.

Once all the training samples were selected, a supervised
classification was run on the entire backscatter image. The
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Plate 1. Predicted seafloor facies from the supervised classification.
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Plate 2. Predicted seafloor facies of Short Bank and surrounding region with noise class.
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same constraints of a Euclidian distance of 400 pixels and a
backscatter range of =5 DN about each pixels value was used
to classify each pixel in the image. This analysis assigned
each pixel in the image to the training class that statistically
is closest to its mean and standard deviation of backscatter.
The covariance was used to correlate mean and standard devi-
ation for each cluster to the closest training class. Each pixel
in the image was assigned to one of the four seafloor classes.
Finally, for visual display, each seafloor class was assigned

a color to show the distribution of predicted seafloor facies
(Plate 1).

A quantitative accuracy assessment was calculated on
this preliminary predicted facies map to test the overall accu-
racy of the supervised classification. The 12 samples withheld
for the assessment were picked as stratified random samples
that consisted of three rock, one gravelly-muddy sand, four
muddy sand, and four mud. Visual inspection determined
whether the backscatter pixel at each accuracy assessment
sample location was correctly classified. The accuracy assess-
ment determined that 7 of the 12 classified map locations or
58 percent were correctly classified. One rock sample was
misclassified as gravelly-muddy sand; the gravelly-muddy
sand was misclassified as rock, and three mud samples were
misclassified as muddy sand.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

The predicted seafloor facies map generated from the
supervised classification was used to test and refine the
hierarchical decision-tree classification. This process used
both the multibeam bathymetry and backscatter data to clas-
sify the data into the same four seafloor facies (rock, gravelly-
muddy sand, muddy sand, and mud). In addition, noise was
added as a fifth class. Noise is defined as the abnormally high
backscatter signal recorded at the MBES nadir. At near-
vertical incidence, almost all of the transmitted acoustic
pulse is returned to the transducer, resulting in a saturation
of the signal in the inner beams. This noise signal can be seen
in Figure 2 as linear tracks of high backscatter compared to
the surrounding levels.

The decision-tree classification process used four raster
images, the original backscatter-intensity image, and three de-
rivative raster images calculated from the original bathymetry
and backscatter images; a 3 X 3-filtered bathymetry-variance
image, an 11 X 11-filtered bathymetry-variance image, and a
3 X 3-filtered backscatter-variance image. Variance was calcu-
lated as the variability of bathymetry or backscatter within a
kernel. An area with a large range of bathymetric relief, such
as a rocky outcrop, would have a large bathymetry variance. A
smooth area would have low bathymetry variance. Backscatter
(BS) was parsed in a similar fashion; an area with high
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backscatter variability, such as an outcrop (high BS) with
pockets of sediment (low BS) would have a large backscatter
variance, whereas a flat, uniformly-sedimented seafloor would
have a low backscatter variance. The variance images were
calculated by generating two intermediate images, a maxi-
mum image and a minimum image. The maximum image was
calculated by running a filter (3 X 3 cells for 3 X 3 bathymetry
variance and backscatter variance, and 11 X 11 cells for
11 X 11 bathymetry variance) that returned the maximum
value within a kernel to the center cell. The minimum image
was calculated by running a filter that returned the minimum
value within a kernel to the center cell. The variance images
were created from the difference between the maximum and
minimum images. Two kernel sizes (3 X 3 and 11 X 11) were
run over the bathymetry data to define both the small- and
large-scale variance features. The 3 X 3 filter defined small-
scale variance features such as linear ridges, whereas, the
11 X 11 filter defined the large-scale variance features, such as
outcrops. Unsupervised classifications run on the three vari-
ance images and on the original backscatter-intensity image
clustered the pixels into five groups numbering one to five:
one representing a very low variance/intensity, two represent-
ing a low variance/intensity, three representing a medium
variance/intensity, four representing a high variance/intensity,
and five representing a very high variance/intensity (Figure 4).
The four unsupervised classified images were then ana-
lyzed using a hierarchical decision-tree classification that is
part of the ERDAS Imagine® 8.4 software package (ERDAS®,
1999). The classification is a rules-based approach that uses a
hierarchy of conditions to parse the input data into a set of
classes. The decision-tree framework was developed from em-
pirically determined textural rules, variables, and hypotheses.
An hypothesis is an output-facies class, such as muddy sand,
a variable is a raster image of derived values (i.e., 3 X 3

Figure 4. Four close-up views of a small area of central
Short Bank. (A) backscatter intensity, (B) backscatter vari-
ance (3 X 3 filter) (brighter tones are areas of higher vari-
ance, whereas darker tones are areas of lower variance),
(C) high-resolution bathymetric variance (3 X 3 filter)
(brighter tones area areas of higher variance, whereas
darker tones are areas of lower variance), (D) low-resolution
bathymetric variance (11 X 11 filter).
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Figure 5. An example of a simple decision rule. Gravelly
muddy sand is the hypothesis, high to very high backscat-
ter and very low to medium bathymetry variance are rules,
and the images are the variables.

bathymetry variance), and a rule is a conditional statement
about the variable’s pixel (data) values that describes the
hypothesis. Because the four unsupervised classified images
are co-registered with one another, rules can be established
that relate pixel values within or between images that will ul-
timately classify a new seafloor-facies image. Figure 5 shows
an example of a simple decision tree. If a pixel within the
backscatter image has a value of 4 or 5, and the same pixel in
the bathymetry variance image has a value between 1 and 3,
then the pixel at that location in the new facies image will be
assigned a gravelly-muddy sand class. Multiple rules and
hypotheses can be linked together into a hierarchy that
describes the hypothesis (Figure 6).

The rules are based on the ground truth areas from the
previous supervised classification. For example, it was deter-
mined that rock outcrops are exposed in the center of Short
Bank at the area of very high backscatter (pixels assigned a
value of 5 in the unsupervised classified backscatter image),
low to very high backscatter variance (pixels assigned values
between 2 and 5 in the unsupervised classified backscatter
variance image), and medium to very high bathymetry
variance (pixels assigned values between 3 and 5 in the
unsupervised classified bathymetry variance image). It is also
known that areas of the inner shelf are mainly covered in mud
at the areas of low to very low backscatter (pixels assigned
values of 1 or 2 in the unsupervised classified backscatter
image), low to very low backscatter variance (pixels assigned
values of 1 or 2 in the unsupervised classified backscatter
variance image), and low to very low bathymetry variance
(pixels assigned values of 1 or 2 in the unsupervised classified
bathymetry variance image). Therefore, rules were developed
to correctly classify these areas. The areas that were
previously unknown were similarly classified based on these
same rules.

The 60 ground truth sediment samples were used to test
and refine the classification. After each classifying iteration,
a quantitative accuracy assessment was run that compared
the predicted pixel of the new classified image to the ground
truth sediment type at each sample location. If required, the
decision-tree rules were refined and the database reclassified
until the highest accuracy assessment, 72 percent, was
obtained for the ground-truth samples. The classification
process resulted in a new predicted seafloor-facies thematic
map composed of rock, gravelly-muddy sand, muddy sand,
mud, and noise (Plate 2).

Noise was separated into its own class so it could be
removed from the interpretations. The data were filtered to
replace each noise pixel with the majority of non-noise pixels
that surround it. For example, if a noise pixel was in a field
of mud, then it was replaced with a mud classification pixel
value. This process removed most of the noise and resulted in
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Figure 6. Complete hierarchical decision tree for predicted
seafloor facies of Short Bank, Santa Monica Bay, CA. The left
side boxes show the final output classes. Low Res Rock =
low-resolution rock (rock defined by the 11 X 11 bathymetry
variance image), High Res Rock = high-resolution rock (rock
defined by the 3 X 3 bathymetry variance image). The high-
and low-resolution rock classes are combined together for
the final predicted seafloor faces map (Plates 2 and 3).

BS = backscatter.

a predicted seafloor facies map that better represented the
seafloor geology (Plate 3).

Results

The combination of hypotheses, rules, and variables in the
hierarchical decision tree produced a map of predicted seafloor
facies for Short Bank (Plate 3). Rock correlated with very high-
backscatter, low to very high-backscatter variance, and
medium to very high-bathymetry variance (Table 4). Rock has
very high-backscatter because its extremely high acoustic
impedance scatters all of the incident energy. Rock has a wide
range of backscatter variance because many outcrops are
diverse areas with exposed rock and sediment pockets that
absorb some of the acoustic energy. Rock has medium to very
high-bathymetry variance because exposed rock outcrops can

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

TABLE 4. COMBINATIONS OF CLASSES USED TO DEVELOP THE PREDICTED
SEAFLOOR FACIES. THE NUMBERS 1 TO 5 ARE THE RESULT OF UNSUPERVISED
CLASSIFICATIONS THAT CLUSTERED THE BACKSCATTER AND VARIANCE IMAGES INTO
5 GROUPS. FIVE IS VERY HIGH BACKSCATTER OR VARIANCE, 4 IS HIGH
BACKSCATTER OR VARIANCE, 3 IS MEDIUM BACKSCATTER OR VARIANCE, 2 IS Low
BACKSCATTER OR VARIANCE, AND 1 IS VERY LOW BACKSCATTER OR VARIANCE

Relative
Backscatter Backscatter Bathymetry
Seafloor Facies Intensity Variance Variance
Rock 5 2-5 3-5
Gravelly Muddy Sand 4-5 3-4 1-3
Muddy Sand 2-5 1-5 1-5
Mud 1-2 1-4 1-5
Noise 1-4 4-5 1-5

have a wide range of relief. Gravelly-muddy sand correlated
with a slightly lower backscatter than rock, medium to high-
backscatter variance, and very low to medium-bathymetry
variance. This sediment facies does not return as much
acoustic energy as rock because some of the signal is refracted
into the sediment and absorbed. Gravelly-muddy sand has
medium to high-backscatter variance because the sediment is
found close to the diverse outcrops, and it has very low to
medium-bathymetry variance because the sediment is found
on the flat plateau as well as on the transitions zones from the
flat seafloor to the steep outcrops. Muddy sand correlated with
the largest range of backscatter, backscatter variance, and ba-
thymetry variance of all the facies in this area. Muddy sand has
a wide range but lower backscatter than gravelly-muddy sand
because its smaller grain size scatters less acoustic energy and
allows more penetration, thus more volume absorption.
Muddy sand is found in and around outcrops, on the steep
western flanks of Short Bank, as well as on the smooth, uni-
form inner shelf. Mud correlated with the lowest backscatter
but has a wide range of backscatter variance and bathymetry
variance. Mud is similar to muddy sand, although, it has the
lowest backscatter because it absorbs most of the acoustic en-
ergy because of the high water content and low density of parti-
cles in the size range of the acoustic wavelength (1.5 cm). Mud
also covers a wide range of backscatter variance and bathyme-
try variance because it can be found trapped in pockets within
the outcrops or on the smooth, uniform inner shelf.

Predicted Seafloor Facies Distribution on Short Bank

The predicted facies classification of the Short Bank area
shows that Short Bank has a more complex distribution of
sediment composition than does the surrounding inner shelf
and deeper Santa Monica Canyon (Plate 3). Rock exposures
were predicted on the seafloor throughout Short Bank and on
its steeper flanks. The most prominent area of outcrops on the
eastern edge of Short Bank protrudes above the surrounding
seafloor by as much as 12 m (Plate 4). Predicted gravelly-
muddy sand and muddy sand are found on the top flanks of
the outcrops. Smaller ridges composed of individual boulders
(seen in the bottom photographs) trend north to south on the
western side and east to west on the northern side of Short
Bank. These ridges have relatively low bathymetric relief

(<2 m) compared to the larger outcrops but trend for many
kilometers. Rock is also exposed in places on the steep, west-
ern flanks of Short Bank. Rock covers 18.0 km? or 10.8 percent
of the study area.

Gravelly-muddy sand was predicted to be in small
patches throughout Short Bank and only covers 13.0 km? or
7.8 percent of the study area. This predicted facies is gener-
ally found close to the rocky outcrops where eroded rock
material has been identified (Shepard and MacDonald, 1938).
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Muddy sand is the most prevalent sediment type
predicted, covering 100.7 km? or 60.2 percent of the area. This
facies is found on the flat portion of the plateau, in pockets
within the elevated rocky outcrops, on the steep flanks, and
on the smooth inner shelf (Plate 3).

Predicted mud dominates the inner shelf and floor of
Santa Monica Canyon. Mud was also predicted on Short Bank
in small pockets within the rocky outcrops as well as in larger
bathymetric lows in the center and southern portion of the
plateau. Predicted mud covers 35.4 km? or 21.2 percent of the
study area.

Accuracy Assessments

The predicted seafloor facies map was tested for validity in
three ways; a quantitative accuracy assessment using sedi-
ment samples, comparisons with underwater bottom pho-
tographs, and comparisons with high-resolution, seismic-
reflection profiles. The first accuracy assessment compared
sediment facies of the 60 samples to the predicted seafloor
facies map. Forty-three of the 60 samples (72 percent) were
correctly predicted. All of the 17 misclassified samples were
off by only one adjacent class (i.e., mud instead of muddy
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sand). In addition, there were a number of misclassifications
where if the ground truth pixel location were moved over by
one pixel, the classified pixel would be the correct facies.

An accuracy assessment using underwater photography
shows good correlation between predicted seafloor facies and
observed facies. Small rocky ridges with widths of only a few
pixels on the predicted facies map are seen as areas of ex-
posed rock (Plate 5A). The predicted facies map shows a
small region of muddy sediment surrounded by coarser sand
and rocks in the center of Short Bank. A bottom photograph of
this area shows a field of muddy sediment with burrows and
worm trails (Plate 5B). Another example is an area where the
predicted facies map shows a sharp boundary between a
rocky ridge and a region of muddy sand. Bottom photographs
show that the ridge (Plate 5C) in this area consists of rocks
from 10 to 30 cm in length with pockets of coarse sand. Pho-
tograph “D” (Plate 5D) taken approximately 3 m down track
from Plate 5C over the predicted muddy sand region shows
sandy sediment, but no rocks.

The third accuracy test used nine Huntec® DTS high-
resolution seismic-reflection profiles to ground truth the rocky
portion of the predicted facies map. Whereas the seismic data
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Plate 4. Perspective view of outcrops on Short Bank. Reds
indicate exposed rock, green are areas of gravelly muddy
sand, yellow are areas of muddy sand, and blue are areas
of mud. View is looking north towards the head of Santa
Monica Canyon, see Plate 3 for direction. The vertical ex-
aggeration of the image is 10X and the distance across
the bottom of the image is about 3 km.

Plate 5. Comparisons between predicted seafloor facies
and bottom photographs. Red in the facies map are ex-
posed rock, green are areas of gravelly muddy sand, yel-
low are areas of muddy sand, and blue are areas of mud.
The black line on the facies map is the camera sled path
and the black dots are 5 minute markers.
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Plate 6. Comparison between predicted seafloor facies and
sub-surface geology. Red in the facies map are exposed
rock, green are areas of gravelly muddy sand, yellow are
areas of muddy sand, and blue are areas of mud.

cannot distinguish between sediment type, they do show
zones of rock outcrops and intervening sediment sections. The
predicted facies map correlates with outcropping rock that
stand above the sedimented regions of the plateau (Plate 6).
This technique classified the high resolution multibeam
data on a pixel by pixel basis rather than interpolating be-
tween known ground truth points spaced widely apart or
drawing polygons around similar ground truth points. The
technique also generated more accurate results than other
automated classification techniques that classify backscatter
alone (50 percent accuracy for an unsupervised classification
of Short Bank and 58 percent for a supervised classification).

Misclassifications

The seafloor-classification scheme predicted some misclassifi-
cations. Most of the misclassified pixels occurred near the
MBES nadir that is dominated by noise. The most obvious
errors are predicted rock pixels on the steep western flank of
Short Bank near the MBES nadir (Plate 3). Also, the pixels at
the edge of MBES nadir on top of Short Bank were misclassi-
fied as gravelly-muddy sand instead of muddy sand. The
misclassification occurred because of the abnormally high
backscatter from the vertical and near-vertical incidence at the
MBES nadir. This high-backscatter zone rapidly decreases with
across-track distance from nadir. Some of the pixels at the
outer edge of the MBES nadir zone, above the noise level, have
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high bathymetric variance and high backscatter similar to
rock, but based on the surrounding facies, these pixels should
probably be classified as muddy sand.

Conclusions

High-resolution, multibeam-echosounder data have been ana-
lyzed with remote sensing analytical techniques to generate a
predicted facies map that is the most complete and accurate
map of the surficial geology of the seafloor of Short Bank. A
hierarchical decision tree using bathymetry and backscatter
data has predicted the distribution of rock, gravelly-muddy
sand, muddy sand, and mud in this region. The predicted fa-
cies were ground truthed with sediment samples, underwater
photography, and seismic-reflection profiles. Ground truth
with sediment samples shows that the predicted facies map is
72 percent accurate, better than other automated classification
methods and good correlations are demonstrated between un-
derwater photography and seismic-reflection profiles.

The classification technique preserves accurate geo refer-
encing and allows the mapping of four seafloor facies. Large
rock outcrops with pockets of gravelly-muddy sand, and
muddy sand cover portions of the plateau. Smaller linear
ridges composed of rock boulders and muddy sand extend for
kilometers. Muddy sand covers the majority of the plateau
and its steep flanks. Mud covers the inner shelf, small bathy-
metric lows on Short Bank, and the deeper Santa Monica
Canyon region.

This seafloor-classification technique provides a method
to transform high resolution multibeam bathymetry and cali-
brated acoustic backscatter data into meaningful geological in-
formation. Although this classification technique can be used
on other areas of the seafloor, the exact values within the hier-
archical decision tree cannot be transferred to a different area.
Ground truth samples and other geological information need
to be gathered for each new study area to build the area’s
knowledge database. The predicted-seafloor-facies map from
this study can be used not only to study the spatial distribu-
tion of geologic material, but also to model sediment processes,
pollution transport, and for defining benthic habitats within
central Santa Monica Bay.
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