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Abstract

An automated approach to identifying landslides using a
combination of high-resolution satellite imagery and digital
elevation derivatives is offered as an alternative to aerial
photographic interpretation. Previous research has demon-
strated that per pixel spectral response patterns are ineffec-
tive in discriminating mass movements. This technique
utilizes image segmentation and digital elevation data in
order to identify mass movements based not only on their
reflectance but also on their shape properties and their
geomorphic context. Dividing the classification by process
into debris slides, debris flows, and rock slides makes the
method far more useful than methods that group all mass
movements together. A hierarchical classification scheme
is utilized to eliminate areas that are not of interest and

to identify areas where mass movements are probable. A
supervised classification is then conducted using spectral,
shape, and textural properties to identify failures that were
greater than 1 ha in area. The resulting accuracy was 90
percent for debris slides, 60 percent for debris flows, and
80 percent for rock slides.

Introduction

Landslide inventories are increasingly recognized as a useful
geomorphic research tool for landslide hazard assessments
(e.g., Baeza and Corominas, 2001), for the determination of
process rates in sediment budget studies (e.g., Campbell and
Church, 2004; Martin et al., 2002), and for calibrating long-
term landscape evolution models (e.g., Martin, 2000). Mass
wasting is widely recognized as the key process by which
sediment is delivered to the fluvial subsystem within alpine
areas (Hovius et al., 1997; Jacob, 2000). The determination
of process rates has therefore been a central theme within
the research literature (e.g., Brardinoni and Church, 2004;
Guthrie and Evans, 2004; Guzzetti et al., 2002). Process rate
assessment requires an inventory of mass wasting events
over large spatial scales, typically using aerial photographs
to identify failures. However, aerial photographic interpreta-
tion efforts are often time consuming and are subject to
highly variable degrees of accuracy depending both on the
experience of the analyst and the scale and quality of the
photographs (Brardinoni et al., 2002). It is therefore critical
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to establish a technique that is able to rapidly establish
the rates of mass movements over large areas with known
levels of accuracy in order to facilitate meaningful compar-
isons between regions of differing geological and climactic
boundary conditions.

The identification of mass movements using satellite
remote sensing and digital elevation data has been addressed
numerous times within the research literature. Early work
suggested that relatively coarse spatial resolution per pixel
spectral response patterns, when used alone, are unreliable
in discriminating landslide scars from other barren areas
on the landscape (e.g., Sauchyn and Trench, 1978; Epp
and Beaven, 1988). For this reason, other researchers have
attempted to use a combination of both satellite imagery
and digital elevation models (DEMs) (e.g., Giles et al., 1994;
McDermid and Franklin, 1995; Giles and Franklin, 1998).
McDermid and Franklin (1995) noted that, in many cases,
per pixel reflectance patterns are unrelated to geomorphic
process and classification schemes based on this data would
fail. They suggested that a combination of geomorphometric
criteria as well as spectral data would yield better results in
identifying mass movement features. More recently, Barlow
et al. (2003) used a combination of image segmentation
with Landsat ETM+ and DEM data to identify translational
landslide scars; the overall accuracy was 75 percent. How-
ever, the detection and classification of individual process
types (Cruden and Varnes, 1996) using an automated
approach has been less successful. Martin and Franklin
(2005) demonstrated that textural analysis of landslide scars
may be capable of discriminating between rock slides and
debris slides although the spatial resolution of image data
was a limiting factor.

The objective of this research is to develop an auto-
mated classification scheme capable of identifying different
classes of rapid mass movements from a digital database
composed of high spatial resolution SPOT 5 imagery and
a digital elevation model. Fresh mass wasting events over
1 ha in size are considered in the accuracy assessment. The
size criterion was deemed necessary as smaller failures
become increasingly difficult to identify on aerial photo-
graphs (Brardinoni and Church, 2004). Accuracy assessment
for smaller failures based on aerial photographs would
therefore be problematic (Congalton, 1991). The landslide
classification system given by Cruden and Varnes (1996)
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was utilized. This system emphasizes the type of movement
and the type of material involved such that:

® Debris slides are defined as failures in coarse-grained surface
material occurring predominantly across a rupture surface.

® Rock slides involve predominantly hard, intact, bedrock
masses failing along a plane of intense shear strain.

® Debris flows occur when coarse-grained surface material is
saturated to such a degree that movement is initiated down
slope due to gravity.

These classes are not mutually exclusive nor are they
exhaustive. Debris flows can initially start out as debris
slides or vise versa, depending on the level of saturation and
the slope gradient (Cruden and Varnes, 1996; Iverson, 1997).
Furthermore, rock slides will undoubtedly entrain unconsol-
idated surface material while debris slides often show some
inclusion of bedrock in their deposits. Classification using
the traditional methods involving aerial photography is
understandably subjective to some extent and will produce
variable results between individuals. One of the potential
advantages of an automated approach lies in objective use
of quantitative data in the classification process making
comparisons between areas more viable.

Study Area

The classification was applied to a 440 km? area of the
Chilliwack River Basin, (Figure 1). Of this, less that 1 percent
is representative of fresh landslides. The basin is located
approximately 160 km east of Vancouver on the border
between Canada and the United States. The Chilliwack River
flows west from Lake Chilliwack with smaller tributary
valleys feeding in from the north and south. The elevation
ranges from 13 m above sea level where the valley opens out
onto the Fraser River floodplain to a maximum of 2,283 m
with many peaks exceeding 2,000 m. The climate offers
warm, dry summers and cool, wet winters. Mean annual
precipitation is 1,500 mm although this is doubtless higher
on peaks and high passes. A maximum daily rainfall of

99.6 mm was reported for the 40-year period of record
between 1962 and 2002 (Environment Canada, 2005). The
geology of the area is complex with the western portion
being primarily mudstone and sandstone of the Cultis
Formation, the central portion of the basin is underlain by

a series of volcanic rocks, mudstone, sandstone, and lime-
stones of the Chilliwack Group, while the granodiorite and
quartz diorite are common in the eastern part of the basin
(Massey et al., 2004). The pattern of deglaciation at the end
of the Pleistocene was complex and has been described

in detail by Saunders et al. (1987). Radiocarbon dating of
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Figure 1. Chilliwack Study Area.
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woody deposits indicates that the area was ice-free by about
11,100 years BP (Saunders et al., 1987). The basin strongly
reflects the glacial processes of the Pleistocene with many
drift mantled and oversteepened slopes. This combination
of steep, drift mantled slopes and high precipitation makes
mass wasting a common occurrence. The area is also subject
to extensive logging operations with clear cuts evident on
all but the steepest of valley slopes and a network of logging
roads running though all the tributary valleys.

Data Input

Panchromatic and multispectral sPOT 5 data acquired on
27 September 2004 and digital elevation data were used

as the input for the automated classification. The satellite
data consisted of a 2.5 m resolution panchromatic band
(0.49 to 0.69 um) and four 10 m resolution spectral bands
including green (0.49 to 0.61 um), red (0.61 to 0.68 um),
near infrared (0.78 to 0.89 um), and short wave infrared
(1.58 to 1.75 um). The red and near infrared spectral bands
were used to create a normalized difference vegetation
index (NDVI) layer. NDVI values have shown a correlation
with green leaf biomass and green leaf area (Kidwell, 1990)
and are useful in assessing the presence of vegetation in a
given area. A DEM derived from 1:50 000 scale topographic
maps of the Chilliwack Basin was acquired from the
Canadian Centre for Topographic Information (Geobase,
2005) and rescaled to a 25 m pixel size. Jones (1998)
demonstrated that the method described by Horn (1981)
provides reliable approximations of the surface derivatives.
Image layers of slope tangent and plan convexity, both
known to be of importance in the initiation of landslides
(Gao, 1993), were calculated and added to the database. The
final data layer used was relief. This layer was created
following image segmentation and gives values representing
the maximum change in elevation for the spatial extent of
each polygon.

A manual inventory of rapid mass movements was
undertaken using color 1:15 000 scale aerial photographs
acquired in July 1996. Failures were identified under a
10X power stereoscope. Failures were classified as debris
slides, debris flows, or rock slides. Due to the time differ-
ence between the acquisition of the photographs and the
satellite imagery, the panchromatic band was inspected
manually, and fresh failures were identified and added
to the inventory. Within the classification, fresh failures
are defined as having an NDVI value of less than 0.15,
in reality, this roughly equates to those failures that have
occurred within the past 10 years. Surface observations
to support the inventory obtained via aerial photographic
interpretation were collected during the summer of 2002.

Methods

Segmentation

Image segmentation was accomplished using the eCognition
software environment (Definiens, 2005). The segmentation
algorithm is calibrated using user-defined threshold of
scale and heterogeneity and user-defined weightings on the
various data layers (Chubey et al., 2005). This is generally
an iterative process whereby the user can attempt a series
of scaling combinations such that the created polygons are
large enough to capture features of interest. However, the
creation of polygons that accurately represent landslide
features is problematic as the area of the failures varies
across several orders of magnitude. Therefore, no one scal-
ing parameter will be able to accurately represent the entire
population. This problem can be largely solved through
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multiresolution segmentation (Definiens, 2005). This allows
the merging of adjacent polygons based on a spectral
heterogeneity criterion. An initial segmentation set at a
small scale in order to capture the smaller failures (1 ha)
can be used as a basis for further segmentation layers.
Objects are merged if they do not exceed a heterogeneity
threshold such that larger slides come to be represented

by one large polygon whereas the smaller ones do not
merge with their neighboring polygons as the heterogeneity
criterion is exceeded. The segmentation that proved the
most effective at capturing mass wasting events within

the study area relied on an equal weighting of the spectral
bands as well as the plan curvature layer. The value of
image segmentation lies in the subsequent ability to look
at the objects both in their context within the landscape

as well as their innate shape properties. This offers great
advantages over classification using per pixel spectral
response patterns alone.

Classification Hierarchy

The data layers used and the classification hierarchy are
illustrated in Figure 2. The image classification scheme

is similar to that employed by Barlow et al. (2003). Image
objects that are not of interest are progressively eliminated
by four boolean decision criteria. In essence, this mimics
the procedure used during photographic interpretation and
focuses attention on unvegetated portions of steep slopes
that display the appropriate shape characteristics and
orientation.

The first step in the classification is the separation of
objects into vegetated/unvegetated classes based on an NDVI
threshold of 0.15. Those objects that have an NDvI value
greater than this are classified as vegetated, and therefore
eliminated from consideration. This accounts for over half of
the image objects in the study area. The next level assigns
each of the unvegetated image objects to either flatland or

SPOT $ Panchromatic ((.4% -0.69 um)
SPOT 5 Band | (0.49 - 0,61 pm)
SPOT 5 Band 2 (0.61 - 0,68 pm)
SPOT 3 Band 3 (0,78 - 0.89 pm)
SPOT 5 Band 4 (1,58 - 1,75 pm)
NDVI

Slhope Tangent

Plan Curvaiure

Reliel

(a)

NDVI = 015
No Yes

Slope Tangent > 0.27

No Yes

Flatland Length/Width > 2.5
.
Down Shope
Supervised Classification
[[Debris Flows] | Debris Stides| [ Rock Stides | [ Barren Ground | [ Betroek | [[snow ]

(b)

Figure 2. Classification schematic showing data layers
(a) and the classification hierarchy (b). Note: not all
image layers are used in the supervised classification,
see text for details.
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steepland based on the slope layer. Here, the threshold
between the two was set at 0.27 (15 degrees), as no rapid
mass movements were observed in the field below this
gradient. All of the objects that were classified as steepland
were then evaluated based on a length to width shape
criterion. Mass movements are generally identified as long
thin features. Empirical inspection of the aerial photographic
inventory demonstrated that mass movements had a length
to width ratio of 2.5 or higher. Therefore, this threshold was
required to be classified as a thin feature, while the remain-
ing objects were classified and labeled as square features.

The resulting polygons were a group of unvegetated
areas located on steeper slopes with long, thin shape proper-
ties. Barlow et al. (2003) found that by using the spectral
properties of such polygons, a fairly accurate classification
of landslides was possible. However, errors of commission
were high with objects such as roads and talus slopes. One
of the most obvious characteristics of rapid mass movements
is their dependence on gravity. Failure tracks tend to follow
the path of steepest descent (fall line) down a given slope.
The geomorphic context of an image object is therefore a
useful tool in the classification. The orientation of the long
axis of an object on the slope was used to separate those that
ran roughly parallel to the fall line to those that extend
across the slope. Theoretically, for a landslide on an infi-
nite slope:

Ltan 8

Ay 1 (1)
where L is the horizontal or projected length of the land-
slide, B is slope, and Az is the change in elevation from
the top of the initiation zone to the toe of the landslide.
Applying this formula to objects in the study area was
problematic, as eCognition does not have the functionality
to determine Az. Therefore, the “thin” polygons were first
exported into ArcView® and assigned a relief based on the
DEM. This was then rasterized and input into eCognition as
the “relief” data layer. The mean value assigned by eCogni-
tion to each of the image objects was therefore equivalent to
the maximum change in elevation (Az) from Equation 1. Of
course, in the real world, slopes are not infinite and the
momentum of a failed mass can cause it to deviate from the
fall line. For this reason, a threshold of 2.5 was set in the
classification hierarchy.

Applying Equation 1 to the thin image objects within
the study area proved to be remarkably effective at removing
objects, such as roads, that are very difficult to distinguish
from debris slides both in terms of their shape properties
and their reflectance (Barlow et al., 2003). Plate 1 shows
a portion of the study area with both logging roads and
debris slides in close proximity. Due to their orientation on
the slope, the logging roads were classified as cross-slope
objects, whereas the slides were successfully classified as
down-slope objects.

The remaining segments were classified as debris slides,
debris flows, rock slides, barren ground, bedrock or snow
according to their spectral, shape, and textural characteris-
tics (Figure 2). While the NDvI layer was useful in separating
image objects into vegetated and unvegetated classes, its
usefulness as a class descriptor for the supervised classifica-
tion was low. It was therefore omitted from this phase in the
classification hierarchy. A supervised classification scheme
was adopted whereby a group of sample objects was used to
train the classifier. In addition to the mean spectral and
geomorphometric values, an asymmetry shape criteria was
used that compares the long and short axis of each polygon.
The greater the difference, the more asymmetrical an object
becomes. This proved useful in discriminating between mass
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Plate 1. An example of the steps taken in the classification process. (a) denotes the
raw imagery, (b) the imagery after segmentation into image objects, and (c) shows a
portion of the classified imagery. Note the successful discrimination of the debris slides
on the right of the image from the roads on the left. Part of the road system has been

500 m

Bedrock

movements and the barren land class. Finally, the textural
properties of homogeneity, dissimilarity, mean, and vari-
ance described by Haralick et al. (1973) were used to help
distinguish between classes. These were applied to the
panchromatic band as its 2.5 m resolution captures more
spatial detail than that of the 10 m multispectral bands.

Results and Discussion

The classification system proved to be effective at placing
image objects into their geomorphic context with relation
to mass wasting. A quantitative accuracy assessment was
accomplished by comparing the classified imagery with the
landslide inventory compiled from aerial photographs and
field observations. Standard confusion matrices (Congalton,
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1991) are largely inapplicable to this type of classifica-
tion scheme as many of the classes are based on shape or
morphometric criteria that can be represented by a multi-
tude of differing land-cover types. For this reason, accuracy
was only assessed for the mass movement classes. Errors

of omission were assessed by taking a random sample of
20 debris slides, 20 debris flows, and 20 rock slides identi-
fied from the aerial photographs. These were then compared
to the classified imagery. The results of this analysis are
shown in Table 1. Fifty percent of the error associated with
the classification was interpreted on the resulting image
products to originate in a misclassification of process rather
than identifying a mass movement feature as some other
feature. Similarly, errors of commission were assessed by a
random sample of 20 events from each process type on the
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TABLE 1. CLASSIFICATION ACCURACY ASSESSMENT FOR ERRORS OF
OmissION. THE ACCURACY WAS DETERMINED BY RANDOMLY SELECTING
20 FAILURES OF EACH TYPE FROM THE AERIAL PHOTOGRAPHS AND
COMPARING THEM TO THE CLASSIFIED IMAGE

Debris Slide Rock Slide Debris Flow
Debris Slide 18 2 2
Rock Slide 0 16 2
Debris Flow 1 0 12
Barren Ground 1 1 0
Bedrock 0 1 2
Snow 0 0 —
% Accuracy 90 80 60

TABLE 2. CLASSIFICATION ACCURACY ASSESSMENT FOR ERRORS OF
COMMISSION. THE ACCURACY WAS DETERMINED BY TAKING 20 FAILURES OF
EAcH TYPE FROM THE CLASSIFIED IMAGE AND COMPARING THEM TO THE
AERIAL PHOTOGRAPHS

Debris Slide Rock Slide Debris Flow
Debris Slide 16 — 1
Rock Slide 1 16 —
Debris Flow 1 2 16
Barren Ground 2 1 —
Bedrock — — 2
Road — — 1
Vegetated — 1 —
% Accuracy 80 80 80

classified imagery and comparing them to the aerial photo-
graphs. There appeared to be few errors of commission
between roads and landslide features. This was a signifi-
cant source of error in the prior research involving image
segmentation (Barlow et al., 2003) and therefore represents
a great improvement.

Debris Slides

At 10 percent omission and 20 percent commission error,
debris slides were the class of feature with the highest accu-
racy achieved in the classification. This could be attributed
to the fact that such features are usually situated on open
slopes and are characterized by breaks in vegetation. Also,
as the debris slide deposit is typically less coarse than those
associated with rock slides and debris flows, the textural
properties captured in the high spatial resolution imagery
appeared to provide a basis for good separation between this
class and the others (see Martin and Franklin, 2005). Barren
ground proved to be the most problematic source of classifi-
cation errors, although misclassification as debris flow also
resulted in some error.

Rock Slides

This type of mass movement also received a high accuracy
assessment although there was some misclassification with
debris flows, barren ground, and bedrock. Possibly, this is
mainly due to the similarities of the spectral and textural
characteristics of these features. For example, Martin and
Franklin (2005) noted that rockslides are generally larger
and wider than debris slides; in the present study, the
asymmetry shape criteria appeared to provide some separa-
tion between rock slides and debris slides/flows within the
class descriptions.

Debris Flows

Classification of debris flows proved problematic, likely due
to their positioning on the landscape in this study area.
They generally occurred in deep mountain gully systems

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

that were often obscured by shadow. This resulted in pro-
blems with the image segmentation as the debris flows
were often broken up into several shorter segments. While
the inclusion of plan curvature in the image segmentation
alleviated this to some degree, many were designated as
square features (as opposed to the long thin features in the
classification hierarchy). Additionally, the shadow was often
misclassified as vegetated due to a higher NDVI measure
compared to observations on exposed bare slopes. However,
the classification was capable of achieving an 80 percent
accuracy for errors of commission meaning that the criteria
set forth in the supervised classification stage were effective
in discriminating between the process types. In particular,
plan curvature was an excellent class descriptor for debris
flows due to their occurrence in areas of high concavity.

Conclusions

We used image segmentation on a combination of SPOT 5
and DEM data to develop an automated system to detect

and classify rapid mass movements that were fresh and over
1 ha in area in a high mountain region in British Columbia.
The method improves upon previous attempts (Barlow et al.,
2003; Martin and Franklin, 2005) in that the spatial resolu-
tion of the spectral data was much greater than that avail-
able with Landsat ETM+ imagery and a more robust set

of geomorphometric variables were utilized. The method
yielded an overall accuracy of 77 percent for all rapid mass
movements. These features were further divided according
to the classification system of Cruden and Varnes (1996)
into debris slides, debris flows, and rockslides; the process
specific classification accuracies were 90 percent, 60 per-
cent, and 80 percent respectively. The primary reason for
the poor accuracy in the identification of debris flows was
their location on the landscape, specifically, in deep gullies
where shadow had a detrimental effect on the segmentation
process. These results strongly support the viability of using
high spatial resolution satellite remote sensing data and
digital elevation models to create landslide inventories.
However, the method is highly dependent upon the vegeta-
tive disruption associated with landslides. It may therefore
be less applicable in arid regions or in regions with a low
tree line.
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