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With the aim of developing a model for estimating
building damage from synthetic aperture radar (SAR)
data in the L-band, which is appropriate for Peru, we
propose a regression discriminant function based on
field survey data in Pisco, which was seriously dam-
aged in the 2007 Peru earthquake. The proposed
function discriminates among damage ranks corre-
sponding to the severe damage ratio of buildings using
ALOS/PALSAR imagery of the disaster area before
and after the earthquake. By calculating differences in
and correlations of backscattering coefficients, which
were explanatory variables of the regression discrim-
inant function, we determined an optimum window
size capable of estimating the degree of damage more
accurately. A normalized likelihood function for the
severe damage ratio was developed based on discrim-
inant scores of the regression discriminant function.
The distribution of the severe damage ratio was accu-
rately estimated, furthermore, from PALSAR imagery
using data integration of the likelihood function with
fragility functions in terms of the seismic intensity of
the earthquake.

Keywords: severe damage ratio, ALOS/PALSAR, the
2007 Peru earthquake, likelihood function, backscattering
coefficient, data integration

1. Introduction

Satellite remote sensing is being increasingly used for
quick assessment of the impact of natural disasters oc-
curring worldwide [1]. The size and location of affected
areas are estimated, for example, by comparing post- with
pre-event imagery, since satellites orbiting the earth often
observe pre-event states at many locations [2, 3]. In recent
years, the resolution of optical sensors on board satellites
has increased to approximately 60-cm ground resolution,

1. This paper is translated with revision from the paper published in the
Journal of Japan Association for Earthquake Engineering, Vol.12, No.6,
pp. 36-49 in Japanese.

which allows us to visually interpret the shapes of build-
ings and the states of large-scale damage [4, 5]. If a dis-
aster strikes an extensive area, however, it takes consider-
able time to assess damage through visual interpretation,
making it impractical for rapid assessment. In addition,
because damage estimation by visual interpretation inher-
ently involves variability attributable to differences in the
perception of the interpreter, there are problems with stan-
dardization and the general versatility of the method. In
order to overcome such disadvantages, attempts have in-
volved the use of a network of many volunteers to visually
interpret building damage in an extensive disaster area,
namely, crowdsourcing [6]. There is a need to improve
the accuracy of the visual interpretation of damage. To
this end, engineers with knowledge and experience in in-
terpreting aerial imagery should prepare instruction man-
uals that allow nonexperts to participate in this visual in-
terpretation of damage, and should also establish a screen-
ing technique to eliminate unreliable data. Such a system
of exploiting the enormous human resources outside the
disaster area is expected to become a technology used in
responding to major disasters.

Synthetic aperture radar (SAR), a type of “remote sens-
ing sensor,” observes the surface of the earth day and
night, regardless of weather. If the visual interpreta-
tion of damage from SAR imagery is practicable, it will
complement visual interpretation from optical sensor im-
agery. Unlike optical sensor images, which look like
photographs, however, SAR imagery represents the in-
tensity of microwave backscattering from the ground sur-
face and is unfamiliar to nonexperts. It is therefore dif-
ficult to visually interpret damage from SAR images by
crowdsourcing. It is thus expected that damage from
SAR imagery will be extracted by computer-based image
processing [7–10]. Estimation models for building dam-
age ratios have therefore been proposed [11–13] based
on C-band (wavelength: 5.7 cm) SAR imagery in which
building damage data obtained from detailed field surveys
conducted after the Kobe earthquake in 1995 were used
as ground-truth data and the applicability of one of the
models used for damage extraction in other earthquakes
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Fig. 1. PALSAR imagery obtained before and after the 2007 Peru earthquake: (a) July 12, 2007; (b) August 27, 2007.

occurring in various countries and regions was investi-
gated [12]. The model was further improved so that it was
also applicable to imagery obtained by JERS-1/SAR and
ALOS/PALSAR (PALSAR imagery), which is L-band
(wavelength: 23 cm) SAR mounted on Japanese satel-
lites. It was then applied to PALSAR imagery obtained in
the 2007 Peru earthquake and the 2008 Wenchuan, China,
earthquake [13]. It was found from comparison with dam-
age assessment reports of these earthquakes, etc., that
local damage areas could not be detected because the
model was based on the ground-truth data of the 1995
Kobe earthquake. In other words, it was demonstrated
that application of the model to other countries and re-
gions, which have urban structures, building types, and
damage situations different from Japan, gave inaccurate
results [13].

Following procedures reported in our previous pa-
pers [11, 13], this paper develops a model for estimating
a severe damage ratio of buildings that reflects the build-
ing types and damage situation in Peru. The model is an
estimation model for severe damage ratio optimized for
Peru because it is based on PALSAR imagery of Pisco
after the 2007 Peru earthquake and on building damage
data obtained from field surveys. Specifically, an opti-
mum window size for image processing was determined
and a normalized likelihood function for the severe dam-
age ratio was derived. The model was used, furthermore,
to estimate damage by integrating image data with seis-
mic intensity data and comparing results with the actual
damage to be checked.

2. PALSAR Images and Field Survey Data

2.1. Indices Obtained from PALSAR Imagery and
Image Processing

On August 15, 2007, an earthquake measuring M8.0
with an epicenter 40 km northwest of Chincha, Peru.
The city of Pisco in the Ica Region and the surround-
ing area were devastated by the earthquake, which left
more than 500 people dead or missing and completely de-
stroyed more than 35,000 buildings. About 2 weeks after
the earthquake, high-resolution PALSAR imagery of the
coastal area was obtained. Figs. 1(a) and (b) shows im-
ages obtained on July 12, 2007, before the earthquake and
on August 27, 2007, after the quake. The nominal ground
resolution was approximately 10 m and the image pixel
size 12.5 m.

Two indices – the difference between post- and pre-
earthquake images and the correlation coefficients of
backscattering coefficients – were calculated from pre-
and post-earthquake PALSAR images. Following the ac-
curate positioning of both pre- and post-event images, a
speckle reduction filter was applied to each image [14],
then differences and correlation coefficients were calcu-
lated from Eqs. (1) and (2), below. The difference is ob-
tained by subtracting the average value of the backscat-
tering coefficient within an N ×N pixel window of the
pre-event image from that of the post-event image. The
correlation coefficient is also calculated from the same
N × N pixel window. Analysis results from the 1995
Great Hanshin-Awaji Earthquake Disaster (widely called
the Kobe earthquake) showed that differences (after – be-
fore) yielded negative values, with the spatial distribu-
tion of backscattering coefficients decreasing with build-
ing damage and as compared with that in pre-event im-
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Fig. 2. Building damage data at Pisco based on a field survey. (a) Damage level by lot (Estrada et al., 2008). (b) Distribution of the
severe damage ratio.

agery, resulting in an overall decrease in correlation coef-
ficient [10].

d = 10 · log10 Īai −10 · log10 Ībi . . . . . . (1)
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where d represents the difference in backscattering co-
efficients [dB], r is the correlation coefficient, and N is
the number of pixels within the window to be calculated.
Iai and Ibi represent the i th pixel values of post- and pre-
event images, respectively, and Īai and Ībi represent aver-
age values of N ×N pixels surrounding the i th pixel.

2.2. Severe Damage Ratio of Buildings Based on
Field Survey Data

The target area of the damage estimation model is the
city of Pisco. Damage data used in this study were col-
lected by members of the Japan-Peru Center for Earth-
quake Engineering and Disaster Mitigation (CISMID),
National University of Engineering, Peru. CISMID per-
sonnel performed detailed on-site investigations of build-
ings in more than 10,000 lots just after the earthquake [15]
and this was considered to be the most reliable data on
the Peru earthquake. Investigation items included build-
ing lot codes, building use, structure types, floor number,
and damage level, all of which were combined with ge-
ographic information system (GIS) data. Approximately
97% of buildings in the area were masonry structures –
18% adobe structures and 79% burnt brick structures –
which are comparatively weak and are prone to collapse in
general. In the earthquake, adobe buildings were greatly

Table 1. Range of severe damage ratio and median values
for damage ranks.

Damage Rank Severe Damage
Ratio D (%)

Median Value (%)

C1 D = 0 0.0

C2 0 < D < 6.25 3.13

C3 6.25 ≤ D < 12.5 9.38

C4 12.5 ≤ D < 25 18.75

C5 25 ≤ D < 50 37.5

C6 50 ≤ D ≤ 100 75.0

damaged. Lots and buildings were mostly in a one-to-
one correspondence. For multiple buildings located on
large lots, information on the most damaged building was
recorded. Fig. 2(a) shows the distribution of damage lev-
els by lot based on the field survey in Pisco.

Damage levels were classified into the following four:
Grave (Serious), Severo (Severe), Leve (Slight), and Sin
daño (No damage). Lots that could not be investigated
were categorized as “Not available.” Grave corresponds
to G5 in the classification of the European Macroseismic
Scale (EMS-98) [16], Severo to G4 and G3, Leve to G2,
and Sin daño to G1. The damage ratio was calculated
based on these GIS data. In order to take sizes of lots, in-
cluding vacant lots, into consideration and to calculate re-
liable damage ratios, the city of Pisco was split into a grid
of 3.75 × 3.75 arc-seconds (approximately 120-m grid)
and estimation was performed only on grids with 10 or
more lots. The severe damage ratio of buildings in a grid
was calculated as the ratio of the number of Grave to the
total number of buildings in the grid. The severe damage
ratio was classified into the following six damage ranks:
C1, 0% severe damage ratio in a grid; C2, more than 0%
and less than 6.25%; C3, 6.25% or more and less than
12.5%; C4, 12.5% or more and less than 25%; C5, 25%
or more and less than 50%; and C6, 50% or more. Ta-
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ble 1 shows the correspondence of damage rank, severe
damage ratio and median values. The distribution of the
severe damage ratio is shown in Fig. 2(b).

3. Estimation of Severe Damage Ratio Based
on Regression Discriminant Function

3.1. Influence of Window Size on Accuracy of Dam-
age Discrimination

In previous studies [10–13], a speckle reduction filter
with a 21× 21 pixel window was applied to SAR images
and differences and correlation coefficients were calcu-
lated from a 13× 13 pixel window. Although these win-
dow sizes suited extraction of the damaged area from 30-
m resolution SAR imagery of an area affected by the Kobe
earthquake and field survey data in the Hanshin area [10],
it was uncertain whether these window sizes would be the
optimum for extracting damage in a city in Peru, where
building types are different from those in the Hanshin
area, with approximately 10-m resolution, which is the
same as PALSAR imagery resolution. Accordingly, the
change in the accuracy of damage discrimination was ex-
amined by varying speckle reduction filter size and calcu-
lation window size for Pisco data sets.

The influence of speckle reduction filters was examined
first. A Lee filter size [14] that is variable from 3× 3 to
51× 51 pixels was applied to pre- and post-event images
and differences and correlation coefficients were calcu-
lated based on Eqs. (1) and (2). Images of differences
and correlation coefficients were overlaid on field survey
data and 800 pixels were randomly extracted from areas
corresponding to each of the six damage ranks shown in
Table 1 (4,800 pixels in total) to create a training sam-
ple. For quantitative evaluation of the severe damage ra-
tio, regression discriminant analysis [17] – a method of
multiple-group discriminant analysis that uses differences
and correlation coefficients of the six damage ranks – was
applied. Window sizes of 7×7, 13×13, and 21×21 pix-
els were examined to calculate differences and correlation
coefficients. Fig. 3 shows the correlation ratio of regres-
sion discriminant functions representing the ability to dis-
criminate six damage ranks against the pixel dimension
calculated from the size of the speckle reduction filter. In
this figure, a larger correlation ratio means better discrim-
inant ability of damage ranks. The relationship between
pixel dimension and correlation ratio is slightly compli-
cated because as the size of the filter increases, the corre-
lation ratio decreases, but turns upward at 15× 15 pixels.
The correlation ratio obtained when the filter size is in-
creased to the largest one of 41× 41 pixels is almost the
same as that obtained without any filter, however, so it
was determined that no filter would be used in this study.

The influence of window size on the accuracy of dis-
crimination was examined next. The correlation ratio
of regression discriminant functions was calculated us-
ing varying window size from 3× 3 to 51× 51 pixels to
calculate differences and correlation coefficients. Fig. 4

Fig. 3. Relationship between the size of speckle reduction
filters and the correlation ratio.

Fig. 4. Relationship between the calculation window size
and the correlation ratio.

shows correlation ratio against pixel dimension calcu-
lated from window size. Window size increased from
3× 3, so the correlation ratio increased, reaching a limit
at around 13× 13 pixels. This was also found for data
sets in the Hanshin area before and after the Kobe earth-
quake [10]. The reasons why the correlation ratio in-
creases includes the fact that damaged building groups
spread to some extent and, in addition, backscattering of
each damaged building has a spatial extent. Interestingly,
although the pixel size of SAR images in the Hanshin
area and Pisco are different, the window size at which
the correlation ratio reached a limit was the same, i.e.,
at around 13× 13 pixels. Although this is considered to
arise from complex factors such as the fact that different
damage situations are involved, the detail remains a chal-
lenge to be addressed. It should be noted that although
the correlation ratio reached a maximum in Fig. 4 when
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Fig. 5. Relationship between differences in backscattering
coefficients and correlation coefficients for damage ranks.

21× 21 pixels were used, the value is almost the same as
that for 13× 13 pixels. A larger window size, however,
does not offer the capability for detecting small spatial
changes within a window, so we decided in our study to
use a 13× 13 pixel window, which was also used in the
previous study.

3.2. Derivation of Regression Discriminant Func-
tion and Likelihood Function

To calculate difference d and correlation coefficient r,
a window size of 13× 13 pixels was adopted as the opti-
mum size to interpret damage in Pisco based on the anal-
ysis of data sets, and no speckle reduction filter was used.
Fig. 5 shows a scatter diagram by damage rank. The re-
gression discriminant function calculated from the two in-
dices is shown in Eq. (3):

ZRp = −0.089 d −2.576 r . . . . . . . . (3)

where ZRp represents the discriminant score derived from
PALSAR imagery. While coefficients of d and r in dis-
criminant score ZR j derived from JERS-1/SAR imagery
of the Kobe earthquake were −1.277 and −2.729, re-
spectively [13], coefficients derived here from PALSAR
imagery of Pisco were −0.089 and −2.576. These coeffi-
cients indicate the degree of influence of d or r on the dis-
criminant score. Comparison between the Hanshin area
and Pisco demonstrated that the coefficient of r, the corre-
lation coefficient, was almost the same in the two regions,
but the coefficient of d, the difference in backscattering
coefficients, of Pisco was small, or approximately zero,
compared with that of the Hanshin area. The influence of
d on discrimination of the damage rank in Pisco is there-
fore negligible.

Next, a likelihood function for estimating the severe
damage ratio from discriminant score ZRp is formed
following procedures similar to those in the previous
study [11, 13]. The likelihood function in this study

Fig. 6. Normal frequency distribution model of discriminant
score ZRp.

Table 2. Average values and standard deviations in the like-
lihood function of data in PALSAR intensity imagery.

Damage Rank Average of ZRp Standard Deviation
C1 -1.470 0.323

C2 -1.355 0.291

C3 -1.332 0.281

C4 -1.200 0.331

C5 -1.052 0.415

C6 -0.887 0.484

means the probability of being in each damage rank when
ZRp is given. Specifically, the frequency distribution of
ZRp of 800 randomly extracted pixels from each damage
rank is modeled as a normal distribution. Fig. 6 shows
normal distribution models (likelihood function). Table 2
shows average values and standard deviations of ZRp for
individual damage ranks. The higher the damage rank,
the larger the discriminant score ZRp. Because distribu-
tion curves of some damage ranks cross in regions with
low discriminant scores, however, discrimination in areas
with low damage ranks is not possible. Fig. 7 shows nor-
malized likelihood functions in which the sum of the like-
lihood of all damage ranks in Fig. 6 becomes 1.0. For re-
gions where ZRp is −2.2 or less, a constant value obtained
by extrapolating the value at ZRp = −2.2 is used in order
to avoid reversing the sequence of the severe damage ra-
tio caused by distribution curves crossing. Average values
and standard deviation of the estimated severe damage ra-
tio against discriminant score ZRp are thus obtained from
median values of the damage rank in Table 1 and the dis-
tribution shown in Table 2 and Fig. 7. Fig. 8 shows curves
of average values and average values± standard deviation
of the severe damage ratio estimated from ZRp. The severe
damage ratio increases with increasing ZRp. Because the
discriminant score was adjusted to make the constant term
zero, relative positions on the horizontal axis in Fig. 8 are
arbitrary. Taking this into account, the normalized like-
lihood function derived from field survey data and PAL-
SAR imagery of Pisco gives a high severe damage ratio
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Fig. 7. Normalized likelihood function of discriminant
score ZRp.

Fig. 8. Relationship between the severe damage ratio (av-
erage values and standard deviations) and the discriminant
scores of Pisco ZRp and Hanshin ZR j .

(average value) in regions with low discriminant scores
compared with that derived from field survey data and
JERS-1/SAR imagery of the Hanshin area [13] (shown
together in Fig. 8). It also indicates that small changes
in backscattering characteristics have a large influence on
the estimation of the severe damage ratio. This could be
influenced by differences in building damage situations
between Pisco and the Hanshin area.

Figure 9 shows the ZRp distribution obtained from pre-
and post-earthquake PALSAR images, and Fig. 10 shows
the severe damage ratio (average values) estimated from
ZRp. ZRp values and the severe damage ratio are slightly
larger at the center of Pisco. It should be noted that the
target area is restricted to urban areas where the cardinal
effect can be expected, therefore, areas whose backscat-
tering coefficients are small (−5 dB or under) in pre-event
images are masked. The distribution of the severe damage
ratio of Pisco city estimated based on PALSAR imagery
agrees well with field survey data. Areas with high severe
damage ratios are found in sections of farmland, however,
because they are not adequately masked owing to varia-
tions in backscattering characteristics caused by vegeta-
tion.

Fig. 9. Discriminant score ZRp estimated from PALSAR
imagery.

Fig. 10. Severe damage ratio of buildings estimated from
the normalized likelihood function (average values).

Fig. 11. Relationship between seismic intensity and average
values and standard deviations in the fragility function.
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Fig. 12. Estimated severe damage ratio obtained by data integration of PALSAR imagery and seismic intensity
data: (a) average values, (b) standard deviations.

4. Severe Damage Ratio Estimation by Integra-
tion with Seismic Intensity Data

In a case where only PALSAR imagery is used and
ZRp < −2.2, distributions overlap as shown in Fig. 6
and contain only slightly more information than complete
noninformation. In other words, the average severe dam-
age ratio was 13.0% with a standard deviation of 21.0,
compared to an average severe damage ratio of 35.4% and
a standard deviation of 31.2% when an equal probability
of 1/6 is given for each damage rank. As is shown in
Fig. 10, a severe damage ratio of approximately 20% is
estimated even in broadly undamaged areas. Seismic in-
tensity data is therefore used as supplementary data for
highly accurate estimation in all regions, including re-
gions of low severe damage ratio. A fragility function in
terms of seismic intensity data has been established based
on data obtained from the Kobe earthquake [11]. An im-
proved fragility function that considers the fragility of
masonry buildings in Peru has also been developed [13].
Fig. 11 shows the fragility function for Peru used in this
study and that for the Hanshin area for comparison. It
corresponds roughly with previous fragility functions [18,
19]; the severe damage ratio of buildings in Peru becomes
higher than that in the Hanshin area if buildings are af-
fected by earthquakes of the same seismic intensity.

In line with the work of Nojima et al. [11], Bayesian
updating theory has been used to improve the accuracy
of estimating the severe damage ratio. It does so by inte-
grating PALSAR imagery ZRp with seismic intensity data.
Specifically, the probability of being in each damage rank
is updated by multiplying the probability of being in each
damage rank when seismic intensity data is given with the

normalized likelihood of ZRp of each damage rank (equiv-
alent to the probability of being in each damage rank when
ZRp is given), and then normalizing (that is, constraining
the sum of probabilities to be one) [11]. Figs. 12(a) and
(b) shows average values and standard deviations in the
severe damage ratio based on the probability updated for
the 7 × 7 = 49 combinations of the two indices. Com-
pared with Kobe earthquake results [13], seismic inten-
sity data contribute to estimating the severe damage ratio
where ZRp of SAR imagery is low, so the severe damage
ratio increases steeply and the seismic intensity data con-
tribution is nearly zero where SAR imagery ZRp is high.

U.S. Geological Survey (USGS) ShakeMap [20] was
used for earthquake seismic intensity data. Peak Ground
Velocity distribution data from ShakeMap [21] was con-
verted by Fujimoto and Midorikawa [22] into measured
seismic intensity, and is shown superimposed on PAL-
SAR imagery in Fig. 13. Large shaking of 6− to 6+
on the Japan Meteorological Agency (JMA) seismic in-
tensity scale is found all over the image. The result of
estimating the severe damage ratio by data integrating
discriminant score ZRp data obtained from PALSAR im-
agery (Fig. 9) and measured seismic intensities (Fig. 13)
is shown in Fig. 14(a). An enlarged view of the Pisco area
is shown in Fig. 14(b). Because built-up area is the target,
areas with backscattering coefficients of −5 dB or less
are masked. Fig. 15 shows enlarged views in the Pisco
area of (a) distribution of the severe damage ratio inves-
tigated by the field survey, (b) the same distribution es-
timated from PALSAR imagery alone, and (c) the same
distribution based on the data integration of PALSAR im-
agery and seismic intensity data. Distribution of the se-
vere damage ratio estimated based on the data integration
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Fig. 13. Distribution of measured seismic intensity esti-
mated from ShakeMap.

Fig. 14. Estimated severe damage ratio obtained by data
integration of PALSAR imagery and seismic intensity data
(average values).

of PALSAR imagery and the seismic intensity data is in
good agreement with the distribution based on the field
survey, especially in areas with a high severe damage ra-
tio in the central part of Pisco. looking at a broad area
all over Pisco, the area overestimated by estimation based
on PALSAR imagery alone could be reestimated appro-
priately. That is, it would be estimated at the level of
the actual severe damage ratio by using estimation based
on data integration with seismic intensity data. When the
model based on the Kobe earthquake was applied to Pisco
without improvement, damage in the western coastal area
of Pisco could not be detected [13]. The model estab-

Fig. 15. Comparison of distribution maps of the severe dam-
age ratio in Pisco (enlarged views): (a) field survey, (b) esti-
mation based on PALSAR imagery alone, and (c) estimation
based on the data integration of PALSAR imagery and seis-
mic intensity.

lished in this study, however, could extract damage in this
area. This fact suggests that, in order to accurately esti-
mate damage areas, it is important to use a damage ex-
traction model suited to the target area because there are
difference in urban structures, building types, and damage
situations between Japan and Peru.

5. Conclusions

To develop a technology to quickly assess areas af-
fected by earthquakes using imagery of L-band synthetic
aperture radar (SAR) mounted on satellites, an estima-
tion model of the severe damage ratio of buildings, op-
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timized for Peru, has been created based on field survey
data and PALSAR imagery of the city of Pisco struck by
the 2007 Peru earthquake. Regression discriminant anal-
ysis has been performed in which explanatory variables,
namely differences and correlation coefficients, were cal-
culated from pre- and postearthquake PALSAR images.
Target groups were six damage ranks classified based on
the severe damage ratio of buildings. Examination of an
optimum window size for calculation of the differences
and correlation coefficients have resulted in the same pa-
rameter as that obtained from data from the 1995 Kobe
earthquake. A regression discriminant function has been
derived that considers urban structure, building type, the
damage situation in Peru, and the pixel resolution of PAL-
SAR imagery. Furthermore, normalized likelihood func-
tions for the severe damage ratio have been obtained from
the discriminant score of the regression discriminant func-
tion. It has also been demonstrated that the distribution of
the severe damage ratio could be estimated at high accu-
racy based on data integration of PALSAR imagery with a
fragility function based on the seismic intensity data of the
Peru earthquake. Similar to PALSAR, an L-band SAR,
called PALSAR-2 will be mounted on a satellite, ALOS-
2, to be launched in 2013. If an earthquake occurs in Peru
in the future, the model proposed in this study could be
used for damage assessment. By preparing a highly reli-
able fragility function that fits the actual situation of build-
ings in Peru and integrating this with seismic intensity
data based on strong-motion observation and simulation,
we will be able to assess damage more accurately.
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