
Supplementary Materials to Predictive Coding for Locally-Linear Control

A. Proofs in Section 3
A.1. Connecting (SOC1) and (SOC1-E) with Next-observation Prediction

Recall that for an arbitrarily given encoder E the proxy cost function in the observation space is given by cE(x, u) :=

E
h
c̄(z, u) | E(x)

i
, where z is sampled from E(x). Equipped with this cost the only difference between (SOC1-E), i.e.,

minU L(U, p, cE , x0), and the original problem (SOC1), i.e., minU L(U, p, c, x0), is on the cost function used.

To motivate the heuristic method of learning an encoder E by maximizing the likelihood of the next-observation prediction
model, we want to show there exists at least one latent cost function c̄ such that the aforementioned approach makes sense.
Followed from the equivalence of the energy-based graphical model (Markov random field) and Bayesian neural network
(Koller & Friedman, 2009), for any arbitrary encoder E there exists a latent dynamics model F̃ and decoder D̃ such that any
energy-based LCE model that has an encoder model E, namely qE(x0|x, u), can be written as (D̃ � F̃ � E)(x0|x, u).

Now, suppose for simplicity the observation cost is only state-dependent, and the latent cost c̄ is constructed as follows:
c̄(z, u) :=

R
x0

R
z0 c(x0)dF̃ (z0|z, u)dD̃(x0|z0). Then one can write cE(x, u) =

R
x0 dqE(x0|x, u)c(x0), and this implies

��Ex0⇠p(·|x,u)[c(x
0)]� cE(x, u)

�� cmax ·DTV(p(·|x, u)||qE(·|x, u)),

where DTV is the total variation distance of two distributions. Using analogous derivations of Lemma 11 in (Petrik et al.,
2016), for the case of finite-horizon MDPs, one has the following chain of inequalities for any given control sequence
{ut}T�1

t=0 and initial observation x0:

|L(U, p, c, x0)� L(U, p, cE , x0)| =

�����E
"

TX

t=1

ct(xt) |P, x0

#
� E

"
T�1X

t=0

cE,t(xt, ut) |P, x0

#�����

T
2 · cmax E

"
1

T

T�1X

t=0

DTV(p(·|xt, ut)||qE(·|xt, ut)) | P, x0

#

p
2T 2 · cmax E

"
1

T

T�1X

t=0

p
DKL(p(·|xt, ut)||bpE(·|xt, ut)) | P, x0

#

p
2T 2 · cmax

vuutE
"
1

T

T�1X

t=0

DKL(p(·|xt, ut)||bpE(·|xt, ut)) | P, x0

#
,

The first inequality is based on the result of the above lemma, the second inequality is based on Pinsker’s inequality, and the
third inequality is based on Jensen’s inequality of

p
(·) function.

Notice that for any arbitrary action sequence it can always be expressed in form of deterministic policy ut = ⇡
0(xt, t) with

some non-stationary state-action mapping ⇡0. Therefore, the KL term can be written as:

E
"
1

T

T�1X

t=0

DKL(p(·|xt, ut)||qE(·|xt, ut)) | p,⇡, x0

#

=E
"
1

T

T�1X

t=0

Z
DKL(p(·|xt, ut)||qE(·|xt, ut))d⇡

0(ut|xt, t) | p, x0

#

=E
"
1

T

T�1X

t=0

Z
DKL(p(·|xt, ut)||qE(·|xt, ut)) ·

d⇡
0(ut|xt, t)

dU(ut)
· dU(ut) | p, x0

#
 U · Ex,u [DKL(p(·|x, u)||qE(·|x, u))] ,

(3)

Predictive Coding for Locally-Linear Control

where the expectation is taken over the state-action stationary distribution of the finite-horizon problem that is induced by
data-sampling policy U . The last inequality is due to change of measures in policy, and the last inequality is due to the facts
that (i) ⇡ is a deterministic policy, (ii) dU(ut) is a sampling policy with lebesgue measure 1/U over all control actions, (iii)
the following bounds for importance sampling factor holds:

���d⇡
0(ut|xt,t)
dU(ut)

��� U .

Combining the above arguments we have the following inequality for any given encoder model E and any control sequence
U :

|L(U, p, c, x0)� L(U, p, cE , x0)|
p
2T 2 · cmaxU ·

q
Ex,u [DKL(p(·|x, u)||qE(·|x, u))]. (4)

Using the above results we now have the following sub-optimality performance bound between the optimizer of (SOC1),
U

⇤
1 , and the optimizer of (SOC1-E), U⇤

1-E:

L(U⇤
1 , p, c, x0) �L(U⇤

1 , p, cE , x0)�
p
2T 2 · cmaxU ·

q
Ex,u [DKL(p(·|x, u)||qE(·|x, u))]

�L(U⇤
1-E, p, cE , x0)�

p
2T 2 · cmaxU ·

q
Ex,u [DKL(p(·|x, u)||qE(·|x, u))].

(5)

This shows that the performance gap between (SOC1) and (SOC1-E) is bounded by the prediction loss
p
2T 2 · cmaxU ·p

Ex,u [DKL(p(·|x, u)||qE(·|x, u))]. Thus this result motivates the approach of learning the encoder model E of proxy cost
by maximizing the likelihood of the next-observation prediction LCE model.

Predictive Coding for Locally-Linear Control

A.2. Proof of Lemma 1

We first provide the proof in a more general setting. Consider the data distribution p(x, y). Given any two representation
functions e : X ! A and f : Y ! B, we wish to inquire how good these two functions are for constructing a predictor of y
given x. To do so, we introduce a restricted class of prediction models of the form

q (y | x) / 1(y) 2(e(x), f(y)), (6)

Let q⇤(y | x) denote the model that minimizes

`
⇤ = min

q
Ep(x)DKL(p(y | x)||q (y | x)). (7)

Our goal is to upper bound the best possible loss `⇤ based on the mutual information gap I(X ; Y)� I(e(X) ; f(Y)). In
particular, we find that

Ep(x)DKL(p(y | x)||q⇤(y | x)) I(X ; Y)� I(e(X) ; f(Y)). (8)

We prove via explicit construction of a model q(y | x) whose corresponding loss ` is exactly the mutual information gap.
Let (X,Y) be joint random variables associated with p(x, y). Let r(a | b) be the conditional distribution of a = e(x) given
b = f(y) associated with the joint random variables (A,B) = (e(X), f(Y)). Simply choose

q(y | x) / p(y)r(e(x) | f(y)) =) q(y | x) = p(y)r(e(x) | f(y))
Ep(y0)r(e(x) | f(y0))

. (9)

Then, by law of the unconscious statistician, we see that

Ep(x,y) ln q(y | x) = �H(Y) + Ep(x,y) ln
r(e(x) | f(y))

Ep(y0)r(e(x) | f(y0))
(10)

= �H(Y) + Er(a,b) ln
r(a | b)

Er(b0)r(a | b0) (11)

= �H(Y) + Ir(A ;B) (12)
= �H(Y) + I(e(X) ; f(Y)). (13)

Finally, we see that

` = Ep(x)DKL(p(y | x)||q(y | x)) = �H(Y | X)� Ep(x,y) ln q(y | x) (14)
= H(Y)�H(Y | X)� I(e(X) ; f(Y)) (15)
= I(X ; Y)� I(e(X) ; f(Y)). (16)

Since `⇤ `, the mutual information gap thus upper bounds the loss associated with the best restricted predictor q⇤.

To complete the proof for Lemma 1, simply let

X := (Xt, Ut) (17)
Y := Xt+1 (18)

e(X) := (E(Xt), Ut) (19)
f(Y) := E(Xt+1). (20)

Predictive Coding for Locally-Linear Control

A.3. Proof of Lemma 2

For the first part of the proof, at any time-step t � 1, for any arbitrary control action sequence {ut}T�1
t=0 , and any

arbitrary latent dynamics model F , with a given encoder E consider the following decomposition of the expected cost:
E[c(xt, ut) | P, x0] = E[c(zt, ut) | E,P, x0] =

R
x0:t

Qt
k=1 P (xk|xk�1, uk�1) ·

R
zt
E(zt|xt)c̄(zt, ut). Now consider the

two-stage cost function: E[c(xt�1, ut�1) + c(xt, ut) | P, x0]. One can express this cost function as

E[c(zt�1, ut�1) + c(zt, ut) | E,P, x0]

=

Z

x0:t�1

t�1Y

k=1

P (xk|xk�1, uk�1) ·
 Z

zt�1

E(zt�1|xt�1)c̄(zt�1, ut�1) +

Z

xt

P (xt|xt�1, ut�1)

Z

zt

E(zt|xt)c̄(zt, ut)

!

Z

x0:t�2

t�2Y

k=1

P (xk|xk�1, uk�1) ·
 Z

zt�2

E(zt�2|xt�2)

Z

zt�1

F (zt�1|zt�2, ut�2)c̄(zt�1, ut�1)

+

Z

xt�1

P (xt�1|xt�2, ut�2)

Z

zt�1

E(zt�1|xt�1)

Z

zt

F (zt|zt�1, ut�1)c̄(zt, ut)

!

+ cmax ·
Z

x0:t�2

t�2Y

k=1

P (xk|xk�1, uk�1) ·
⇣
DTV (E � P (·|xt�2, ut�2)||F � E(·|xt�2, ut�2))

+ Ext�1⇠P (·|xt�2,ut�2) [DTV (E � P (·|xt�1, ut�1)||F � E(·|xt�1, ut�1))]
⌘

Z

x0:t�2

t�2Y

k=1

P (xk|xk�1, uk�1)

Z

zt�2

E(zt�2|xt�2)

Z

zt�1

F (zt�1|zt�2, ut�2)·

✓
c̄(zt�1, ut�1) +

Z

zt

F (zt|zt�1, ut�1)c̄(zt, ut)

◆

+ cmax ·
Z

x0:t�2

t�2Y

k=1

P (xk|xk�1, uk�1) · (2 ·DTV (E � P (·|xt�2, ut�2)||F � E(·|xt�2, ut�2))

+Ext�1⇠P (·|xt�2,ut�2) [DTV (E � P (·|xt�1, ut�1)||F � E(·|xt�1, ut�1))]
�

The last inequality is based on the chain of inequalities at any (xt�2, ut�2) 2 X ⇥ U :

DTV (E � P � P (·|xt�2, ut�2)||F � F � E(·|xt�2, ut�2))

DTV (F � E � P (·|xt�2, ut�2)||F � F � E(·|xt�2, ut�2))

+DTV (E � P � P (·|xt�2, ut�2)||F � E � P (·|xt�2, ut�2))

DTV (E � P (·|xt�2, ut�2)||F � E(·|xt�2, ut�2))

+ Ext�1⇠P (·|xt�2,ut�2) [DTV (E � P (·|xt�1, ut�1)||F � E(·|xt�1, ut�1))] ,

in which the first one is based on triangle inequality and the second one is based on the non-expansive property of DTV . By
continuing the above expansion, one can show that

|E [L(U,F, c, z0) | E, x0]� L(U,P, c, x0)|
= |E [L(U,F, c, z0) | E, x0]� L(U,P, c̄ � E, x0)|

T
2 · cmax E

"
1

T

T�1X

t=0

DTV((E � P)(·|xt, ut)||(F � E)(·|xt, ut)) | P, x0

#

T
2 · cmax E

"
1

T

T�1X

t=0

Ext+1⇠P (·|xt,ut) [DTV(E(·|xt+1)||(F � E)(·|xt, ut))] | P, x0

#

p
2 · Ex,u,x0⇠P (·|x,u)

hr
DKL

⇣
E(·|x0)||

�
F � E

�
(·|x, u)

⌘i

r
2 · Ex,u,x0⇠P (·|x,u)

h
DKL

⇣
E(·|x0)||

�
F � E

�
(·|x, u)

⌘i
,

(21)

Predictive Coding for Locally-Linear Control

where the second inequality is based on convexity of DTV , the third inequality is based on Pinsker’s inequality and the last
inequality is based on Jensen’s inequality of

p
(·) function.

For the second part of the proof, one can show the following chain of inequalities for solution of (SOC1-E) and (SOC2):

L(U⇤
1-E, P, c � E, x0)

�E [L(U⇤
1-E, F, c, z0) | E, x0]� T

2 · cmaxU ·
q
2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

=E [L(U⇤
1-E, F, c, z0) | E, x0] + T

2 · cmaxU ·
q
2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

� 2T 2 · cmaxU ·
q
2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

�E [L(U⇤
2-EF, F, c, z0) | E, x0] + T

2 · cmaxU ·
q

2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

� 2T 2 · cmaxU ·
q
2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

�L(U⇤
2-EF, P, c � E, x0)� 2T 2 · cmaxU ·

q
2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

�L(U⇤
2-EF, P, c, x0)� 2T 2 · cmaxU| {z }

�CON

·
q
2 · Ex,u,x0⇠P (·|x,u) [DKL(E(·|xt+1)||(F � E)(·|xt, ut))]

| {z }
RCON(E,F)

,

where the first and third inequalities are based on the first part of this lemma, and the second inequality is based on the
optimality condition of problem (SOC2). This completes the proof.

Predictive Coding for Locally-Linear Control

B. Experiment Details
In the following sections we will provide the description 4 control domains and implementation details used in the
experiments.

B.1. Description of the domains

All control environments are the same as reported in (Levine et al., 2020), except that we report both balance and swing up
tasks for pendulum, where the author only reported swing up.

B.2. Implementation details

B.2.1. HYPERPARAMETERS

SOLAR training specifics: We use their default setting:

• Batch size of 2.

• ADAM (Kingma & Ba, 2014) with �1 = 0.9,�2 = 0.999, and ✏ = 10�8. Learning rate ↵model = 2 · 10�5 ⇥ horizon
for learning MNIW prior and ↵ = 10�3 for other parameters.

• (�start,�end,�rate) = (10�4
, 10.0, 5 · 10�5)

• Local inference and control:

– Data strength: 50
– KL step: 2.0
– Number of rollouts per iteration: 100
– Number of iterations: 10

PCC training specifics: We use their reported setting:

• Batch size of 12812.

• ADAM with ↵ = 5 · 10�4, �1 = 0.9,�2 = 0.999, and ✏ = 10�8.

• L2 regularization with a coefficient of 10�3.

• (�p,�c,�cur) = (1, 8, 8), and � = 0.01 for the curvature loss. This setting is shared across all domains.

• Additional VAE (Kingma & Welling, 2013) loss term `VAE = �Eq(z|x)[log p(x|z)] +DKL(q(z|x)||p(z)) with a very
small coefficient of 0.01, where p(z) = N (0, 1).

• Additional deterministic reconstruction loss with coefficient 0.3: given the current observation x, we take the means of
the encoder output and the dynamics model output, and decode to get the reconstruction of the next observation.

PC3 training specifics:

• Batch size of 256.

• ADAM with ↵ = 5 · 10�4, �1 = 0.9,�2 = 0.999, and ✏ = 10�8.

• L2 regularization with a coefficient of 10�3.

• Latent noise ✏ = 0.1 and �1 = 1 across all domains without any tuning.

• �2 was set to be 1 across all domains, after it was tuned using grid search in range {0.5, 0.75, 1} on Planar system.
12Training with batch size of 256 gives worse results.

Predictive Coding for Locally-Linear Control

• �3 was set to be 7 across all domains, after it was tuned using grid search in range {1, 3, 7} on Planar system.

• � = 0.01 for the curvature loss.

• Additional loss `add = || 1N
PN

i=1 zi||22 with a very small coefficient of 0.01, which is used to center the latent space
around the origin. We found this term to be important to stabilize the training process.

B.2.2. NETWORK ARCHITECTURES

We next present the specific architecture choices for each domain. For fair comparison, the architectures were shared across
all algorithms when possible, ReLU non-linearities were used between each two layers.

Encoder: composed of a backbone (either a MLP or a CNN, depending on the domain) and an additional fully-connected
(FLC) layer that outputs either a vector (for PC3) or a Gaussian distribution (for PCC and SOLAR).

Latent dynamics (PCC and PC3): the path that leads from {z, u} to z
0, composed of a MLP backbone and an additional

FLC layer that outputs either a vector (for PC3) or a Gaussian distribution (for PCC and SOLAR).

Decoder (PCC and SOLAR): composed of a backbone (either a MLP or a CNN, depending on the domain) and an
additional FLC layer that outputs a Bernoulli distribution.

Backward dynamics: the path that leads from {z0, u, x} to z. Each of the inputs goes through a FLC network {Nz, Nu, Nx},
respectively. The outputs are concatenated and passed through another FLC network Njoint, and finally an additional FLC
network which outputs a Gaussian distribution.

Planar system

• Input: 40⇥ 40 images. 5000 training samples of the form (x, u, x0) for PCC and PC3, and 125 rollouts for SOLAR.

• Actions space: 2-dimensional

• Latent space: 2-dimensional

• Encoder: 3 Layers: 300 units - 300 units - 4 units for PCC and SOLAR (2 for mean and 2 for variance) or 2 units for
PC3

• Dynamics: 3 Layers: 20 units - 20 units - 4 units for PCC and SOLAR or 2 units for PC3

• Decoder: 3 Layers: 300 units - 300 units - 1600 units (logits)

• Backward dynamics: Nz = 5, Nu = 5, Nx = 100�Njoint = 100� 4 units

• Planning horizon: T = 40

• iLQR horizon: 10 for PCC and PC313

• Initial standard deviation for collecting data (SOLAR): 1.5 for both global and local traning.

Inverted Pendulum � Swing up and Balance

• Input: Two 48 ⇥ 48 images. 20000 training samples of the form (x, u, x0) for PCC and PC3, and 200 rollouts for
SOLAR.

• Actions space: 1-dimensional

• Latent space: 3-dimensional

• Encoder: 3 Layers: 500 units - 500 units - 6 units for PCC and SOLAR or 3 units for PC3
13In PCC and PC3, we utilize the concept of model predictive control (MPC) and follow the iLQR-MPC procedure, as similarly done

in PCC(Levine et al., 2020)

Predictive Coding for Locally-Linear Control

• Dynamics: 3 Layers: 30 units - 30 units - 4 units for PCC and SOLAR or 2 units for PC3

• Decoder: 3 Layers: 500 units - 500 units - 4608 units (logits)

• Backward dynamics: Nz = 10, Nu = 10, Nx = 200�Njoint = 200� 6 units

• Planning horizon: T = 100

• iLQR horizon: 10 for PCC and PC3

• Initial standard deviation for collecting data (SOLAR): 0.5 for both global and local training.

Cartpole

• Input: Two 80 ⇥ 80 images. 15000 training samples of the form (x, u, x0) for PCC and PC3, and 300 rollouts for
SOLAR.

• Actions space: 1-dimensional

• Latent space: 8-dimensional

• Encoder: 6 Layers: Convolutional layer: 32 ⇥ 5 ⇥ 5; stride (1, 1) - Convolutional layer: 32 ⇥ 5 ⇥ 5; stride (2, 2) -
Convolutional layer: 32⇥ 5⇥ 5; stride (2, 2) - Convolutional layer: 10⇥ 5⇥ 5; stride (2, 2) - 200 units - 16 units for
PCC and SOLAR or 8 units for PC3

• Dynamics: 3 Layers: 40 units - 40 units - 16 units for PCC and SOLAR or 8 units for PC3

• Decoder: 6 Layers: 200 units - 1000 units - 100 units - Convolutional layer: 32⇥ 5⇥ 5; stride (1, 1) - Upsampling (2,
2) - Convolutional layer: 32⇥ 5⇥ 5; stride (1, 1) - Upsampling (2, 2) - Convolutional layer: 32⇥ 5⇥ 5; stride (1, 1) -
Upsampling (2, 2) - Convolutional layer: 2⇥ 5⇥ 5; stride (1, 1)

• Backward dynamics: Nz = 10, Nu = 10, Nx = 300�Njoint = 300� 16 units

• Planning horizon: T = 50

• iLQR horizon: 5 for PCC and PC3

• Initial standard deviation for collecting data (SOLAR): 10 for global and 5 for local training.

3-link Manipulator � Swing up

• Input: Two 80 ⇥ 80 images. 30000 training samples of the form (x, u, x0) for PCC and PC3, and 150 rollouts for
SOLAR.

• Actions space: 3-dimensional

• Latent space: 8-dimensional

• Encoder: 6 Layers: Convolutional layer: 32 ⇥ 5 ⇥ 5; stride (1, 1) - Convolutional layer: 32 ⇥ 5 ⇥ 5; stride (2, 2) -
Convolutional layer: 32⇥ 5⇥ 5; stride (2, 2) - Convolutional layer: 10⇥ 5⇥ 5; stride (2, 2) - 200 units - 16 units for
PCC and SOLAR or 8 units for PC3

• Dynamics: 3 Layers: 40 units - 40 units - 16 units for PCC and SOLAR or 8 units for PC3

• Decoder: 6 Layers: 200 units - 1000 units - 100 units - Convolutional layer: 32⇥ 5⇥ 5; stride (1, 1) - Upsampling (2,
2) - Convolutional layer: 32⇥ 5⇥ 5; stride (1, 1) - Upsampling (2, 2) - Convolutional layer: 32⇥ 5⇥ 5; stride (1, 1) -
Upsampling (2, 2) - Convolutional layer: 2⇥ 5⇥ 5; stride (1, 1)

• Backward dynamics: Nz = 10, Nu = 10, Nx = 300�Njoint = 300� 16 units

• Planning horizon: T = 200

• iLQR horizon: 20 for PCC and PC3

• Initial standard deviation for collecting data (SOLAR): 1 for global and 0.5 for local training.

Predictive Coding for Locally-Linear Control

B.3. PC3 hyperparameters tuning

In this section, we present how we select the hyperparameters for PC3. There are 4 hyperparameters that we need to decide,
which are �1, �2, �3 and the noise added to future encoded vector �. We fix � = 0.1, �1 = 1 and perform grid search to
choose �2 2 {0.5, 0.75, 1} and �3 2 {1, 3, 7}. We perform tuning on Planar system, and the best set of hyperparameters is
then used in all other domains.

Table 4. Grid search results on Planar system

�
2

�1 �2 �3 Control result

0.1 1 0.5 1 69.9
0.1 1 0.5 3 70.85
0.1 1 0.5 7 73.28
0.1 1 0.75 1 68.8
0.1 1 0.75 3 72.45
0.1 1 0.75 7 70.7
0.1 1 1 1 72.68
0.1 1 1 3 74.15
0.1 1 1 7 74.35

B.4. SOLAR with SOLAR Data Sampling Scheme

For fair comparison with PC3 and PCC, we allowed SOLAR to collect data uniformly in the state space (specifically, in line
2 in Algorithm 1 in SOLAR paper, for each episode we sample uniformly the initial state, and the rest of the algorithm is
kept the same).

In contrast, the original SOLAR scheme samples T actions from the action space and applies the dynamics T times from a
same initial state for all episodes. For completeness, Table 5 shows a modified version of Table 3 where the SOLAR results
are acquired using SOLAR’s original sampling scheme.

Table 5. Percentage steps in goal state for the average model (all) and top 1 model. Since SOLAR is task-specific, it does not have top 1.

Task PC3 (all) PCC (all) SOLAR (all) PC3 (top 1) PCC (top 1)

Planar 74.35± 0.76 56.6± 3.15 68± 3.8 75.5± 0.32 75.5± 0.32
Balance 99.12± 0.66 91.9± 1.72 67± 2.6 100± 0 100± 0

Swing Up 58.4± 3.53 26.41± 2.64 35.4± 1.9 84± 0 66.9± 3.8
Cartpole 96.26± 0.95 94.44± 1.34 91.2± 5.4 97.8± 1.4 97.8± 1.4

3-link 42.4± 3.23 14.17± 2.2 0± 0 78± 1.04 45.8± 6.4

B.5. PC3 with a dedicated critic

In the main experiments, we use the latent dynamics F as the critic for the CPC loss. There are two reasons to do this, which
are mentioned in the main text. However, we also tried to train CPC using a dedicated critic. There are three types of critics
that we consider: a separate dynamics, a bilinear critic and a concatenate critic. For each type, we perform hyperparameters
tuning carefully and for each setting, we report the latent map size, `cpc, `cons, `curv and the control results. All experiments
are run on Planar and Pendulum - Swing up.

B.5.1. CRITIC AS A SEPARATE DYNAMICS

We use F1(zt+1|zt, ut) as the critic to optimize the CPC loss, and use F2(zt+1|zt, ut) to optimize the consistency loss.
After training, we use F2 to perform optimal control.

Predictive Coding for Locally-Linear Control

Table 6. Results when using a separate dynamics as the critic for Planar system.

�
2

�1 �2 �3 Latent map size `cpc `cons `curv Control result

0.1 1 0.5 1 3.34 3.02 0.85 0.0009 41.33
0.1 1 0.75 1 2.53 3.0 1.08 0.001 29
0.1 1 1 1 2.24 3.1 1.2 0.0012 34.18
0.1 1 0.5 3 3.54 3.35 0.83 0.001 49.63
0.1 1 0.75 3 2.43 2.81 1.07 0.0008 35.9
0.1 1 1 3 2.09 2.71 1.24 0.0009 32.93
0.1 1 0.5 7 3.7 3.07 0.85 0.0007 40.67
0.1 1 0.75 7 2.73 2.92 1.11 0.0006 35.95
0.1 1 1 7 2.37 2.77 1.24 0.0004 29.35

Table 7. Results when using a separate dynamics as the critic for Pendulum

�
2

�1 �2 �3 Latent map size `cpc `cons `curv Control result

0.1 1 0.5 1 11.84 3.95 1.7 0.025 46.01
0.1 1 0.75 1 9.19 3.85 1.95 0.024 29.79
0.1 1 1 1 8.58 3.86 2.12 0.03 26.77
0.1 1 0.5 3 10.11 3.92 1.69 0.016 25.34
0.1 1 0.75 3 6.71 3.7 1.97 0.017 33.52
0.1 1 1 3 6.69 3.79 2.1 0.02 35.7
0.1 1 0.5 7 8.53 3.91 1.67 0.01 34.56
0.1 1 0.75 7 5.45 3.59 1.95 0.01 37.1
0.1 1 1 7 4.9 3.63 2.08 0.01 39.45

B.5.2. BILINEAR CRITIC

We use a bilinear function z
T
t+1W (zt, ut) as the critic in CPC loss. This is implemented as follows: first we feed the

concatenation of zt and ut through a linear function parameterized by W , then take the dot product of that output with zt+1

to finally output the score.

Table 8. Results when using a dedicated bilinear critic for Planar system.

�
2

�1 �2 �3 Latent map size `cpc `cons `curv Control result

0.1 1 0.5 1 1.6 0.9 1.4 0.0015 0.25
0.1 1 0.75 1 0.8 0.5 1.62 0.0006 0.75
0.1 1 1 1 0.21 0.16 1.73 0.0002 3.2
0.1 1 0.5 3 1.67 0.98 1.38 0.0008 0
0.1 1 0.75 3 0.94 0.58 1.6 0.0005 0
0.1 1 1 3 0.22 0.17 1.73 0.0001 1.95
0.1 1 0.5 7 1.67 0.96 1.39 0.0007 0
0.1 1 0.75 7 0.83 0.51 1.62 0.0003 0
0.1 1 1 7 0.22 0.17 1.72 0.0001 3.9

Predictive Coding for Locally-Linear Control

Table 9. Results when using a dedicated bilinear critic for Pendulum

�
2

�1 �2 �3 Latent map size `cpc `cons `curv Control result

0.1 1 0.5 1 3.17 1.63 2.12 0.03 26.38
0.1 1 0.75 1 2.2 1.44 2.39 0.04 25.76
0.1 1 1 1 1.93 1.35 2.46 0.045 26.76
0.1 1 0.5 3 1.84 1.27 2.19 0.007 26.38
0.1 1 0.75 3 1.4 1.32 2.3 0.01 25.76
0.1 1 1 3 1.19 1.27 2.42 0.02 26.76
0.1 1 0.5 7 2.3 1.4 2.13 0.004 34.8
0.1 1 0.75 7 1.54 1.3 2.27 0.006 19.15
0.1 1 1 7 1.65 1.43 2.33 0.01 37.18

B.5.3. CONCATENATE CRITIC

The critic is a neural network which receives the concatenate of (zt, ut, zt+1) as the input and outputs the score.

Table 10. Results when using a concatenate critic for Planar system.

�
2

�1 �2 �3 Map size `cpc `cons `curv Control result

0.1 1 0.5 1 3.88 3.02 0.97 0.0007 39.18
0.1 1 0.75 1 2.72 2.46 1.27 0.0007 20.18
0.1 1 1 1 1.58 1.47 1.53 0.0003 20.13
0.1 1 0.5 3 4.07 2.55 1.11 0.0004 20.08
0.1 1 0.75 3 3.38 2.95 1.19 0.0002 31.95
0.1 1 1 3 0.76 0.77 1.64 0.0001 6.88
0.1 1 0.5 7 3.42 3.08 1.79 0.006 31.05
0.1 1 0.75 7 2.59 1.1 2.4 0.002 29
0.1 1 1 7 2.5 1.43 2.4 0.003 22.48

Table 11. Results when using a concatenate critic for Pendulum

�
2

�1 �2 �3 Map size `cpc `cons `curv Control result

0.1 1 0.5 1 4.61 1.94 2.14 0.007 22.8
0.1 1 0.75 1 2.04 1.08 2.4 0.004 3.62
0.1 1 1 1 1.47 1.08 2.47 0.005 2.61
0.1 1 0.5 3 3.17 1.53 2.22 0.003 15.44
0.1 1 0.75 3 1.04 0.89 2.45 0.0015 6.13
0.1 1 1 3 1.26 1.05 2.47 0.003 4.99
0.1 1 0.5 7 5.17 3.1 1.8 0.006 41.89
0.1 1 0.75 7 1.42 1.1 2.4 0.002 9.29
0.1 1 1 7 1.62 1.43 2.4 0.003 12.92

