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Abstract

Hybrid Monte Carlo is a powerful Markov
Chain Monte Carlo method for sampling
from complex continuous distributions. How-
ever, a major limitation of HMC is its in-
ability to be applied to discrete domains
due to the lack of gradient signal. In this
work, we introduce a new approach based on
augmenting Monte Carlo methods with Sur-
VAE Flows to sample from discrete distri-
butions using a combination of neural trans-
port methods like normalizing flows and vari-
ational dequantization, and the Metropolis-
Hastings rule. Our method first learns a con-
tinuous embedding of the discrete space us-
ing a surjective map and subsequently learns
a bijective transformation from the contin-
uous space to an approximately Gaussian
distributed latent variable. Sampling pro-
ceeds by simulating MCMC chains in the la-
tent space and mapping these samples to the
target discrete space via the learned trans-
formations. We demonstrate the efficacy
of our algorithm on a range of examples
from statistics, computational physics and
machine learning, and observe improvements
compared to alternative algorithms.

1 Introduction

The ability to draw samples from a known distribu-
tion is a fundamental computational challenge. It has
applications in diverse fields like statistics, probabil-
ity, and stochastic modeling where these methods are
useful for both estimation and inference. These are
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further useful within the frequentist inference frame-
work to form confidence intervals for a point estimate.
Sampling procedures are also standard in the Bayesian
setting for exploring posterior distributions, obtaining
credible intervals, and solving inverse problems. The
workhorse algorithms in these settings are simulation-
based, amongst which the Markov Chain Monte Carlo
Brooks et al. (2011) method is the most broadly used
method. Impressive advances have been made – both
in increasing efficiency and reducing computation costs
– for sampling using Monte Carlo methods over the
past century. However, problems in discrete domains
still lack an efficient general-purpose sampler.

In this paper, we consider the problem of sampling
from a known discrete distribution. Inspired by the
recent success of deep generative models – particu-
larly neural transport methods like normalizing flows
(Tabak and Vanden-Eijnden, 2010; Tabak and Turner,
2013; Rezende and Mohamed, 2015)– in unsupervised
learning, we propose a new approach to design Monte
Carlo methods to sample from a discrete distribution
based on augmenting MCMC with a transport map.
Informally, let π(θ) be a discrete target distribution
and p(z) be a simple source density from which it is
easy to generate independent samples e.g. a Gaussian
distribution. Then, a transport map T from p(z) to
π(θ) is such that if zi ∼ p(z) then T(zi) ∼ π(θ).

The significance of having such a transport map T is
particularly consequential: firstly, given such a map T,
we can generate samples from the target π(θ). Sec-
ondly, these samples can be generated cheaply irre-
spective of the cost of evaluating π(θ). Importantly, T
affords us the ability to sample from the marginal and
conditional distributions of π(θ) using p(z) given an
appropriate structure. Indeed, this idea of using neural
transport maps based on normalizing flows have been
explored by Parno and Marzouk (2018) for continuous
densities by learning a diffeomorphic transformation
T from the source density p to the target density π(θ)
where θ ∈ Rd.

In this paper, we extend this to discrete domains us-
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ing the recently proposed SurVAE Flow framework
(Nielsen et al., 2020). We first learn a transport map
from the discrete space to a continuous space using a
surjective transformation Q. However, such a continu-
ous space is often highly multi-modal with unfavorable
geometry for fast mixing of MCMC algorithms. Thus,
we learn an additional normalizing flow Tφ that trans-
forms this complex continuous space to a simple latent
space with density p(z) where sampling is easy. We fi-
nally sample from the desired target distribution by
generating samples from the latent space and using
the learned transformations Q and T to push-forward
these samples to the target space. Our complete imple-
mentation allows parallelization over multiple GPUs,
improving efficiency and reducing computation time.

The main contributions of this paper are:

• We present a SurVAE augmented general purpose
MCMC solver for combinatorial spaces.

• We propose a new learning objective compared
to previous methods in normalizing flows to train
a transport map that “Gaussianizes” the discrete
target distribution.

The rest of the manuscript is organized as follows: We
begin in §2 by presenting a brief background on nor-
malizing flows and setting up our main problem. In
§3, we provide details of our method which consists
of two parts: learning the transport map and, gen-
erating samples from the target distribution. Subse-
quently, in §4, we put our present work in perspective
to other approaches to sampling in discrete spaces. Fi-
nally, we perform empirical evaluation on a diverse
suite of problems in §5 to demonstrate the efficacy
of our method. Our implementation is available at
https://github.com/priyankjaini/discFlowMH

2 Preliminaries and Setup

In this section, we setup our main problem, provide
key definitions and notations, and formulate the idea
for an MCMC sampler augmented with normalizing
flows for sampling in discrete spaces.

Let p, q be two probability density functions (w.r.t. the
Lebesgue measure) over the source domain Z ⊆ Rd and
the target domain X ⊆ Rd, respectively. Normalizing
flows learn a diffeomorphic transformation T : Z→ X
that allows to represent q using p via the change of
variables formula (Rudin, 1987):

q(x) = p(z)/|T′(z)|
= p(T−1x)/|T′(T−1x)|,

where |T′(z)| is the (absolute value) of the Jacobian
(determinant of the derivative) of T. In other words,
we can obtain a new random variable x ∼ q by pushing
the source random variable z ∼ p through the map
T. When we only have access to an i.i.d. sample
*x1, . . . ,xn+ ∼ q, we can learn T and thus q through
maximum likelihood estimation:

max
T∈F

1

n

n∑
i=1

[
− log |T′(T−1xi)|+ log p(T−1xi)

]
.

where F is a class of diffeomorphic mappings. Conve-
niently, we can choose any source density p to facilitate
estimation e.g. standard normal density on Z = Rd

(with zero mean and identity covariance) or uniform
density over the cube Z = [0, 1]d.

This “push-forward” idea has played an important role
in optimal transport theory (Villani, 2008) and has
been used successfully for Monte carlo simulations.
For example Marzouk et al. (2016); Parno and Mar-
zouk (2018); Peherstorfer and Marzouk (2018); Hoff-
man et al. (2019); Albergo et al. (2019) have used nor-
malizing flows for continuous random variables to ad-
dress the limitations of HMC which suffers from the
chain to mix slowly between distant states when the
geometry of the target density is unfavourable.

Specifically, Parno and Marzouk (2018) addressed this
problem of sampling in a space with difficult geom-
etry by learning a diffeomorphic transport map that
transforms the original random variable to another
random variable with a simple distribution. Con-
cretely, let our interest be to sample from π(θ) where
θ ∈ Θ ⊆ Rd. We can proceed by learning a diffeomor-
phic map T : Z → Θ such that p̃(z) = π(θ) · |T′(z)|
where z = T−1(θ) such that p(z) has a simple geome-
try amenable to efficient MCMC sampling. Thus, sam-
ples can be generated from π(θ) by running MCMC
chain in the z-space and pushing these samples onto
the Θ-space using T. The transformation T can be
learned by minimizing the KL-divergence between a
fixed distribution with simple geometry in the z-space
e.g. a standard Gaussian and p̃(z) above. The learning
phase attempts to ensure that the distribution p̃(z) is
approximately close to the fixed distribution with easy
geometry so that MCMC sampling is efficient. A lim-
itation of these works that use diffeomorphic transfor-
mations augmented samplers is that they are restricted
to continuous random variables. This is primarily be-
cause the flow models used in these works can only
learn density functions over continuous variables.

Uria et al. (2013) introduced the concept of dequan-
tization to extend normalizing flows to discrete ran-
dom variables. They consider the problem of esti-
mating the discrete distribution π(θ) given samples
*θ1,θ2, · · · ,θn+ ∼ π by “lifting” the discrete space Θ
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to a continuous one X by filling the gaps in the dis-
crete space with a uniform distribution i.e. x ∈ X
is such that x := θ + u|θ where θ ∈ Θ and u|θ ∼
Uniform(0, 1). Subsequently, they learn the continu-
ous distribution pmodel(x) over X using a normalizing
flow by maximizing the log-likelihood of the continuous
model pmodel(x). Theis et al. (2015) showed that maxi-
mizing likelihood of the continuous model is equivalent
to maximizing a lower bound on the log-likelihood for
a certain discrete model πmodel :=

∫
u
pmodel(θ+u)du on

the original discrete data. Thus, this learning proce-
dure cannot lead to the continuous model degenerately
collapsing onto the discrete data, because its objective
is bounded above by the log-likelihood of a discrete
model. Ho et al. (2019) extended the idea of uniform
dequantization to propose variational dequantization
where in u|θ ∼ q(u|θ) instead of the uniform distribu-
tion. They learn the dequantizing distribution, q(u|θ)
from data by treating it as a variational distribution.
They subsequently estimate π(θ) by optimizing the
following lower bound:

Eθ∼π[log πmodel(θ)] ≥ E θ∼π
u∼q(u|θ)

[
log

pmodel(x)

q(u|θ)

]
(1)

Recently, Nielsen et al. (2020) introduced SurVAE
Flows that extends the framework of normalizing flows
to include surjective and stochastic transformations for
probabilistic modelling. In the SurVAE flow frame-
work, dequantization can be seen as a rounding sur-
jective map Qλ : X → Θ with parameters λ such
that θ := bxc where the forward transformation is
a discrete surjection P (θ|x) = I(x ∈ B(θ)), for
B(θ) = {θ + u|u ∈ [0, 1)d}. The inverse transfor-
mation Q−1λ := q(x|θ) is stochastic with support in
B(θ). Thus, these ideas of using dequantization to
learn a discrete probability distribution can be viewed
as learning a transformation Q−1λ that transforms a
discrete space Θ to a continuous space X.

In this paper, we study the problem of sampling in
discrete spaces i.e. let Θ ⊆ {1, 2, · · · ,K}d := [K]d

be a discrete random variable in d-dimensions with
probability mass function (potentially unnormalized)
π(θ), θ ∈ Θ. Given access to a function that can
compute π(θ), ∀θ ∈ Θ, we aim to generate samples
*θ1,θ2, · · · ,θn+ ∼ π(θ). The aforementioned works
on normalizing flows for discrete data is not directly
applicable in this regime. This is due to the fact that
Uria et al. (2013); Ho et al. (2019) and Nielsen et al.
(2020) estimate π(θ) given samples from the original
distribution by maximizing the log-likelihood of a dis-
crete model. However, we only have access to the
function π(θ) and the learning method given in Equa-
tion (1) cannot be used in our setting. In the next
section, we address this by extending the ideas of neu-

ral transport MCMC (Parno and Marzouk, 2018; Hoff-
man et al., 2019; Albergo et al., 2019) and leveraging
SurVAE Flows (Nielsen et al., 2020).

3 Flow Augmented MCMC

We discussed in Section 2 the utility of normalizing
flows augmented Monte Carlo samplers for overcom-
ing the difficulties posed by unfavourable geometry in
the target continuous distribution, as evidenced by the
works of Parno and Marzouk (2018); Hoffman et al.
(2019) and Albergo et al. (2019). We will now intro-
duce our method of SurVAE Flow augmented MCMC
for sampling in combinatorial spaces.

Informally, our method proceeds as follows: We first
define a rounding surjective transformation Qλ : X→
Θ with parameters λ such that X is a continuous
embedding of the Θ space with density q(x). Since
the continuous embedding may be highly multi-modal
with potentially unfavourable geometry for efficient
MCMC sampling, we define an additional diffeomor-
phic transformation, Tφ : Z → X with parameters φ,
from a simple latent space Z to X. Subsequently, we
learn these transformations via maximum likelihood
estimation. This concludes the learning phase of our
algorithm. Finally, we generate samples from π(θ) by
running MCMC chains to generate samples from the
learned distribution over Z and pushing-forward these
samples to the Θ space using Qλ and Tφ. We elabo-
rate each of these steps below.

Qλ is a surjective transformation that takes as input a
real-valued vector x ∈ X ⊆ Rd and returns the rounded
value of x i.e. θ = bxc. Thus, the forward transforma-
tion from X to Θ is deterministic. The inverse trans-
formation from Θ to X is however stochastic since the
random variable X := Θ + U|θ where U|θ ⊆ [0, 1)d is
given by x := θ + u where u ∼ q(u|θ). Given access
to q(u|θ), we can evaluate the density q(x) at a point
x ∈ Rd exactly as:

q(x) = q(θ + u) := π(θ) · q(u|θ) (2)

since x ∈ B(θ). Thus, we need to learn q(u|θ) in-
order to fully specify this surjective transformation.
Since, q(u|θ) can be any arbitrary continuous density,
we learn q(u|θ) using a normalizing flow i.e. we learn
a diffeomorphic transformation Tλ(·;θ) : E → U|θ
where E ⊆ Rd is standard Gaussian distributed. Un-
der this setup, we get

q(u|θ) = p(ε) · |T′λ(ε;θ)|−1 (3)

Thus, learning the surjective transformation Q is
equivalent to learning q(u|θ) which reduces to learn-
ing a flow Tλ(·;θ). Thus, for brevity we use the in-
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formal notation that the transformation Tλ(·;θ) quan-
tizes the continuous space X to θ. Finally, using Equa-
tion (3), the density q(x) in Equation (2) for a fixed
Tλ(·;θ) can be written as:

q(x) = π(θ) · p(ε) · |T′λ(ε;θ)|−1 (4)

The density q(x) over the continuous embedding X of
Θ learned above can have any arbitrary geometry and
may not be efficient for MCMC sampling. Thus, next
we learn a diffeomorphic transformation Tφ from a
latent space Z to X such that using the change of vari-
ables formula we get:

p̃φ,λ(z) = q(x) · |T′φ(T−1φ x)| (5)

Our complete model, therefore, consists of transfor-
mations Tφ and Tλ(·;θ) that transforms Z to Θ. The
next challenge is to learn Tφ and Tλ(·;θ) such that
the induced density p̃φ,λ(z) has a simple geometry for
efficient MCMC sampling. We achieve this by forcing
p̃φ,λ(z) to be close to a standard Gaussian by minimiz-
ing the KL-divergence between p̃φ,λ(z) and p(z) where

p(z) = (2π)−
d
2 exp(−zT z).

Concretely, let L(λ, φ) := KL
(
p(z) || p̃φ,λ(z)

)
. L(λ, φ)

can be approximated with the empirical average by
generating i.i.d. samples *z1, z2, · · · , zm+ ∼ p(z) giv-
ing:

L(λ, φ) ≈ 1

m

m∑
i=1

log
p(zi)

p̃φ,λ(zi)

We thus arrive at the following optimization problem:

T∗λ,T
∗
φ := arg min

λ,φ
L(λ, φ) ≈ arg max

λ,φ

1

m

m∑
i=1

log p̃φ,λ(zi)

Using Equations (4) and (5), we can rewrite our final
objective as:

T∗λ,T
∗
φ = arg max

λ,φ

(
1

m

m∑
i=1

log π(θi) + log p(εi)

− log |T′λ(εi;θi)|+ |T′φ(T−1φ xi)|

)
(6)

where ∀i ∈ [m], xi = Tφ(zi), θi = bTφ(zi)c, ui =
xi − θi and εi = T−1λ (ui).

Learning T∗λ,T
∗
φ results in a density p̃∗φ,λ(z) that is

approximately Gaussian with a landscape amenable
to efficient MCMC sampling. Thus, our sampling
phase consists of running an MCMC sampler of
choice with target density p̃(z) resulting in samples
*z1, z2, · · · , zn+ ∼ p̃∗φ,λ(z). We can finally obtain sam-
ples *θ1,θ2, · · · ,θn+ ∼ π(θ) as θi = bT∗φ(zi)c.

We end this section with two important remarks.

Remark 1. In our method, it is possible to by-pass the
last step of sampling in the z-space using MCMC en-
tirely since the trained flow is a generative model that
can be used directly to generate samples from π(θ).
This can indeed be done if the learned transformations
Tλ(·;θ)∗ and T∗φ result in the density p̃(z) to be Gaus-
sian. Thus, there is a natural trade-off here: we can
spend only enough computation to train the flow to
learn p̃(z) that is suitable for fast-mixing of the MCMC
chain and generate samples from p̃(z) that is not Gaus-
sian using any sampler of choice or we can spend a
larger amount of compute to learn a flow that perfectly
Gaussianizes the target density π(θ). Then, we can
sample directly by sampling from a Gaussian in the z-
space and using the learned transformations to obtain
samples from π(θ).

Remark 2. As mentioned in Section 2, we can use
any density p(z) instead of a Gaussian for training
the transformations Tλ(·;θ) and Tφ. The main mo-
tivation of our method is to “push-forward” π(θ) onto
a space that is amenable to efficient sampling. An in-
teresting future work might be to devise learning objec-
tives that explicitly drive the learned density to have
simple geometry that favours “off-the-shelf” samplers.

4 Connection to previous works

In Section 3 we introduced a normalizing flow aug-
mented MCMC sampler for combinatorial spaces. Our
method combines surjective transformation for learn-
ing continuous relaxations for discrete spaces and nor-
malizing flows that map the continuous space to a sim-
pler discrete space for easy MCMC sampling. In this
section, we put both these ideas of continuous relax-
ations of discrete spaces and neural transport methods
for efficient MCMC sampling in to perspective with
existing work.

Neural transport samplers for continuous
spaces: As we discussed briefly in Section 2, the neu-
ral transport augmented sampler for continuous vari-
ables has been successfully used by Parno and Mar-
zouk (2018), Peherstorfer and Marzouk (2018), Hoff-
man et al. (2019) and Albergo et al. (2019). A subtle
difference between these works and our work here –
apart from the major difference that the aforemen-
tioned works are applicable only for continuous do-
mains – is the method of training the transport map
itself. These methods train the transport map (or
normalizing flow) by minimizing the Kullback-Liebler
divergence between the target density π(θ) and the
density π̃(θ) learned via T by pushing-forward a stan-
dard normal distribution. Albergo et al. (2019) addi-
tionally use the reverse KL-divergence for the target
density and the approximate density for training in-
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stead. We, on the other hand, learn by minimizing
the KL-divergence in the latent space since we only
have access to a lower-bound of the discrete density
π̃(θ) (cf. Equation (1)).

Continuous relaxations of discrete spaces: The
idea to relax the constraint that random variables of
interest only take discrete values has been used exten-
sively in combinatorial optimization (Pardalos, 1996).
Such an approach is attractive since the continuous
space affords the function with gradient information,
contours, and curvatures that can better inform op-
timization algorithms. Surprisingly though, this idea
has not received much attention in the MCMC set-
ting. Perhaps the closest work to ours in the present
manuscript is that of Zhang et al. (2012) who use the
Gaussian Integral Trick (Hubbard, 1959) to transform
discrete variable undirected models into fully contin-
uous systems where they perform HMC for inference
and the evaluation of the normalization constant. The
Gaussian Integral Trick used by Zhang et al. (2012)
can be viewed as specifying a fixed map from the dis-
crete space to an augmented continuous space. How-
ever, this can result in a continuous space that is highly
multi-modal and not amenable for efficient sampling.

Nishimura et al. (2020) on the other hand map to a
continuous space using uniform dequantization (Uria
et al., 2013) i.e. filling the space between points in
the discrete space with uniform noise inducing param-
eters with piecewise constant densities. 1 They fur-
ther propose a Laplace distribution for the momen-
tum variables in dealing with discontinuous targets
and argue this to be more effective than the Gaussian
distribution. This work relies on the key theoretical
insight of Pakman and Paninski (2013) that Hamilto-
nian dynamics with a discontinuous potential energy
function can be integrated explicitly near the discon-
tinuity such that it preserves the total energy. Pak-
man and Paninski (2013) used this to propose a sam-
pler for binary distributions which was later extended
to handle more general discontinuities by Afshar and
Domke (2015). Dinh et al. (2017) also used this idea on
settings where the parameter space involves phyloge-
netic trees. A major limitation of Pakman and Panin-
ski (2013), Afshar and Domke (2015) and Dinh et al.
(2017) is the fact that these method do not represent
a general-purpose solver since they encounter compu-
tational issues when dealing with complex discontinu-
ities. Similarly, the work of Nishimura et al. (2020)
requires an integrator that works component-wise and
is prohibitively slow for high dimensional problems.
Furthermore, it is not clear if the the Laplace momen-
tum based sampler leads to efficient exploration of the

1This corresponds to q(u|θ) = Uniform(0, 1) in our
method.

continuous space which is highly multi-modal due to
uniform dequantization.

Discrete MCMC samplers: A main limitation of
embedding discrete spaces into continuous ones is that
they can often destroy natural topological properties
of the space under consideration e.g. space of trees,
partitions, permutations etc. Titsias and Yau (2017)
proposed an alternative approach called Hamming ball
sampler based on informed proposals that are ob-
tained by augmenting the discrete space with auxil-
iary variables and performing Gibbs sampling in this
augmented space. However, potentially strong cor-
relations between auxiliary variables and the chain
state severely slows down convergence. Zanella (2020)
tried to address this problem by introducing locally
balanced proposals that incorporate local information
about the target distribution. This framework was
later called a Zanella process by Power and Gold-
man (2019). They used the insights in (Zanella, 2020)
to build efficient, continuous-time, non-reversible al-
gorithms by exploiting the structure of the underly-
ing space through symmetries and group-theoretic no-
tions. This helps them to build locally informed pro-
posals for improved exploration of the target space.
However, their method requires explicit knowledge of
the underlying properties of the target space which is
encoded in the sampler which can be problematic.

5 Experiments

We now present experimental results for our SurVAE
Flow augmented MCMC on problems covering a range
of discrete models applied in statistics, physics, and
machine learning. These include a synthetic example
of a discretized Gaussian Mixture Model, Ising model
for denoising corrupted MNIST, quantized logistic re-
gression on four real world datasets, and Bayesian vari-
able selection for high-dimensional data. The code
for our implementation as well as the experiments
is available at https://github.com/priyankjaini/

discFlowMH.

We compare our model to two baselines that include
a random walk Metropolis-Hastings algorithm and
Gibbs sampling. We further also compare to discrete
HMC (dHMC) (Nishimura et al., 2020) although we
use the original implementation released by the au-
thors which is not parallelizable and implements us-
ing the numpy package (Harris et al., 2020) and R. In
contrast, we implemented our method and the other
baselines in Pytorch (Paszke et al., 2019) and is par-
allelizable to use multiple GPUs for fast and efficient
computation.

For each experiment, we train our model to learn Tλ

https://github.com/priyankjaini/discFlowMH
https://github.com/priyankjaini/discFlowMH
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and Tφ for 10, 000 iterations with a batch-size of 128,
learning rate of 10−3 and optimize using the Adam
optimizer. We run 128 parallel chains of Metropolis-
Hastings algorithm for 105 steps with thinning of 10
(i.e. saving every tenth sample) with no burn-in since
our learned flow already provides a good initialization
for sampling. For fair comparison, we follow a similar
setup for the baselines i.e. we run 128 parallel chains
for each method for 105 steps with thinning of 10. We
use 105 burn-in steps for the baselines in all the exper-
iments. Additionally, for denoising binarized MNIST
using the Ising model, we also experiment with differ-
ent number of burn-in steps which are detailed in the
results. For dHMC (Nishimura et al., 2020), we used
the publicly available code released by the authors.

We compare the efficiencies for all these models by
reporting both the mean effective sample size (ESS)2

across dimensions, mean ESS across dimensions per
minute, and the accuracy or (unnormalized) log-
probability of the samples generated by each sam-
pler for the corresponding downstream task. For our
method (labeled as Flow + MH), we include the train-
ing time of the flow i.e. (Tλ,Tφ) when evaluating ESS
per min to ensure a fair comparison. We compute
the ESS for 16 chains at a time, resulting in 8 ESS
estimates and report mean ± standard error across
these 8 estimates. The major aims of our experimen-
tal evaluation presented here are two-fold: Firstly, our
aim is to demonstrate the efficacy of our flow aug-
mented MCMC over broad applications. In particu-
lar, we want to demonstrate that flow-based generative
models present an attractive methodology to sample
from a discrete distribution by modelling the distri-
bution in a continuous space and sampling in a sim-
pler latent space. Thus, in our experiments here we
have restricted ourselves to using the basic Metropolis-
Hastings (MH) algorithm for sampling to demonstrate
the advantages of being able to learn a transport map
from the discrete space to a simple latent space. By
using a more sophisticated sampler like HMC (Duane
et al., 1987; Neal et al., 2011), we could thus get even
better results. Secondly, most samplers (and especially
discrete space samplers) are either inefficient and/or
are prohibitively slow for high-dimensional problems.
Thus, through our experiments we want demonstrate
that leveraging the advances of flows to learn high-
dimensional distributions, our sampler is more efficient
with significantly better results than the alternative
methods for high-dimensional problems.

Discretized Gaussian Mixture Model We first
illustrate our method on a 2D toy problem. We define

2We chose the mean ESS as a metric because for our
experiments the minimum ESS across features tended to
be close to one due to variables being discrete.

Target Flow Flow+MH

Figure 1: Toy problem. Left: Discretized Gaussian
mixture target distributions. Middle: Approximation
learned by flow. Right: Samples from MCMC chain.

a set of target distributions by discretizing Gaussian
mixture models with 5 components using a discretiza-
tion level of 6 bits. In Fig. 1 we compare samples from
the target distributions, samples from the approxima-
tion learned by the flow and samples from the MCMC
chain. We observe that the flow gives an initial rough
approximation to the target density – thus greatly sim-
plifying the geometry for the MCMC method. Next,
the samples from the MCMC chain are indistinguish-
able from true samples from the target distribution.
This also highlights the trade-off we described in Re-
mark 1 in Section 3.

Ising Model for Denoising Binarized MNIST
We illustrate the application of discrete samplers to
un-directed graphs in this section by considering the
removal of noise from a binary 28 × 28 MNIST im-
age. We take an image from the MNIST dataset and
binarize it such that the true un-corrupted image is
described by a vector y ∈ {0, 1}784. We obtain a cor-
rupted image x by taking this unknown noise-free im-
age y and randomly flipping the value of each pixel
with probability 0.1. Given this corrupted image, our
goal is to recover the original noise-free image. Follow-
ing (Bishop, 2006, Section 8.3), we solve this by for-
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Table 1: Results for denoising binary MNIST using the Ising model. We report ESS per 104 samples, ESS per
minute, and the average log-likelihood (unnormalized) for the generated samples.

Sampler ESS ESS/min log π(θ)

Flow + MH (iters = 1k) 43.45 ± 5.07 0.15 ± 0.02 4025.67 ± 7.56

Flow + MH (iters = 2k) 46.48 ± 7.02 0.15 ± 0.02 4039.92 ± 6.05

Flow + MH (iters = 5k) 45.95 ± 5.34 0.13 ± 0.01 4054.25 ± 5.15

Flow + MH (iters = 10k) 28.52 ± 4.17 0.07 ± 0.01 4056.82 ± 5.64

Gibbs (burn-in = 10k) 7.131 ± 1.42 0.011 ± 0.002 4045 ± 22.79

Gibbs (burn-in = 20k) 6.09 ± 0.82 0.009 ± 0.001 4050.08 ± 16.56

Gibbs (burn-in = 50k) 7.65 ± 0.88 0.012 ± 0.001 4056.37 ± 9.94

Gibbs (burn-in = 100k) 7.82 ± 1.06 0.009 ± 0.001 4060.09 ± 7.56

discrete MH (burn-in = 10k) 26.24 ± 1.84 0.07 ± 0.01 3989.26 ±99.77

discrete MH (burn-in = 20k) 12.01 ± 2.39 0.03 ± 0.01 4019.20 ± 44.22

discrete MH (burn-in = 50k) 1.90 ± 0.17 0.004 ± 0.001 4038.96 ±17.95

discrete MH (burn-in = 100k) 2.40 ± 0.87 0.005 ± 0.002 4044.16 ± 16.03

dHMC 17.83 ± 1.49 0.022 ± 0.001 4038.68 ± 23.55

mulating it as an Ising model and using Monte carlo
samplers to sample θ with energy function given by:

E(θ,x) = −β ·
∑
i,j

θiθj − η ·
∑
i

θixi

where θi and xi are the ith pixel in the sample un-
der consideration θ and corrupted image x respec-
tively. We train the flow for iters = {103, 2 × 103, 5 ×
103, 10 × 103} and run the baselines with burn− in =
{104, 2×104, 5×104, 10×104}. We report the results
in Table 1 and the samples in Figure 2-3. We The
results evidently show that Flow augmented MCMC
significantly outperforms other samplers on both ESS
and the underlying downstream task demonstrating its
ability to disentangle complex correlations present in
high-dimensional problems by mapping it to a latent
space whereas other coordinate-wise samplers are not
able to handle this efficiently.

Quantized Logistic Regression Next, we consider
the task of logistic regression where the learnable pa-
rameters and biases denoted by θ taking discrete val-
ues. This problem is particularly applicable for train-
ing quantized neural networks where the weights take
discrete values. However, here we restrict ourselves
to a simpler version of quantized logistic regression on
four real-world datasets from the UCI repository that
include Iris, Breast Cancer, Wine, and Digits. For each
dataset, we run 5-fold cross-validation – with results
averaged across the 5 folds. In each fold, we train the

True:

Corrupted:

Flow+MH:

Discrete MCMC:

Gibbs:

Figure 2: Ising model. Left: True MNIST digit and
observed corrupted MNIST digit. Right: Denoised
posterior samples from independent MCMC chains.

flow for 104 iterations and run discrete MCMC with
a burn-in of 105 steps. We consider parameters quan-
tized to 4 bits and report the results for these in Ta-
ble 2. We notice that our method outperforms other
methods on ESS but suffers in ESS/min due to the
time it takes to train the flow.

Bayesian Variable Selection Here, we consider
the problem of probabilistic selection of features in
regression where the hierarchical framework allows
for complex interactions making posterior exploration
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Table 2: Results for quantized logisitic regression on four datasets. We report the ESS per 104 samples, ESS per
minute, maximum accuracy, and the average log-likelihood for samples generated by each model.

Dataset Parameters Sampler ESS ESS/min accuracy log π(θ)

Iris 15
Flow + MH 923.21 ± 37.29 58.64 ± 2.37 97.4 -8.55 ± 1.77

discrete MCMC 108.53 ± 1.44 26.14 ± 0.35 97.4 -8.54 ± 1.77

dHMC 361.07 ± 16.97 32.85 ± 0.64 97.4 -8.40 ± 1.89

Wine 42
Flow + MH 146.25 ± 3.51 6.59 ± 0.16 97.8 -2.15 ± 1.63

discrete MCMC 65.78 ± 0.46 15.05 ± 0.10 97.8 -2.15 ± 1.63

dHMC 89.12 ± 11.57 4.53 ± 0.98 97.7 -3.54 ± 0.48

Breast Cancer 62
Flow + MH 15.77 ± 0.49 0.56 ± 0.02 96.8 -19.85 ± 3.40

discrete MCMC 10.46 ± 0.12 2.29 ± 0.03 96.8 -20.14 ± 3.46

dHMC 9.54 ± 0.28 1.38 ± 0.03 96.8 -21.19 ± 2.86

Table 3: Results for Bayesian variable selection on synthetic datasets of 100, 200, and 400 dimensions with only
10, 20, and 40 informative features, respectively. We report ESS per 104 samples, ESS per minute, and the
average log-likelihood for samples generated by each model.

Setting Sampler ESS ESS/min log π(θ)

features = 100, featuresinformative = 10
Flow + MH 436.48 ± 57.82 4.78 ± 0.63 -1054.97 ± 15.89

Gibbs 23.19 ± 22.20 0.12 ± 0.12 -1235.02 ± 13.11

features = 200, featuresinformative = 20
Flow + MH 213.36 ± 29.37 0.89 ± 0.12 -2231.24 ± 8.28

Gibbs 8.78 ± 6.12 0.013 ± 0.009 -2485.91 ± 0.14

features = 400, featuresinformative = 40
Flow + MH 141.45 ± 17.97 0.15 ± 0.02 -4627.58 ± 10.86

Gibbs 1.46 ± 0.23 0.001 ± 10−4 -5306.61 ± 0.20

extremely difficult. Following Schäfer and Chopin
(2013), we consider a hierarchical Bayesian model in
which the target vector y ∈ Zd in linear regression is
observed through:

y|β,θ, σ2,x ∼ N (x · θ · β, σ2I)

with features x ∈ Rd×k, parameters β ∈ Rk and the
binary vector θ that indicates the features that are
included in the model. To achieve a closed form for
the marginal posterior that is independent of β and
σ2, we make the following choices following Power and
Goldman (2019): π(θ|x,y) =

∫
π(θ|x,y, β, σ2)dβ dσ2

with conjugates p(β|σ2,θ) = N (0, ν2σ2Inθ), p(σ) =
IΓ( 2

2 ,
αw
2 ) and, p(θ) = Uniform({0, 1}k) where IΓ is

the inverse-gamma distribution and we set ν, w, α as
in George and McCulloch (1997). For this setting, we
create high-dimensional synthetic datasets rather than
the low-dimensional datasets usually used to demon-
strate the efficacy of our method. We present the re-
sults in Table 3.

6 Conclusion

In this paper, we presented a flow based Monte Carlo
sampler for sampling in combinatorial spaces. Our
method learns a deterministic transport map from
a discrete space to a simple continuous latent space
where it is efficient to sample. Thereby, we sample
from the discrete space by generating samples in the
latent space and using the transport map to obtain
samples in the discrete space. By learning a map to
a simple latent space (like standard Gaussian), our
method is particularly suited for high-dimensional do-
mains where alternative samplers are not efficient due
to the presence of more complex correlations. This
is also reflected in our implementation which is faster
and efficient as demonstrated by our results on a suite
of experiments. In the future, it will be interesting to
devise learning strategies for the transport map that
explicitly pushes the latent space to have certain de-
sirable properties for efficient sampling. Another di-
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rection could be to extend the framework of SurVAE
Flow layers to incorporate underlying symmetries and
invariance in the target domain.
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Fox, E., and Garnett, R., editors, Advances in Neu-
ral Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc.

Peherstorfer, B. and Marzouk, Y. (2018). A Transport-
based Multifidelity Pre-Conditioner for Markov
Chain Monte Carlo.

Power, S. and Goldman, J. V. (2019). Accel-
erated Sampling on Discrete Spaces with Non-
Reversible Markov Processes. arXiv preprint
arXiv:1912.04681.

Rezende, D. J. and Mohamed, S. (2015). Variational
inference with normalizing flows. In ICML.

Rudin, W. (1987). Real and Complex Analysis.
McGraw-Hill, 3rd edition.
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