
Abstract
The objective of this paper is to examine the scaling-up
effect on the relationship between landscape patterns
and land surface temperatures based on a case study of
Indianapolis, United States. The integration of remote
sensing, GIS, and landscape ecology methods was used in
this study. Four TERRA ASTER images were acquired to derive
the land-use and land-cover (LULC) patterns and land
surface temperatures (LST) in different seasons. Each LULC
and LST image was resampled to eight spatial scales: 15, 30,
60, 90, 120, 250, 500, and 1,000 m. The scaling-up effect on
the spatial and ecological characteristics of landscape
patterns and LSTs were examined by the use of landscape
metrics. Optimal spatial resolutions were determined on the
basis of the minimum distance in the landscape metric
spaces. The results show that the patch percentages of LULC
and LST patches were not strongly affected by the scaling-up
process in different seasons. The patch densities and
landscape shape indices and LST patches kept decreasing
across the scales without distinct seasonal differences.
Thirty meters was found to be the optimal resolution in the
study of the relationship between urban LULC and LST
classes. Ninety meters was found to be the optimal spatial
resolution for assessing the landscape-level relationship
between LULC and LST patterns. This paper may provide
useful information for urban planners and environmental
practitioners to manage urban landscapes and urban
thermal environments as a result of urbanization.

Introduction
Scale influences the examination of the landscape patterns
in a region. The change of scale is relevant to the issues of
data aggregation, information transfer, and the identification
of appropriate scales for analysis (Krönert et al., 2001;
Wu and Hobbs, 2002). Extrapolation of signals across spatial
scales is a necessary research task (Turner, 1990). It is
believed that spatial characteristics could be transferred
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across scales under specific conditions (Allen et al., 1984).
Therefore, we need to know how the information is
transferred from a fine scale to a broad scale (Krönert et al.,
2001). In remote sensing studies, choosing various satellite
sensors may result in different research results, since they
usually have different spatial resolutions. Therefore, it is
significant to examine the changes in spatial configuration
of any landscape pattern as a result of different spatial
resolutions of satellite imagery. Moreover, it is always
necessary to find the optimal scale(s) for the study in which
the environmental processes operate.

Land-use and land-cover (LULC) pattern is regarded as an
important determinant of ecosystem function, and can be
considered as the representative of landscape pattern in an
in situ area (Bain and Brush, 2004). LULC categories are
linked to distinct behaviors of urban thermal environment
(Voogt and Oke, 1997). Solar radiation and land surface
temperature (LST) are important parameters for analysis of
urban thermal behavior (Aguiar et al., 2002). LST reflects
the result of surface-atmosphere interactions and energy
fluxes between the ground and the atmosphere on the Earth
(Wan and Dozier, 1996). Research is therefore needed to
examine the relationship between LULC and LST (Weng et al.,
2004; Weng et al., 2006). Furthermore, seasonal changes
may have major impact on soil moisture and tree canopy
components, and thus on the LULC-LST relationship.
However, little research has so far been done to examine the
scaling-up effect on the relationship between landscape
pattern and LST.

Landscape/LULC patches in a region may have different
sizes, shapes and spatial arrangements, which contribute to
the spatial heterogeneities of the landscape. In order to
understand the dynamics of patterns and processes and
their interactions in a heterogeneous landscape (such as the
urban areas commented on by the authors), one must be able
to accurately quantify the spatial pattern and its temporal
changes of the landscape (Wu et al., 2000). In recent years, a
series of landscape metrics have been developed to character-
ize the spatial patterns of landscapes and to compare
ecological quality across the landscapes (McGarigal and
Marks, 1995; Gustafson, 1998). However, there is lack of
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published works on the application and sensitivity analysis
of landscape metrics in the study of the relationship between
LULC and LST patterns. In this study, a method was devel-
oped to identify the scaling effect on the relationship
between the LULC and LST patterns by the use of landscape
metrics. LULC and LST information in four seasons in Indi-
anapolis was derived from ASTER imagery. The scaling-up
effect on the spatial characteristics of LULC and scaling-up
and -down effect on LST were then examined based on the
analysis of class-based landscape metrics. The similarity in
their landscape structures were determined based on the
minimum distance in the landscape metric space in order to
determine the optimal resolution for studying the urban
thermal landscape.

The Issue of Scale
The theories, models, and procedures for scaling are crucial
to understand heterogeneous landscapes (Wu and Qi, 2000;
Wu and Hobbs, 2002). Methods and technologies have
become more and more important for the examination of
spatial arrangements at wide spatial scales. Regionalization
describes a transition from one (micro-, meso-, or macro-)
scale to another. Up-, down-scaling is a fundamental
operation of transition (Krönert et al., 2001).

Spatial resolution has been a focus in remote sensing
studies. It is necessary to estimate the capability of remote
sensing data in landscape mapping since the application of
remote sensing may be limited by its spatial resolution
(Aplin, 2006; Buyantuyev and Wu, 2007; Ludwig et al.,
2007). Imagery with finer resolution includes greater spatial
information, which, in turn, enables the description of
smaller features than imagery with lower spatial resolution.
The proportion of mixed pixels is expected to increase as
spatial resolution becomes lower (Aplin, 2006). Stefanov and
Netzband (2005) identified weak positive and negative
correlations between NDVI and landscape structure at differ-
ent spatial resolutions: 250 m, 500 m, and 1000 m when
they examined the capability of MODIS NDVI data in the
assessment of arid landscape characteristics for the metropol-
itan Phoenix. Asner et al. (2003) examined the significance
of sub-pixel estimates of biophysical structure with the help
of high-resolution remote sensing imagery, and found a
strong correlation between the senescent and unmixed green
vegetation cover values in a deforested area. Adaptive choice
of spatial and categorical scales in landscape mapping was
demonstrated by Ju et al. (2005). They provided a data-
adaptive choice of spatial scale varying by location jointed
with categorical scale by the assistance of a statistical finite
mixture method. Agam et al. (2007) sharpened the coarse-
resolution thermal imagery to finer resolution imagery based
on the analysis of the relationship between vegetation index
and LST. The results showed that the vegetation index based
sharpening method was a significant way to improve the
spatial resolution of thermal imagery.

Buyantuyev and Wu (2007) systematically analyzed the
effects of thematic resolution on landscape pattern analysis.
The researchers considered that two problems needed
attention in landscape mapping: the multiplicity of classifi-
cation schemes and the level of detail of a particular
classification. They found that the thematic resolution had
obvious effects on most of the landscape metrics which
indicates that changing thematic resolution may significantly
affect the detection of landscape changes. However, increas-
ing the spatial resolution may not lead to a better observa-
tion since objects may be over-sampled and their features
may vary and be confusing (Hsieh et al., 2001; Aplin and
Atkinson, 2004). Although coarse resolution may include
fewer features, imagery with too fine resolution for specific

purpose can be degraded in the process of image resampling
(Ju et al., 2005). Remote sensing data may not be always be
sufficient when specific problems were addressed at specific
scales and on-ground assessment may need to be evolved for
more details since low-resolution remote sensing imagery
cannot provide sufficient information about the location and
connectivity for specific areas (Ludwig et al., 2007).

LST has been used as an important indicator to evaluate
urban atmosphere and to model urban climate (Voogt and
Oke, 1997; Jacob et al., 2002; Voogt and Oke, 2003). It is
believed to be able to measure the urban heat islands’
parameters, such as magnitudes, spatial extents, central
positions, and directions of heat movements (Streutker, 2002
and 2003). LST has also been used in the analysis of
temperature-vegetation abundance relationship, drought
evaluation, modeling of urban surface temperatures with
surface structural information, and forest regeneration
detection (Boyd et al., 1996; Voogt and Oke, 1997; McVicar
and Jupp, 1998; Wan et al., 2004; Weng et al., 2004). Remote
sensing thermal infrared (TIR) data have been widely used
to retrieve LST (Luvall and Holbo, 1991; Quattrochi and
Ridd, 1998; Quattrochi and Luvall, 1999; Weng et al., 2004).
Research has been developed to examine the scaling effect
in LST retrieval (Liu et al., 2006). This research retrieved
LSTs from ASTER and MODIS imagery for part of the Loess
Plateau in China and then scaled ASTER data to 1 km. The
results showed that the accuracy of LST measurement was
the major uncertainty in the study, and the variation in the
LST was reduced after scaling. However, different scaling
methods and terrain conditions did not show significant
influence on the variation for the study area. For areas with
obvious elevation changes, terrain correction could result in
a significant improvement in LST measurement with the
assistant of DEM analysis.

Numerous landscape metrics have been developed to
quantify landscape patterns in various scales (Turner, 1990;
McGarigal and Marks, 1995; Gustafson, 1998). However, it
remains difficult to interpret metrics due to the poor under-
standing of their functions and limitations (Pickett et al.,
1994; Li and Wu, 2004). The landscape metrics are believed
to be sensitive to spatial scales (Turner, 1990; Wang et al.,
1999). However, few studies have used landscape metrics in
the analysis of LST configurations, not to speak of the
relationship between landscape and LST patterns. On the
other hand, some studies have documented the optimal
spatial resolution in environmental studies (Curran and
Atkinson, 1998; Petit and Lambin, 2001; Chen et al., 2004;
Weng et al., 2004). Weng et al. (2004) estimated the relation-
ship between LST and vegetation fraction in Indianapolis by
using Landsat ETM� data. The results indicated that LST
possessed a slightly stronger negative correlation with green
vegetation than with NDVI for all landscape pattern types
crossing the scale from 30 m to 960 m, and that 120 m
spatial resolution was found to be the operational scale of
LST, vegetation, and NDVI images since the negative correla-
tions reached highest at the resolution. This study intends to
develop a logical method to determine an optimal resolution
for examining the relationship between landscape and LST
patterns on the basis of a minimum distance in the land-
scape metric space for the study area. This study also
indicates the best resolution to study the urban area and
which sort of information would be lost by choosing a
particular resolution.

Study Area
The City of Indianapolis, located in Marion County, Indiana
(Figure 1), is the nation’s twelfth largest city, with approxi-
mately 0.8 million population (over 1.6 million in the
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metropolitan area). It lies in the middle continental region,
with the highest elevation of 219 meters and a land area of
936 square kilometers. Situated in the middle of the coun-
try, Indianapolis possesses several other advantages that
make it an appropriate choice. It has a single central city,
and other large urban areas in the vicinity have not influ-
enced its growth. The city is located on a flat plain, and is
relatively symmetrical, having possibilities of expansion in
all directions. Like most American cities, Indianapolis is
increasing in population and in area. The area expansion is
through encroachment into the adjacent agricultural and
non-urban land. Certain decision-making forces have
encouraged some sectors of Metropolitan Indianapolis to
expand faster than others. Detecting and analyzing its urban
thermal landscape is important for assessing and planning
the city’s future development.

The city has a temperate climate without pronounced
wet or dry seasons. However, obvious seasonal changes can
be found in the area. Its annual average temperature is
11.3°C, and the average temperature in January reaches
�3.3°C and 23.9°C in July. The average annual precipitation
is 1.01 meters, and about 0.06 meters in January and
0.12 meters in July. Monthly average snowfall is 0.17 meters
in January. The average wind speeds are slightly higher in
spring and winter than in summer and fall seasons. The
average relatively humidity for the whole year does not
show obvious seasonal changes.

Data and Methods
Data Preparation
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) L1B and L2 images were used to derive
LULC types, surface emissivity, and LSTs for the study area.
The ASTER sensor collects images in 14 bands: three visible
bands (15 m spatial resolution), six near-infrared bands
(30 m spatial resolution), and five thermal infrared bands

(90 m spatial resolution) (ASTER production description
2005). All images were acquired around 1700 GMT time
with less than 10 percent cloud cover. The images were 
geo-corrected to the Universal Transverse Mercator (UTM)
projection with NAD27 Clarke 1866 Zone 16, by using 1:24
000 Digital Raster Graphic (DRG) maps as the reference data.
Approximately 40 to 50 ground control points were chosen
for each image (Table 1). The root mean square errors
(RMSEs) for the geo-correction were all no greater than
0.5 pixel.

LULC Classification
Nine ASTER visible and near-, middle-infrared bands (VNIR
and SWIR) were used to derive six LULC types for the study
area. Table 2 provides a detailed description of the LULC
types. Principle component analysis was applied to choose
spectrally representative bands for every single image.
Unsupervised classification method (Iterative Self-Organizing
Data Analysis) was then applied to group individual image
into 120 clusters with the maximum iterations of 30. Each of
the clusters was labeled to one of the six LULC categories in
reference to 2003 and 2005 aerial photos covering the study
area. Due to spectral mixture, a number of clusters were not
able to be assigned to single LULC type. These spectrally
mixed pixels were separated from the original image, and
were then reclassified and labeled by the use of the same
classification procedure as above. Re-classification continued
until all spectral clusters were assigned to single LULC class.
At the end, all portions of the classified image were merged
to form an entire classified map. A post-classification
smoothing process was executed to improve the accuracy of
image classification by operating a 3 � 3 moving window
across the images. An aerial photo was used to further
improve the classification accuracy in the image refinement
processing. Accuracy assessment was conducted to evaluate

Figure 1. Study area: Indianapolis, Indiana.

TABLE 1. FOUR ASTER IMAGES AT DIFFERENT SEASONS WERE GEO-CORRECTED TO UTM SYSTEM, 1866 NAD27, ZONE 16 NORTH, 
BASED ON THE DRG MAPS. THE MEANS AND STANDARD DEVIATIONS OF LSTS FOR FOUR MAPS WERE CALCULATED

Seasons Acquisition dates Acquisition time (GMT) Mean LST (°C) Standard deviation

Winter 06 February 2006 16:45:36 �0.52 1.32

Spring 05 April 2004 16:46:39 19.06 3.24

Summer 16 June 2001 16:55:29 33.95 4.95

Fall 03 October 2000 17:00:51 28.5 3.04

TABLE 2. SIX LULC CATEGORIES WERE USED TO SHOW THE LAND-COVER

IN THE STUDY AREA, CITY OF INDIANAPOLIS, INDIANA

Categories Descriptions

Urban Industrial lands, roads and rails, commercial, 
right-of-way, golf courses, soccer and recreation
areas, towers, and so on

Forest Successional stage, like pre-forest stage 
and mature or high canopy stage, andso on

Grassland Prairies, pasture, savannahs, historic grasslands,
farm bill program lands, caves, and subterranean
features, and so on

Agriculture Row crop by type, cereal grains,vineyards,
feedlots, residue management, and confined
operations, and so on

Water Lake Michigan, rivers and streams by order and
watershed, miles of unimpounded rivers and
streams, and so on

Barren land Active mine-lands, active quarries, bare
dunes, and so on
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the accuracy of each classified image by the use of stratified
random sampling method. The results are listed in Table 3,
which shows that the overall accuracy of the classified
images was all above 85 percent.

Figure 2 includes an example of classified LULC image
acquired on 16 June 2001 with 15 m resolution. These
four images were individually resampled to different pixel
sizes: 30 � 30 m, 60 � 60 m, 120 � 120 m, 250 � 250 m,
500 � 500 m, and 1,000 � 1,000 m by using the Nearest
Neighbor method of resampling. The eight different pixel
sizes correspond to the spatial resolutions of different
sensors. For example, 15 m resolution corresponds to
ASTER visible bands (green and red bands); 30 m resolution
corresponds to Landsat TM and ETM� reflected bands;
90 m corresponds to ASTER TIR bands; 1,000 m resolution
responds to AVHRR local coverage bands. Table 4 lists some
examples of remote sensing sensors and their spatial
resolutions. By examining the LULC and LST at various
resolutions, we intended to better understand their inter-
play at different scales and to find the optimal scale for
the study.

LST Derivation
Many algorithms have been developed to retrieve LSTs from
different thermal infrared (TIR) sensors. In this study, land
surface kinetic temperature data were purchased from NASA
with 90 m resolution through a free entry. The temperature-
emissivity separation algorithm was applied to compute
land surface kinetic temperatures (ASTER products descrip-
tion 2005). According to the product description, the

absolute accuracy of the kinetic temperature data is accurate
within 1.5°K and relative accuracy 0.3°K. Each LST image
was resampled to possess the same pixel sizes as what LULC
maps have (i.e., 15 m, 30 m, . . . , 1,000 m) by using the
Nearest Neighbor method of resampling. After resampling,
each LST map was divided into six temperature zones by the
use of the natural break method (Brewer and Oickle, 2002;
Smith, 1986). Figure 2 includes a LST map with 90 m
resolution on 16 June 2001 as an example. The temperature
zone in red was the “hot spot”, while the dark blue zone
represented the coldest temperature in the area.

Landscape Metrics
Among existing landscape metrics, the average perimeter-
area ratio, contagion, standardized patch shape, patch
perimeter-area scaling, large-patch density-area scaling, and
patch classes were believed to be the most effective indices
which could characterize and quantify the spatial character-
istics of the landscape pattern (Riitters et al., 1995). In this
study, four class-based and six landscape-based metrics were
computed for the LULC and LST maps to identify the changes
of landscape and LST patterns at different scales at different
seasons. Table 5 lists these landscape metrics, their
definitions, and formulas. The Patch Percentage Index shows
the proportion of each patch type within the landscape; the
value is between 0 and 100. It would be 100 when the
region only has a single patch class, and it would be close
to zero when the corresponding patch class is rare in the
region. The Patch Density Index expresses the number of
patches per 100 hectares. The value is larger than zero and

TABLE 3. FOUR IMAGES WERE CLASSIFIED TO SIX CATEGORIES INDIVIDUALLY BY THE USE OF UNSUPERVISED

CLASSIFICATION METHOD AND IMAGE REFINEMENT PROCESSING

Producer’s User’s Overall Overall  
Reference Classified Number accuracy accuracy accuracy kappa 

Date Categories totals totals correct (%) (%) (%) statistics

06 Feb 2006 Urban 52 50 42 80.77 84.00 87.33 0.85
Forest 55 50 40 72.73 80.00
Grassland 54 50 44 81.48 88.00
Agriculture 50 50 47 94.00 94.00
Water 46 50 46 100.00 92.00
Barren land 43 50 43 100.00 86.00
Total 300 300 262

05 Apr 2004 Urban 52 50 46 88.46 92.00 92.00 0.90
Forest 50 50 46 92.00 92.00
Grassland 57 50 47 82.46 94.00
Agriculture 48 50 48 100.00 96.00
Water 51 50 47 90.16 94.00
Barren land 42 50 42 100.00 84.00
Total 300 300 276

16 Jun 2001 Urban 59 50 48 81.36 96.00 88.33 0.86
Forest 49 50 42 85.71 84.00
Grassland 56 50 44 78.57 88.00
Agriculture 48 50 45 93.75 90.00
Water 47 50 45 95.74 90.00
Barren land 41 50 41 100.00 82.00
Total 300 300 265

03 Oct 2000 Urban 46 50 40 86.96 80.00 87.00 0.84
Forest 49 50 41 83.67 82.00
Grassland 65 50 46 70.77 92.00
Agriculture 44 50 42 95.45 84.00
Water 48 50 45 93.75 90.00
Barren land 48 50 47 97.92 94.00

Note: “Reference totals” means the number of reference pixels that belong to a specific category in the classified image. “Classified totals”
shows the number of pixels that were chosen from the entire image to represent specific category in the classified image. “Number correct”
shows the number of pixels classified right according to the reference. “Producer’s accuracy” is the ratio between number correct and
reference totals. “User’s accuracy” is the ratio between number correct and classified totals. “Overall accuracy” is the ratio between total
number correct and total classified totals. “Overall kappa statistics” indicates the accuracy of classification.
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Figure 2. LULC and LST maps for the City of Indianapolis, Indiana on 16 June
2001: (a) LULC map, and (b) LST map with units of °K. A color version of this
figure is available at the ASPRS website: www.asprs.org.

reaches the maximum when every cell is a separate patch.
The Landscape Shape Index simply measures the class
aggregation; the value is more than one and increases as the
patch types become more disaggregated. The Perimeter-area
Fractal Dimension index quantifies the complexity of the
planar shapes, and is identified by means of linear regres-
sion and reflects the shape complexity of the patch class.
The value is greater than 1 for a two-dimensional landscape
when a departure from a Euclidean geometry occurs. It
implies more a complicated shape for the patch class when
the value is closer to 2. The Mean Perimeter-area Ratio
Index simply examines the shape complexity of the land-
scape; the value is larger than zero without limitation. The
Proximity Index examines the proximity of neighboring
habitat patches for the focal patch within a specified
distance; the value is greater than zero without limitation

and increases as the neighborhood is increasingly occupied
by patches of the same class. The Cohesion Index measures
the physical connection of the corresponding patch type.
The Contagion Index examines the aggregation of landscape;
the value is close to 1 when the patch types are maximally
disaggregated and reaches 100 when the landscape consists
of only one patch (McGarigal and Marks, 2002).

The indices were computed for all sixty-four images
by the use of FRAGSTAT, a software for quantifying the
landscape pattern by the use of landscape metrics (McGarigal
et al., 2002). The measurements of four class-based metrics
were plotted to reflect the scaling-up effect on the analysis of
landscape and LST patterns. Seven landscape-level metrics
(Patch Density, Landscape Shape Index, Perimeter-area
Fractal Dimension Index, Mean Perimeter-area Ratio, Proxim-
ity, Cohesion, and Contagion Index) were used to create
multi-dimensional metric spaces for urban areas and the
whole study area. Each metric represented one dimension in
the space. The shortest distance between LULC and LST maps
in the metric space was determined by the calculation of
Euclidean distance. All landscape-based indices were
standardized to the range from 0 to 1 before it was inputted
into the calculation of Euclidean distance since individual
index had different unit of measurement.

Results
Scaling-up Effect on Area Percentage
The Patch Percentage Index is the proportion of each patch
type within the study area (McGarigal et al., 2002). According
to the results, the area percentages of LULC patches in four
seasons appeared to be constant across the scales, except that
slight variations were observed as the scale changed from 500
m to 1,000 m for urban, forest, and grassland. It indicates that

TABLE 4. EXAMPLES OF REMOTE SENSING IMAGERY

Wavelength Resolutions 
Sensors Bands ranges (mm) (meter)

ASTER 1–3 0.52–0.86 15
Landsat ETM� 8 0.52–0.90
ASTER 4–9 1.60–2.43 30
Landsat ETM� 1–5 0.45–1.75
ALI EO-1 1–9 0.43–2.36
EO-1 Hyperion 1–242 0.36–2.58
Landsat ETM� 6 10.40–12.50 60
ASTER 10–14 8.13–11.65 90
Landsat TM 6 10.40–12.50 120
EO-1 LEISA AC 1–309 0.89–1.58 250
MODIS 1–2 0.62–0.88
MODIS 3–7 0.46–2.16 500
MODIS 8–36 0.41–14.39 1000
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TABLE 5. DESCRIPTIONS AND EQUATIONS FOR CHOSEN LANDSCAPE METRICS (MCGARIGAL ET AL., 2002)

Metrics Abbreviations Definitions Equations

Percentage PLAND Proportional 
of Landscape abundance

Pi: proportion of the landscape occupiedof a class
by patch type i.
aij: area (m2) of patch ij
A: total landscape area (m2)

Patch Density PD Densities of PD � ni *10,000*100/A
(class level) patches ni: number of patches in the landscape of patch type i

A: total landscape area (m2)

Landscape Shape LSI a measure of class LSI � ei/min ei
Index (class level) clumpiness ei: total length of edge of class i in terms 

of number of cell surface
min ei: minimum total length of edge of class i
in terms of number of cell surfaces

Perimeter-area PFRACAC Shape index 
Fractal Dimension based on perimeter
(class level) and area measurement

aij: area (m2) of patch ij
pij: perimeter (m) of patch ij
ni: number of patches in the landscape of patch type i

Patch Density PD Densities of patches PD � N *10,000*100/A
(landscape level) N: total number of patches in the landscape

A: total landscape area (m2)

Landscape  LSI a measure of class LSI � E/min E
Shape Index clumpiness E: total length of edge in landscape in terms of number 
(landscape level) of cell surfaces

min E: minimum total length of edge in landscape in
terms of number of cell surfaces

Perimeter-area PFRACAC Shape index based 
Fractal Dimension on perimeter and 
(landscape level) area measurement

aij: area (m2) of patch ij
pij: perimeter (m) of patch ij
ni: total number of patches in the landscape

Mean Perimeter- PARA_MN Mean value of 
area Ratio a shape index

aij: area (m2) of patch ij
pij: perimeter (m) of patch ij
N: total number of patches

Proximity index PROX Landscape proximity

aijk: area (m2) of patch ijs within specified 
neighbourhood (m) of patch ij
hijk: distance (m) between patch ijs and patch ijs based 
on patch edge-to edge distance

Patch Cohesion COHESION Connectivity index.
index The physical

connectedness of Pij: perimeter of patch ij in terms of the patch type 
number of cell surfaces
aij: area of patch ij in terms of number of cells
A: total number of cells in the landscape

Contagion index CONTAG Landscape contagion

Pi: proportion of the landscape occupied by patch class i
gik: number of adjacencies between pixels of path class i 
and k based on the double-count method
m: number of patch classes present in the landscape

CONTAG �1�

g

m

i�1
g

m

k�1
[Pi *(Gik/g

m

k�1
Gik)]*(lnPi(Gik/g

m

k�1
 Gik))]

2 lnm
 *100

COHESION � [1 � (g
n

j�1
Pij)/g

n

j�1
(Pij

   * 1aij)](1 � 1/1A)�1 * 100

PROX � g

n

k�1
(aijk/hijk)

PARA_MN � (g
m

i�1
g

n

j�1
(pij /aij))/N

[(g
n

j�1
lnPij)(g

n

j�1
lnaij)]65(N*g

n

j�1
ln(pij)2 � (g

n

j�1
lnpij)266

PAFRAC � 2/55[ni*g
n

j�1
(lnPij*lnaij)] �

[(g
n

j�1
lnPij)(g

n

j�1
lnaij)]66/[(ni*g

n

j�1
ln(pij)2 � (g

n

j�1
lnpij)2]

PAFRAC � 52/5[ni*g
n

j�1
(lnPij*lnaij)] �

PLAND � Pi � (100*g
n

j�1
aij)/A
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the measurement of patch percentages for individual LULC
types was more reliable with image resolutions higher than
500 m. Beyond 500 m resolution, the patch percentage derived
from remote sensing data would have much lower accuracy.
The shortage of seasonal differences indicates that the meas-
urements of area percentages for all the LULC types are not
susceptive to the seasonal changes. Urban tended to increase
in area percentage as the scale changed from 500 m to 1,000
m resolution, but forest and grassland possessed a converse
tendency simultaneously. As a contrast, water, agriculture, and
barren land showed much less sensitivity in the measurement
of area percentage. This indicates that the top LULC types in
area percentage tended to be more affected by the scaling-up
process. It could be explained by a consideration that more
forest and grassland patches were aggregated into urban
patches in the scaling up process, but much less for water,
agriculture, and barren land. This explanation was supported
by the phenomena that a great portion of forest and grassland
fractionally distributed in the urban area and much less urban
patch could be found around aquatic systems, agriculture, and
barren land. Although the variations of the measurement were
observed, the slight changes implicate that area percentage can
be considered as a scale-independent parameter when remote
sensing imagery with corresponding resolutions are applied in
urban planning and environmental management, such as LULC
monitoring and habitat conservation.

LST patches in the four dates possessed more variations
in area percentage across the seasons and spatial scales
compared to those of LULC patches. On 06 February 2006,
Zones 1, 2, 3, and 4 showed up and down variations across
the scales. Zone 1 and 4 even intersected in several scales
since their percentages were so close. Zone 5 and 6
appeared to be constant across the resolutions as tempera-
ture zones with the least area percentages. It indicates that
the top temperature zones in area percentage showed more
obvious variations across the scales since more pixels in the
top zones were re-assigned new values during the scaling-up
process and was classified to different classes based on the
algorithm of natural break classification.

On 05 April 2004, the area percentages of all zones
remained constant across the scales until the resolution

reached 250 m. Starting from 250 m, the top zone, Zone 3,
showed a slight decrease in area percentage, and Zones 2
and 4 separated from each other and showed opposite
variations, as do Zones 1 and 5. Zone 6 (the zone with the
highest temperature) experienced slightly increase at the
same time. It implies that the zones with median area
percentages in the study area tended to be easier to be
impacted during the scaling-up process. As a contrast, the
zones with the highest and lowest area percentages
possessed much less impact.

On 16 June 2001, Zones 2 and 3 met in several places
since their area percentages were very close. Zones 1 and 4
intersected in 250 m resolution which indicates that the area
percentages for both zones tended to be susceptive to the
aggregation process at specific resolution. The area percentage
of Zone 1 tended to decrease starting from the scale of 120 m,
and Zones 2, 3, and 4 experienced decreases starting from
250 m resolution. Both Zones 5 and 6 possessed little
variations in area percentage across the scales until the scale
reaches 250 m.

On 03 October 2000, the top zone in area percentage
(Zone 3) did not show significant variations across the
scales. Zones 2 and 4 were the second top zones in area
percentage, and their percentages showed much more
obvious changes across the scales, but they did not meet
each other at any scale. Zones 1 and 5 intersected between
250 m and 500 m resolution, which indicates that the zones
with the lowest temperature and the second highest temper-
ature tended to be susceptive to the aggregation process
when the resolution changes between 250 m and 500 m.
Zone 6 did not seem to be significantly affected by the
scaling process. The area percentages of LULC and LST
patches across eight scales on 16 June 2001 were plotted in
Figure 3 as an example.

Scaling-up Effect on Patch Density
The Patch Density Index indicates the number of patches
per 100 hectares (McGarigal et al., 2002). According to the
result, the patch densities of LULC types kept decreasing with
the decrease of spatial resolutions without seasonal differ-
ence. The measurement of patch densities for individual LULC

Figure 3. Patch percentages derived from sample LULC and LST maps (using image
date 16 June 2001 as an example); x-axis shows the scales, and y-axis shows the
values of the metric: (a) LULC map, and (b) LST map. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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Figure 4. Patch densities derived from LULC and LST maps (using image date
16 June 2001 as an example); x-axis shows the scales, and y-axis shows the
values of the metric: (a) LULC map, and (b) LST map. A color version of this figure is
available at the ASPRS website: www.asprs.org.

types became less reliable when the resolution was lower
than 120 m in the study area since the patch densities of all
LULC categories tended to be equal after 120 m resolution. In
each season, the slopes of decrease were quite sharp for
urban, forest, and grassland before the scale reached 60 m,
and then became gentler toward 1,000 m resolution. The
overall decreases were much gentler for water, agriculture,
and barren land across the scales. It indicates that the top
LULC types in density appeared to be easily susceptive to the
scaling-up process, but not for the LULC types with relatively
low patch densities for each season. It could be explained by
the fact that the patch numbers of urban, forest, and grassland
significantly declined during the aggregation process in the
study area. The variations of patch densities for LULC and LST
maps across eight scales in 16 June 2001 are shown in the
Figure 4.

LST patch densities showed similar tendencies of
change across the seasons and scales, although these
seasons had different top zones in patch density. The
calculation of patch densities for individual LST zones was
not acceptable when the resolution was lower than 120 m
in the study area since the patch densities of some LST
zones (e.g., Zone 1 and Zone 5) tended to be equal at 250 m
resolution. All patch densities of temperature zones tended
to be equal at 1,000 m resolution, which indicates a maxi-
mum patch aggregation at the scale of 1,000 m. It indicates
that sensors with 1,000 m resolution might not be a good
choice when urban planners and environmental manage-
ment agencies are focused on the study of LST patch density
and related issues.

On each date, patch densities did not possess obvious
variations as the scale changed from 15 m to 90 m, but sharp
decreases were observed as the scale changed from 90 m to
1,000 m (Figure 4). The effect was more obvious for LST zones
with high densities (Zones 3 and 4 on 06 February 2006,
Zones 2, 3, and 4 on 05 April 2004, Zones 3 and 4 on 16 June
2001, and Zones 3 and 4 on 03 October 2003). They demon-
strated sharper slopes of declines starting from 90 m resolu-
tion and indicate prominent impacts caused by the scaling-up
process. It was clear that the higher the patch density, the
more variations the temperature zone possessed across the

scales. Zone 6 possessed the least variations across the scales
in each season due to its lowest value in patch density.

Scaling-up Effect on Landscape Aggregation
The Landscape Shape Index simply measures the aggrega-
tion of landscape, and its value increases as the patch type
becomes more disaggregated (McGarigal et al., 2002). The
measurement of index for LULC and LST patches were plotted
in Figures 5 with an image date 16 June 2001 as an exam-
ple. The calculation of patch aggregation for individual LULC
types became less acceptable when the resolution was lower
than 120 m since the values of Landscape Shape Index for
water and agriculture tended to be equal after 120 m
resolution. No distinct seasonal changes could be observed
in the Figure 5 except that grass land was the top LULC
type in Landscape Shape Index in all dates but not on 06
February 2006. Similar to Patch Density, Landscape Shape
indices derived from LULC maps showed constant decreases
across the scales in each season, especially for urban, forest,
and grassland (Figure 5). They experienced great declines
compared to the rest three LULC types, agriculture, water,
and barren land. It indicates that relatively highly disaggre-
gated LULC types would experience much more change in
the aggregation process across the scales compared to the
ones with better aggregation level from the beginning. It
could be explained by the urbanization in the study area;
urban construction, grassland, pasture, and urban forest
were mixed together and greatly impacted each other’s
aggregation level. Agriculture, water, and barren land
possessed much fewer variations since they were minor
LULC types in area percentage in the study area and away
from the process of urbanization. In Figure 5, grass showed
a relatively high aggregation measurement in year 2000 and
2001 images, but the values dropped in the 2004 and 2006
images. It indicates that urbanization had significant impact
on the aggregation of grassland. The overall decline of the
measurements for LULC types was not counterintuitive for
the metric, since the aggregation level of the whole land-
scape would increase as the spatial resolution becomes
coarser. The rates of decline appeared to be constant across
the scales without any observation of critical scale(s).
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The measurements of the Landscape Shape Index for
all temperature zones showed similar variations across the
scales and seasons (Figure 5). The measurement of patch
aggregation for individual LST zones became less and less
reliable when the resolution was lower than 120 m in the
study area since the measurement of the Landscape Shape
Index for some LST zones tended to be equal after 120 m
resolution and aggregation of all the zones tended to be
equal at 1,000 m resolution. The indices did not have
obvious changes until the scale reached 90 m for each
date, and then kept decreasing until 1,000 m. These
declines seemed to be especially obvious for Zones 2, 3,
and 4 for each date, but not for Zone 1, 5, and 6. It
indicates that the zones with relatively higher values of
index were maximally affected by the scaling-up process
compared to any other zones. The index showed pre-
dictable results across the scales, since the measurement of
index was expected to decrease when the landscape
became more aggregated.

Scaling-up Effect on Fractal Dimension
The Perimeter-area Fractal Dimension Index reflects the
shape complexity of patch, class or the whole landscape
(McGarigal et al., 2002). The primary significance of shape
in determining the nature of patches is related to edge
effect, an important topic closely related to various spatial
patterns. For example, forest edge effect can influence
vegetation composition and structure (McGarigal et al.,
2002; Ranney et al., 1981). The Perimeter-area Fractal
Dimension Index was developed based on an idea of
statistical self-similarity and a fundamental hypothesis that
there is a power law relationship between area and perime-
ter of patches, classes, and the whole landscape; the pattern
of self-similarity may change and the hypothesis may be
violated during the aggregation process since the develop-
ment of perimeter area regression may experience unex-
pected change during the process, such as goodness of fit
and the calculation of y-intercept (Frohn 1998). The index
is believed to be sensitive to the number of patches, the
range of patch sizes, and the mixing of LULC types. The
results can be unpredictable when the spatial resolutions
vary due to the changes of y-intercept.

As a result, the measurements of the Perimeter- area
Fractal Dimension Index obtained unexpected results for
both LULC and LST maps without significant seasonal
differences (see image dated 16 June 2001 in Figure 6 for an
example). The overall increase of fractal dimension for each
season was counterintuitive for the metric because the
fractal dimension was expected to decrease with the
decrease of aggregation from 15 m to 1,000 m. The discovery
was consistent with the results reported by Frohn, which
showed that the scaling-up processes could affect linear
regress, the base of the formula to calculate the fractal
dimension (Frohn 1998). Seasonal changes did not show
significant impact on the measurement of the index across
the scales.

The Perimeter- area Fractal Dimension Indices derived
from LST maps showed unexpected but more complicated
variations than those derived from LULC maps. Seasonal
differences could not be observed for the measurements of
the index across the scales. The measurement of fractal
dimension for each temperature zone for every season did
not show significant changes as the scale changed from
15 m to 30 m resolution and then experienced a nadir at
60 m resolution. It indicates that the y-intercept in the
regressing analysis experiences a significant change at 60 m
resolution for each zone. The values of the calculations kept
increasing as the scale changed from 60 m to 250 m for each
date and showed diverse variations after 250 m resolution.

Modified Fractal Dimension Indices could be used to
improve the result (Frohn, 1998). Frohn developed an
improved equation to identify the shape complexity of
landscape patterns, which was believed to be more pre-
dictable across the scales, since it did not rely on the
assumption of a power law relationship between area and
perimeter. The formula is given below:

(1)

where S is Improved Fractal Dimension Index, A is the total
area of all patches, and P is the total perimeter of all patches
in the study area.

In order to examine its capability in the examination of
shape complexity, the modified Fractal Dimension was

S � 1 � 4*A1/2/P

Figure 5. Landscape Shape Indices derived from LULC and LST maps (using image date
16 June 2001 as an example); x-axis shows the scales, and y-axis shows the values
of the metric: (a) LULC map, and (b) LST map. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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computed for the LST maps in each date. The information of
fractal dimension for individual LST categories started to be
lost when the resolution kept decreasing from 120 m to
1,000 m. In each season, the values of improved fractal
dimensions did not show clear changes as the scale changed
from 15 m to 120 m resolution, and starting from 120 m
resolution, the values kept declining to the end with
increasing slopes of change. Zones 1, 5, and 6 possessed
much more variation in the measurement of improved
metric across the scales than those of Zones 2, 3, and 4. The
variations among different zones indicate that temperature
zones with lower shape complexity were more sensitively
affected in the measurement of the improved metric during
the scaling-up process. It is noted that Zones 1, 5, and 6
were the zones with the lowest and highest temperatures
and showed relatively low area percentages, patch densities,
and aggregation levels across the scales. They were greatly
dispersed by any other temperature zone in the study area,
and their complexity became extremely simple since many

Figure 6. Patch Fractal Dimensions derived from four LULC maps; x-axis shows the
scales, and y-axis shows the values of the metric: (a) LULC map, and (b) LST map.
A color version of this figure is available at the ASPRS website: www.asprs.org.

of their pixels might be classified to any other temperature
zones during the aggregation process. The measurements for
image date 16 June 2001 are shown in Figure 7.

Spatial Agreement between Landscape and LST Patterns
According to the results analyzed above, multiple resolutions
were observed as critical scales for the identification of LULC
and LST patterns by the use of various landscape metrics.
However, no optimal resolution was pointed out to examine
the relationships between landscape and LST patterns. In this
paper, a method was developed to identify the optimal spatial
scales for one of the LULC categories, urban area in the study
area and for the whole study area itself. Urban landscape
patterns and its LST were separated from the whole study area
in each four image dates. Four urban LST maps were individu-
ally classified to have six classes by the Natural Break method.
Four urban landscape maps and four classified urban LST
maps were resampled to have the scales of 15 m, 30 m, 60 m,
90 m, 120 m, 250 m, 500 m, and 1,000 m. Six landscape-level
metrics, Patch Density, Perimeter- area Fractal Dimension
Index, Mean Perimeter-area Ratio, Proximity, Cohesion, and
Contagion Indices formed a six-dimension metric space for the
urban areas.

Normalized Euclidean Distances between urban
landscape and LST maps for each image date are shown in
Figure 8, which shows that the values of Normalized
Euclidean Distance reached a minimum at 30 m resolution
for all seasons. It implies that the spatial structures of both
LST and urban landscape patterns, as identified by the class-
based landscape metrics, tended to be most comparable as
the scale reached 30 m resolution. As a result, 30 m
resolution was believed to be the optimal spatial scale to
examine the class-based relationship between LSTs and
landscape patterns for the study area.

As for the whole study area, six landscape-level metrics,
Patch Density, Landscape Shape Index, Perimeter- area
Fractal Dimension Index, Mean Perimeter-area Ratio, Proxim-
ity, and Contagion Index were chosen to create the multi-
dimension landscape metric space. The Normalized Euclid-
ean Distances between each pair of LULC and LST maps with
the same spatial resolution were calculated and standardized
in the metric space for the whole study area (Figure 9). The
result showed that the Normalized Euclidean Distance for

Figure 7. Modified fractal dimensions for LST map
(using image date 16 June 2001 as an example).
A color version of this figure is available at the ASPRS
website: www.asprs.org.
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each season kept declining from 15 m to 60 m resolution
with a very high slope and reached the minimum at 90 m
resolution with a much gentle slope. It implies that the
spatial structures of both LST and LULC patterns identified by
the landscape metrics possessed significant variations and
tended to be more comparable as the scale changed from
15 m to 90 m resolution. Figure 9 shows that the Normalized
Euclidean Distance Line started to rise from 90 m to 1,000 m
with a much gentler slope. It indicates that the 90 m resolu-
tion should be the optimal spatial scale to examine the
landscape-level relationship between LSTs and landscape
patterns since the Normalized Euclidean Distance reached
the minimum for all dates, and the spatial characteristics of
LULC and LST patterns were at the most comparable status at
this resolution

In order to further examine how the Normalized
Euclidean Distance changed with spatial resolution, the
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Figure 10. 3D visualization of the Normalized Euclidean
Distances (Z-axis) across the scales (X-axis) and
seasons (Y-axis). In Y axis, 1, 2, 3, and 4 individually
represents the date 16 February 2006, 05 April 2004,
16 June 2001, and 03 October 2000. Light (blue) color
corresponds to higher Euclidean distances and dark
(blue) colorss correspond to lower values. Significant
decreases were observed when the spatial scales
decreased from 15 m to 90 m. A color version of this
figure is available at the ASPRS website: www.asprs.org.

LULC and LST images were re-sampled at the spatial
resolutions of 20 m, 40 m, 50 m, 70 m, 80 m, 100 m,
200 m, 300 m, 400 m, 600 m, and 800 m, in addition to the
seven resolution levels discussed above. A data fitting was
then performed based on the Normalized Euclidean Dis-
tances at these nineteen different scales. Figure 10 shows a
three-dimensional observation of the Normalized Euclidean
Distances across the scales and seasons. Figure 11 plots the
regression lines as a result of data fitting. Equation 2 is the
nonlinear regression model for the fitting:

(2)Y � e
13.2545*X ¿ (�0.6294) � 0.6739(15 6� X 6 � 90)
0.00771*e0.00299*X � 0.21152(90 6 X 6� 1000)

Figure 8. Eculidean distances between two points in
the landscape metrics space for Urban landscape and
LST maps with the same spatial resolution. A color
version of this figure is available at the ASPRS website:
www.asprs.org.

Figure 9. Eculidean distances between two points in
the landscape metrics space for LULC and LST maps with
the same spatial resolution. A color version of this
figure is available at the ASPRS website: www.asprs.org.

Figure 11. Nonlinear regressing line between the spatial
scales and Euclidean distances. Light (green) line is the
regression line and dark (red) spots are samples. A
minimum value was observed at 90 m spatial resolu-
tion. A color version of this figure is available at the
ASPRS website: www.asprs.org.
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where Y is the Normalized Euclidean Distance, and X is the
spatial resolution. From this equation, it is noted that the
first portion of the equation had a much steeper slope than
that of the second portion, suggesting that the spatial
agreement between landscape patterns and LSTs rapidly
increased as the spatial resolution changed from 15 m to
90 m. After 90 m, the slope became much gentler, implying
that the spatial agreement tended to decrease at a slow rate.

Discussion and Conclusions
This research has examined the scaling-up effect on the
relationship between landscape patterns and LSTs for
Indianapolis in four seasons with an integration of remote
sensing, GIS, and a landscape ecology approach. The following
conclusions may be summarized:

• Patch Percentage expresses the proportion of each patch type
within the landscape. In this study, we found that three
LULC types, namely, urban, forest, and grassland, were more
sensitively affected by the aggregation process compared to
three other LULC types, i.e., water, agriculture, and barren
land. LST patches showed more noticeable variations (as
compared to LULC patches) in the area percentage index
across the scales without significant seasonal differences. For
this metric, no scale threshold could be identified to show
serious degradation with decreasing resolution.

• Patch Density expresses the number of patches per 100
hectares. We found that the slope of decrease was sharper
for urban, forest, and grassland than that for water, agricul-
ture, and barren land across the scales. Zones close to the
median LST values, namely, Zones 2, 3, and 4, were
maximally affected by the scaling-up process. For this
metric, scales above the threshold 120 m began to show
serious degradation with increasing scale.

• The Landscape Shape Index measures the class aggregation.
The values of the Landscape Shape Index for both LULC and
LST maps kept decreasing across the scales in all seasons.
For this metric, scales above the threshold 120 m began to
show serious degradation with decreasing resolution.

• The Improved Fractal Dimension Index was employed to
quantify the shape complexity of the temperature zones. We
found that three temperature zones with the minimum and
maximum temperature values, namely, Zones 1, 5, and 6,
possessed more noticeable variations across the scales than
those of Zones 2, 3, and 4. For this metric, scales above the
threshold 120 m began to show serious degradation with
increasing scale.

• Overall, our conclusion is that landscape metrics, including,
Patch Density, Landscape Shape Index, and Improved

Fractal Dimension could be employed to effectively quantify
the spatial patterns and changes of LULC types and tempera-
ture zones.

• The threshold of 90 m was suggested to be the optimal
spatial resolution to examine the relationship between
landscape patterns and LSTs for the whole city (at the
landscape-level), while 30 m resolution was believed to be
the optimal spatial scale to examine the class-based relation-
ship between LST and LULC for the study area. This finding
could contribute to the sensor selection and mapping of
urban landscapes, as well as natural resource management
by the use of remote sensing data.

Using remote sensing techniques to assess the scaling
effects on the relationship between landscape pattern and
land surface temperature is still a challenging task due to
the quality of remote sensing data, acquisition time, process-
ing methods, and the accuracy and sensitivity of individual
landscape metrics. This study demonstrates that ASTER
imagery may be used to examine the scaling effect. Results
indicate that the scaling-down method chosen in the study
did not apparently affect measurement of patch density and
aggregation when LST resolutions were 15 m, 30 m, and
60 m. The patch numbers and aggregation levels of LST at
these resolutions remained the same as those in the 90 m
resolution LST map. The differences between LULC and LST
patterns were due mainly to the resampling method used,
i.e., the Nearest Neighbor method. This method uses the
value of the closest pixel in the input image to assign to the
output pixel value (Avery and Berlin, 1992).

In order to examine whether the measurements of Patch
Density and Landscape Shape Indices were sensitive to
resampling methods, the Bilinear Interpolation method was
applied to compare with the Nearest Neighbor method. The
image of 16 June 2001 was chosen for the test. The results
showed that the measurements of both Patch Density and
Landscape Shape Indices for LULC types kept decreasing
across the scales, just like the patterns of changes reflected in
Figure 4 and Figure 5. But, for the LST map, the measure-
ments of the two metrics showed different results (Figure 12).
For the measurement of Patch Density, the difference was that
the patch densities of temperature zones with median
temperatures, namely, Zones 2, 3, and 4, increased when the
scale changed from 60 m to 90 m. This result contradicted
the fact that the patch density should decrease when the scale
became coarser. The contradiction implies that the Patch
Density metric was much more sensitive to the Bilinear
Interpolation method than the Nearest Neighbor method.

Figure 12. The measurements of Patch Density and Landscape Shape Index for
LST map in image dated 16 June 2001 by using Bilinear Interpolation method to
resample images: (a) shows the measurements of patch densities, and (b) shows
the measurements of landscape shape indices. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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For the Landscape Shape Index, the difference was that the
value of the index started to significantly decrease when the
scale reached 60 m resolution, instead of 90 m resolution in
the Figure 5. However, with either the Nearest Neighbor
method or the Bilinear Interpolation method, 120 m was
shown to be a critical resolution in the study of scaling
effects by using the Landscape Shape Index.

The measurement of Perimeter-area Fractal Dimension
showed that for both LULC and LST maps in each season, its
value kept increasing with the decreases of resolution. This
increase is in contradiction with the conventional concept
that fractal dimension decreased with more aggregated
landscapes. The sensitivity of the formula used to calculate
fractal dimension was believed to cause this contradiction.
As a result, more caution needs to be taken when this
metric is used in the aggregation process, and any conclu-
sion should not be made without a detailed examination of
the possible effect to the computation of metric. Further-
more, although the results from the Improved Fractal
Dimension Index (with Equation 2) did not contravene the
conventional concept, this method has not been validated. It
is necessary to document how the improved metric performs
for study areas with mixed LULC types. Since fractal dimen-
sion is an important metric to quantify the shape of land-
scape patterns, the landscape-level fractal dimension metric
(Table 5) was still used as one of the dimensions in the
metric space to identify the optimal spatial scale for the
urban areas and the whole study area.
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