
Generalization Bounds with Locally Elastic Stability

Appendix

A. Technical Details
In this section, we provide the detailed proofs for our results. Let us denote

Remp =
1

m

mX

j=1

l(AS , zj), R
�i

emp
=

1

m

mX

j=1

l(AS�i , zj)

To prove Theorem 3.1, we require the following key lemma.
Lemma A.1. Suppose an algorithm A satisfies locally elastic stability with �m(·, ·) for loss function l. For any ⌘ > 0, let

M = 2(M� + sup
z2Z

Ezj�(z, zj) +Ml) and M̃ = 2(2 sup
z2Z

Ezj�(z, zj) + ⌘ +Ml). There exists a constant C 0 > 0
depending on the Lipchitz constant L and dimension d of z, if m is large enough and " is small enough, such that

⌘2

32M2
�

�
logC 0m

m
> "

2M̃2
(�"+

4"M2

M̃2
+ 4M),

we have

P
�
Ez[l(AS , z)] >

1

m

mX

j=1

l(AS , zj) +
2 sup

z2Z
Ezj�(z, zj)

m
+ "

�
6 2 exp

�
�

m"2

2M̃2

�
.

Theorem A.1 (Restatement of Theorem 3.1). Let A be an algorithm that has locally elastic stability �m(·, ·) with respect

to the loss function l. Fixing 0 < � < 1 and ⌘ > 0, for large enough m, with probability at least 1� �, we have

�(AS) 
2 sup

z02Z
Ez�(z0, z)

m
+ 2

✓
2 sup
z02Z

Ez�(z
0, z) + ⌘ +Ml

◆r
2 log(2/�)

m
.

Proof. Let � = 2 exp(�m"2/(2M̃2)), which gives us

" = M̃

r
2 log(2/�)

m
.

Plugging the value of " into the inequality

⌘2

32M2
�

�
logC 0m

m
> "

2M̃2
(�"+

4"M2

M̃2
+ 4M),

we obtain that

⌘2

32M2
�

�
logC 0m

m
> 1

2M̃

r
2 log(2/�)

m
(�M̃

r
2 log(2/�)

m
+

r
2 log(2/�)

m

4M2

M̃
+ 4M).

It is sufficient if we have
⌘2

32M2
�

�
logC 0m

m
> 2M2

M̃2

log(2/�)

m
+

2M

M̃

r
2 log(2/�)

m
.

For simplicity, we let m large enough such that

logC 0m

m
6 ⌘2

64M2
�

,
2M2 log(2/�)

M̃2m
6 ⌘2

128M2
�

,
2M

M̃

r
2 log(2/�)

m
6 ⌘2

128M2
�

,

which could be achieved once we notice that
lim

m!1

logC 0m

m
! 0.

Then, we obtain the desirable results by applying Lemma A.1.

To finish the proof of Theorem 3.1, the only thing left is to prove Lemma A.1. We prove it in the following subsection.

Generalization Bounds with Locally Elastic Stability

A.1. Proof of Lemma A.1

By locally elastic stability,

|Remp �R�i

emp
| 6 1

m

X

j 6=i

�(zi, zj)

m
+

Ml

m
.

Recall S = {z1, z2, · · · , zm} and we denote

L(S) =
mX

j=1

l(AS , zj), L(S
�i) =

mX

j 6=i

l(AS�i , zj).

Let Fk be the �-field generated by z1, · · · , zk. We construct Doob’s martingale and consider the associated martingale
difference sequence

Dk = E[L(S)|Fk]� E[L(S)|Fk�1]. (4)

Consider event
E�k =

n
S
��� sup

z02Z

���
X

j 6=k

�(z0, zj)

m
� Ez�(z

0, z)
��� 6 ⌘

o
,

where z is drawn from the same distribution as the training examples {zi}mi=1. Let us decompose Dk as D(1)
k

+ D(2)
k

,
where

D(1)
k

= E[L(S)IE�k |Fk]� E[L(S)IE�k |Fk�1], D(2)
k

= E[L(S)IEc
�k

|Fk]� E[L(S)IEc
�k

|Fk�1].

By Jensen’s inequality,

E[e�(
Pm

k=1 Dk)] 6 1

2
E[e2�(

Pm
k=1 D

(1)
k)] +

1

2
E[e2�(

Pm
k=1 D

(2)
k)]

Now, let us bound the two terms E[e2�(
Pm

k=1 D
(1)
k)] and E[e2�(

Pm
k=1 D

(2)
k)] separately in the following paragraphs, so as to

further apply Chernoff bound to obtain a concentration bound for
P

m

k=1 Dk.

Bounding E[e2�(
Pm

k=1 D
(2)
k)]. First, we consider bounding E[e2�(

Pm
k=1 D

(2)
k)]. Let us further define

A(2)
k

= inf
x

E[L(S)IEc
�k

|z1, · · · , zk�1, zk = x]� E[L(S)IEc
�k

|z1, · · · , zk�1],

B(2)
k

= sup
x

E[L(S)IEc
�k

|z1, · · · , zk�1, zk = x]� E[L(S)IEc
�k

|z1, · · · , zk�1].

Apparently,
A(2)

k
6 D(2)

k
6 B(2)

k
.

Next, we provide an upper bound for B(2)
k

�A(2)
k

. Consider

B(2)
k

�A(2)
k

= sup
x

E[L(S)IEc
�k

|z1, · · · , zk�1, zk = x]� inf
x

E[L(S)IEc
�k

|z1, · · · , zk�1, zk = x]

6 sup
x,y

E[L(S)IEc
�k

|z1, · · · , zk�1, zk = x]� E[L(S)IEc
�k

|z1, · · · , zk�1, zk = y]

= sup
x,y

E[L(S)IEc
�k

|z1, · · · , zk�1, zk = x]� E[L(S�k)IEc
�k

|z1, · · · , zk�1, zk = x]

+ E[L(S�k)IEc
�k

|z1, · · · , zk�1, zk = x]� E[L(S�k)IEc
�k

|z1, · · · , zk�1, zk = y]

+ E[L(S�k)IEc
�k

|z1, · · · , zk�1, zk = y]� E[L(S)IEc
�k

|z1, · · · , zk�1, zk = y].

By the boundedness conditions that |�(·, ·)| 6 M� , 0 6 l(·, ·) 6 Ml

E[L(S)IEc
�k

� L(S�k)IEc
�k

|z1, · · · , zk�1, zk = x] + E[L(S�k)IEc
�k

� L(S)IEc
�k

|z1, · · · , zk�1, zk = y]

6 (2M� +Ml)P(Ec

�k
|z1, · · · , zk�1).

Generalization Bounds with Locally Elastic Stability

In addition,
E[L(S�k)IEc

�k
|z1, · · · , zk�1, zk = x]� E[L(S�k)IEc

�k
|z1, · · · , zk�1, zk = y] = 0.

As a result,
B(2)

k
�A(2)

k
6 (2M� +Ml)P(Ec

�k
|z1, · · · , zk�1)

We further use M to denote 2M� +Ml and Pk(z1:k�1) to denote P(Ec

�k
|z1, · · · , zk�1). Now, by Hoeffding’s lemma,

E[e2�(
Pm

k=1 D
(2)
k)] = E

h
e2�(

Pm�1
k=1 D

(2)
k)E[e2�D

(2)
m |Fm�1]

i

6 E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
P

2
m(z1:m�1)

i

Suppose for some constant ⌧m (see Lemma A.3 for exact value of ⌧m)

sup
k

P(Ec

�k
) 6 ⌧m,

then for all k = 1, . . . ,m

P(Pk(z1:k�1) > c) 6 ⌧m
c
.

Then

E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
Pm(z1:m�1)

i
= E

h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
P

2
m(z1:m�1)I{Pm(z1:m�1)>c}

i

+ E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
P

2
m(z1:m�1)I{Pm(z1:m�1)<c}

i

6 E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2

I{Pm(z1:m�1)>c}

i

+ E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
c
2

I{Pm(z1:m�1)<c}

i
.

Now we further bound the two terms on the righthand side of the above inequality with the following lemmas.

We first consider bounding E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2

I{Pm(z1:m�1)>c}

i
.

Lemma A.2. For any fixed � > 0, for any k = 1, . . . ,m, we have

E[e2�
Pk�1

i=1 D
(2)
i I{Pk(z1:k�1)>c}] 6 e2M(k�1)�P(Pk(z1:k�1) > c) 6 e2M(k�1)� ⌧m

c
.

Proof. Consider

E[e2�D
(2)
m�1I{Pm(z1:m�1)>c}|Fm�2] = E[e2�(D

(2)
m�1�E[D̃(2)

m�1|Fm�2])I{Pm(z1:m�1)>c}|Fm�2]

6 E[e2�(D
(2)
m�1�D̃

(2)
m�2)I{Pm(z1:m�1)>c}|Fm�2] (?)

6 e2�MEzm�1 [I{Pm(Fm�2,zm�1)>c}]

In (?), D̃(2)
m�1|Fm�2 is an independent copy of D(2)

m�1|Fm�2, and the inequality is due to the application of Jensen’s
inequality. Notice that

E
h
e2�D

(2)
m�2Ezm�1 [I{Pm(Fm�2,zm�1)>c}]|Fm�3

i
6 e2�MEzm�2,zm�1 [I{Pm(Fm�3,zm�2,zm�1)>c}].

Iteratively, we obtain that

E[e2�
Pk�1

i=1 D
(2)
i I{Pk(z1:k�1)>c}] 6 e2M(k�1)�P(Pk(z1:k�1) > c).

Similar argument can be obtained for any k = 1, . . . ,m.

With the help of Lemma A.2, we can obtain an upper bound for E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
Pm(z1:m�1)

i
.

Generalization Bounds with Locally Elastic Stability

Lemma A.3. For any fixed � > 0, c < 1,

E
⇥
e2�(

Pm�1
k=1 D

(2)
k)

⇤
6 e2m�

2
M

2
c
2

+m
⌧m
c
e2m�M max{1,�M}.

Proof. Note that

E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
Pm(z1:m�1)

i
6 E

h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2

I{Pm(z1:m�1)>c}

i

+ E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
c
2

I{Pm(z1:m�1)<c}

i
.

We do a decomposition as the following

1 = I{Pk(z1:k�1)<c} + I{Pk(z1:k�1)>c}

for the second term E
h
e2�(

Pm�1
k=1 D

(2)
k)e

1
2�

2
M

2
c
2

I{Pm(z1:m�1)<c}

i
sequentially until I{Pk+1(z1:k)>c} appears for some k =

1, . . . ,m, i.e.,

I{Pk+1(z1:k)<c} = I{Pk+1(z1:k)<c}(I{Pk(z1:k�1)>c} + I{Pk(z1:k�1)<c})

= I{Pk+1(z1:k)<c}I{Pk(z1:k�1)>c} + I{Pk+1(z1:k)<c}I{Pk(z1:k�1)<c}(I{Pk�1(z1:k�2)>c}

+ I{Pk�1(z1:k�2)<c})

= · · · .

Besides the term,
E
h
e2�(

Pm
k=1 D

(2)
k)⇧m

j=1I{Pj(z1:j�1)<c}

i
,

which is bounded by
e

1
2m�

2
M

2
c
2

,

doing such a decomposition will provide extra m terms and the sum of them can be bounded by

m
⌧m
c
e2m�M max{1,�M}

by applying Lemma A.2.

Taking the sum of them would yield the results.

Last, we provide a bound for ⌧m.
Lemma A.4. Recall

E�k =
n
S
��� sup

z02Z

���
X

j 6=k

�(z0, zj)

m
� Ez�(z

0, z)
��� 6 ⌘

o
.

for ⌘ > 2M�/m, we have

sup
k

P(Ec

�k
) 6 ⌧m,

where ⌧m = C exp(� m⌘
2

32M2
�
) for a constant C > 0.

Proof. Notice that if ⌘ > 2M�/m,

[kE
c

�k
✓

n
S
��� sup

z02Z

���
mX

j=1

�(z, zj)

m
� Ez�(z

0, z)
��� > ⌘/2

o
.

Thus,

sup
k

P(Ec

�k
) 6 P

0

@
n
S
��� sup

z02Z

���
mX

j=1

�(z0, zj)

m
� Ez�(z

0, z)
��� > ⌘/2

o
1

A .

Generalization Bounds with Locally Elastic Stability

Recall the L-Lipschitz property on the first argument of �(·, ·), by the standard epsilon net-argument (Wainwright, 2019),
and choose " = ⌘/(6L), we can first obtain via uniform bound such that on a finite ⌘/(6L)-net of Z , which we define as
ZN , with high probability,

sup
z02ZN

���
mX

j=1

�(z0, zj)

m
� Ez�(z

0, z)
��� > ⌘/6.

Then, by Lipschitz condition, for any za, zb in each cell, i.e. |za � zb|  ⌘/(6L), we have

���
mX

j=1

�(za, zj)

m
� Ez�(za, z)

����
���

mX

j=1

�(zb, zj)

m
� Ez�(zb, z)

���  ⌘/3.

By combining the above two steps, we have the uniform bound on Z .

Specifically, we have

P

0

@
n
S
��� sup

z02Z

���
mX

j=1

�(z0, zj)

m
� Ez�(z

0, z)
��� > ⌘/2

o
1

A = C exp(�
m⌘2

32M2
�

),

where
C = exp(C̃d log(Ld/⌘))

for a universal constant C̃ and d is the dimension of z, L is the Lipschitz constant of the first variable in �(·, ·) function in
assumption.

Corollary A.1. For � > 0, c < 1, we have

E
⇥
e2�(

Pm�1
k=1 D

(2)
k)

⇤
6 e

1
2m�

2
M

2
c
2

+
m

c
C exp(�

m⌘2

32M2
�

)e2m�M max{1,�M}

for a constant C that depends on L and d.

Proof. Combining the results of Lemma A.3 and A.4, we obtain the bound.

Bounding E[e2�(
Pm

k=1 D
(1)
k)]. Now, we consider bounding

E[e2�(
Pm

k=1 D
(1)
k)].

We further define

A(1)
k

= inf
x

E[L(S)IE�k |z1, · · · , zk�1, zk = x]� E[L(S)IE�k |z1, · · · , zk�1],

B(1)
k

= sup
x

E[L(S)IE�k |z1, · · · , zk�1, zk = x]� E[L(S)IE�k |z1, · · · , zk�1].

Again we have,
A(1)

k
6 D(1)

k
6 B(1)

k
.

Similarly

B(1)
k

�A(1)
k

6 sup
x,y

E[L(S)IE�k |z1, · · · , zk�1, zk = x]� E[L(S�k)IE�k |z1, · · · , zk�1, zk = x]

+ E[L(S�k)IE�k |z1, · · · , zk�1, zk = x]� E[L(S�k)IE�k |z1, · · · , zk�1, zk = y]

+ E[L(S�k)IE�k |z1, · · · , zk�1, zk = y]� E[L(S)IE�k |z1, · · · , zk�1, zk = y].

Generalization Bounds with Locally Elastic Stability

By the nature of E�k, and the boundedness conditions that |�(·, ·)| 6 M� , 0 6 l(·, ·) 6 Ml

E[L(S)IE�k � L(S�k)IE�k |z1, · · · , zk�1, zk = x] + E[L(S�k)IE�k � L(S)IE�k |z1, · · · , zk�1, zk = y]

6 2 sup
z02Z

Ez�(z
0, z) + 2⌘ +Ml.

Besides,
E[L(S�k)IE�k |z1, · · · , zk�1, zk = x]� E[L(S�k)IE�k |z1, · · · , zk�1, zk = y] = 0.

As a result,
B(1)

k
�A(1)

k
6 2 sup

z02Z

Ez�(z
0, z) + 2⌘ +Ml.

Then, by the standard argument of concentration of martingale differences, we have the following lemma.
Lemma A.5. For any � 2 R, if we denote M̃ = 2 sup

z02Z
Ez�(z0, z) + 2⌘ +Ml

E[e2�(
Pm

k=1 D
(1)
k)] 6 e

1
2m�

2
M̃

2

.

Combined the previous results, we provide the following lemma.
Lemma A.6. For � > 0, c > 0, there exists a constant C > 0 depending on ⌘, d and L

E[e�(
Pm

k=1 Dk)] 6 1

2
e

1
2m�

2
M̃

2

+
1

2

�
e

1
2m�

2
M

2
c
2

+ Cm
⌧m
c
e2m�M max{1,�M}

�
.

Proof. Combining Lemma A.5 and Corollary A.1, and the fact that

E[e�(
Pm

k=1 Dk)] 6 1

2
E[e2�(

Pm
k=1 D

(1)
k)] +

1

2
E[e2�(

Pm
k=1 D

(2)
k)],

we obtain the above bound.

A Concentration Bound. If we choose c = M̃/M 0, where M̃ = 2 sup
z2Z

Ezj�(z, zj) + 2⌘ +Ml and M 0 = 2M� +

2⌘ +Ml. It is easy to see c < 1. We denote �m = Cm ⌧m
2c e

2m�M max{1,�M}. By Chernoff-bound, for any � > 0

P
⇣
L(S)� E[L(S)] > m"

⌘
6 e

1
2m�

2
M̃

2

+ �m
e�m"

.

Let us take � = "/M̃2 for " > 0, when m is large enough and " is small enough, we expect �m 6 e
1
2m�

2
M̃

2

. Specifically,

Cm⌧m
2c

6 exp(
1

2
m�(M̃2�� 4M max{1,�M})).

Recall ⌧m = C exp(� m⌘
2

32M2
�
), plugging in � = "/M̃2 and ⌧m, let C 0 = C/(2c) it is sufficient to let m large enough and "

small enough such that

C 0m exp(�
m⌘2

32M2
�

) 6 exp

✓
m"

2M̃2
("�

4"M2

M̃2
� 4M)

◆
.

which can be further simplified as

⌘2

32M2
�

�
logC 0m

m
> "

2M̃2
(�"+

4"M2

M̃2
+ 4M).

That will lead to

P
⇣
L(S)� E[L(S)] > m"

⌘
6 e

1
2m�

2
M̃

2

+ �m
e�m"

6 2 exp(�
m"2

2M̃2
).

[Proof of Lemma A.1]

Generalization Bounds with Locally Elastic Stability

Proof. Now let us consider l̃(AS , z) = �l(AS , z) + Ez[l(AS , z)]. We remark here as long as 0 6 l 6 Ml (not l̃).

In addition, if we denote

L̃(S) =
mX

j=1

l̃(AS , zj), L̃(S
�i) =

mX

j 6=i

l̃(AS�i , zj),

we have

E[L̃(S)IEc
�k

� L̃(S�k)IEc
�k

|z1, · · · , zk�1, zk = x] + E[L̃(S�k)IEc
�k

� L̃(S)IEc
�k

|z1, · · · , zk�1, zk = y]

6 (2M� + 2 sup
z2Z

Ez0�(z, z0) + 2Ml)P(Ec

�k
|z1, · · · , zk�1).

and

E[L̃(S)IE�k � L̃(S�k)IE�k |z1, · · · , zk�1, zk = x] + E[L̃(S�k)IE�k � L̃(S)IE�k |z1, · · · , zk�1, zk = y]

6 (4 sup
z2Z

Ezj�(z, zj) + 2⌘ + 2Ml)P(E�k|z1, · · · , zk�1).

Thus, the generalization argument is exactly the same as theory above except the value of M , and M̃ .

Specifically, we choose M = 2(M� + sup
z02Z

Ez�(z0, z) +Ml) and M̃ = 2(2 sup
z02Z

Ez�(z0, z) + ⌘ +Ml).

Next, by Lemma 7 in Bousquet & Elisseeff (2002), for an independent copy of zj , which we denote it as z0
j
, we have

ES

⇥
�

1

m

mX

j=1

l(AS , zj) + Ez[l(AS , z)]
⇤
6 ES,z

0
j

⇥
|l(AS , z

0

j
)� l(ASj , z0

j
)|
⇤

6 2 sup
z02Z

Ez�(z0, z)

m
.

Then, the result follows.

A.2. Proof of Lemma 4.1

For simplicity, let us introduce the following two notations:

Rr(g) :=
1

m

mX

j=1

l(g, zj) + �kgk2
K
,

R�i

r
(g) :=

1

m

mX

j 6=i

l(g, zj) + �kgk2
K
.

Let us denote f as a minimizer of Rr in F and f�i as a minimizer of R�i

r
. We further denote �f = f�i

� f .

By Lemma 20 in Bousquet & Elisseeff (2002), we have

2k�fk2
K


�

�m
|�f(xi)|.

Furthermore since
|f(xi)|  kfkK

p
K(xi, xi)  kfkK(xi),

we have
k�fkK 

(xi)�

2�m
.

By the �-admissibility of l,

|l(f, z)� l(f�i, z)|  �|f(x)� f�i(x)| = �|�f(x)|  �k�fkK(x) 6 �2(x)(xi)

2�m
.

Generalization Bounds with Locally Elastic Stability

A.3. Proof of Locally Elastic Stability of SGD

In this section, we establish our new notion of algorithm stability – locally elastic stability for SGD. Specifically, we
consider the quantity

|EA[l(AS , z)]� EA[l(AS�i , z)]|.

Here, the expectation is taken over the internal randomness of A. The randomness comes from the selection of sample at
each step of SGD. Specifically, AS returns a parameter ✓T , where T is the number of iterations. And for dataset S with
sample size m, SGD is performed in the following way:

✓t+1 = ✓t � ⌘tr✓l(✓t, zit),

where ⌘t is the learning rate at time t, it is picked uniformly at random in {1, · · · ,m}.

We denote
L(z) = sup

✓2⇥
kr✓l(✓, z)k

We further denote the gradient update rule

Gl,⌘(✓, z) = ✓ � ⌘r✓l(✓, z).

We consider gradient updates G1, · · · , GT and G0

1, · · · , G
0

T
induced by running SGD on S and S�i. Most of the proofs

are similar to Hardt et al. (2015), the only difference is that for dataset S and S�i, the randomness in A is different. For S,
it is randomly picked in {1, · · · ,m} but for S�i, it is randomly picked in {1, · · · , i � 1, i + 1, · · · ,m}. Thus, we create
two coupling sequences for the updates on S and S�i. Notice choosing any coupling sequences will not affect the value
of |EA[l(AS , z)]� EA[l(AS�i , z)]|, since the expectations are taken with respect to l(AS , z) and l(AS�i , z) separately.

Convex optimization. We first show SGD satisfies locally elastic stability for convex loss minimization.

Proposition A.1 (Restatement of Proposition 2). Assume that the loss function l(·, z) is ↵-smooth and convex for all z 2 Z .

In addition, l(·, z) is L(z)-Lipschitz and L(z) < 1 for all z 2 Z: |l(✓, z) � l(✓0, z)| 6 L(z)k✓ � ✓0k for all ✓, ✓0. We

further assume L = sup
z2Z

L(z) < 1. Suppose that we run SGD with step sizes ⌘t 6 2/↵ for T steps. Then,

|E[l(✓̂T , z)]� E[l(✓̂�i

T
, z)]| 6 (L+ L(zi))L(z)

m

TX

t=1

⌘t.

Proof. Notice for it which is randomly picked in {1, · · · , i � 1, i + 1, · · · ,m}, we can view it as a two-phase process.
Firstly, draw it uniformly from a n-element set {1, · · · , i � 1, i0, i + 1, · · · ,m}. If any element but i0 is drawn, directly
output it. Otherwise if i0 is drawn, then uniformly draw again from {1, · · · , i�1, i+1, · · · ,m}, and output the final index
that is drawn. It is not hard to notice that in this way, each index in {1, · · · , i� 1, i+ 1, · · · ,m} has probability

1

m
+

1

m(m� 1)
=

1

m� 1

to be drawn, which is the same as directly uniformly draw from {1, · · · , i� 1, i+ 1, · · · ,m}.

We consider two coupling processes of SGD on S and S�i. The randomness of uniformly drawing from n elements for
SGD on S and uniformly drawing from {1, · · · , i� 1, i0, i+ 1, · · · , n} for SGD on S�i share the same random seed ⇠t at
each iteration at time t. That will not affect the value of

|EA[l(AS , z)]� EA[l(AS�i , z)]|.

Let �t = k✓̂t � ✓̂0tk, where ✓̂t is the parameter obtained by SGD on S at iteration t and ✓̂0t is the parameter by SGD on
S�i obtained at iteration t.

With probability 1/n the selected example is different, in that case we use the fact that

�t+1 6 �t + ⌘tL(zi) + ⌘tL(zj)

Generalization Bounds with Locally Elastic Stability

for some j 6= i, which can further be upper bounded by ⌘t(L(zi) + L). With probability 1� 1/n, the selected example is
the same, then we can apply Lemma 3.7 in Hardt et al. (2015) regarding 1-expansivity of the update rule Gt, then we have

E[�t+1] 6
✓
1�

1

m

◆
E[�t] +

1

m
E[�t] +

⌘t(L(zi) + L)

m
.

This technique is used repeatedly in the following other theorems, we will not further elaborate it.

Then, unraveling the recursion, by the fact that L(z) continuity of l(✓, z) for any ✓, we obtain

|E[l(✓̂T , z)]� E[l(✓̂�i

T
, z)]| 6 (L+ L(zi))L(z)

m

TX

t=1

⌘t.

Strongly convex optimization. We consider the penalized loss discussed in Hardt et al. (2015):

1

n

nX

i=1

l(✓, zi) +
µ

2
k✓k22,

where l(✓, z) is convex with respect to ✓ for all z. And without loss of generality, we assume ⇥ is a ball with radius r (this
can be obtained by the boundedness of loss l) and apply stochastic projected gradient descent:

✓t+1 = ⇧⇥(✓t � ⌘trl̃(✓t, zit))

where l̃(✓, z) = l(✓, z) + µ

2 k✓k
2
2.

Proposition A.2 (Strongly Convex Optimization). Assume that the loss function l(·, z) is ↵-smooth and µ-strongly convex

for all z 2 Z . In addition, l(·, z) is L(z)-Lipschitz and L(z) < 1 for all z 2 Z: |l(✓, z) � l(✓0, z)| 6 L(z)k✓ � ✓0k for

all ✓, ✓0. We further assume L = sup
z2Z

L(z) < 1. Suppose that we run SGD with step sizes ⌘ 6 1/↵ for T steps. Then,

E|l̃(✓̂T ; z)� l̃(✓̂0T ; z)| 6
(L(zi) + L)L(z)

mµ

Proof. By using the same coupling method, we have when the learning rate ⌘µ 6 1, By further similarly applying Lemma
3.7 and method in the Theorem 3.9 in Hardt et al. (2015), we have

E[�t+1] 6
✓
1�

1

m

◆
(1� ⌘µ)E[�t] +

1

m
(1� ⌘µ)E[�t] +

⌘(L(zi) + L)

m
.

Unraveling the recursion gives,

E[�T] 6
L(zi) + L

m

TX

t=0

(1� ⌘µ)t 6 L(zi) + L

mµ
.

Plugging the above inequality, we obtain

E|l̃(✓̂T ; z)� l̃(✓̂0T ; z)| 6
(L(zi) + L)L(z)

mµ

Non-convex optimization Lastly, we show the case of non-convex optimization.
Proposition A.3 (Restatement of Proposition 3). Assume that the loss function l(·, z) is non-negative and bounded for all

z 2 Z . Without loss of generality, we assume l(·, z) 2 [0, 1]. In addition, we assume l(·, z) is ↵-smooth and convex for all

z 2 Z . We further assume l(·, z) is L(z)-Lipschitz and L(z) < 1 for all z 2 Z and L = sup
z2Z

L(z) < 1. Suppose

that we run SGD for T steps with monotonically non-increasing step sizes ⌘t 6 c/t for some constant c > 0. Then,

|E[l(✓̂T , z)]� E[l(✓̂�i

T
, z)]| 6 1 + 1/(↵c)

m� 1
[c(L(zi) + L)L(z)]

1
↵c+1T

↵c
↵c+1 .

Generalization Bounds with Locally Elastic Stability

Figure 3. Long tail empirical distribution of classes and subpopulations within classes, taken from (Zhu et al., 2014) with the authors’
permission.

Proof. By Lemma 3.11 in Hardt et al. (2015), for every t0 2 {1, · · · , T} and switch L to L(z), we have

|E[l(✓̂T , z)]� E[l(✓̂�i

T
, z)]| 6 t0

m
+ L(z)E[�T |�t0 = 0].

Let �t = E[�t|�t0 = 0]. By applying Lemma 3.7 and method in the Theorem 3.12 in Hardt et al. (2015), combining the
fact regarding boundedness of the gradient – kr✓l(✓̂t, zi)k 6 L(zi), supj 6=i

kr✓l(✓̂t, zj)k 6 L, we have

�t+1 6
✓
1�

1

m

◆
(1 + ⌘t↵)�t +

1

m
�t +

⌘t(L+ L(zi))

m

6
✓

1

m
+ (1� 1/m)(1 + c↵/t)

◆
�t +

c(L+ L(zi))

tm

=
⇣
1 + (1� 1/m)

c↵

t

⌘
�t +

c(L+ L(zi))

tm

6 exp((1� 1/m)
c↵

t
)�t +

c(L+ L(zi))

tm

By the fact �0 = 0, we can unwind this recurrence relation from T down to t0 + 1, it is easy to obtain

|E[l(✓̂T , z)]� E[l(✓̂�i

T
, z)]| 6 1 + 1/(↵c)

m� 1
[c(L(zi) + L)L(z)]

1
↵c+1T

↵c
↵c+1 .

B. More about Experiments
To verify the effectiveness of our proposed locally elastic stability, we conduct experiments on the real-world CIFAR-10
dataset. In our experiments, we randomly choose 100 examples per image class (1000 examples in total) for both training
and test data. For the neural network model, we consider an 18-layer ResNet and use its pytorch implementation3 for

3More details are in https://pytorch.org/docs/stable/torchvision/models.html.

https://pytorch.org/docs/stable/torchvision/models.html

Generalization Bounds with Locally Elastic Stability

(a) Sensitivity of neural networks. (b) Sensitivity of a random feature model. (c) Sensitivity of a linear model.

Figure 4. Class-level sensitivity approximated by influence functions for neural networks (based on a pre-trained 18-layer ResNet), a
random feature model (based on a randomly initialized 18-layer ResNet), and a linear model on CIFAR-10. The vertical axis denotes
the classes in the test data and the horizontal axis denotes the classes in the training data. The class-level sensitivity from class a in the
training data to class b in the test data is defined as C(ca, cb) = 1

|Sa|⇥|S̃b|

P
zi2Sa

P
z2S̃b

|l(✓̂, z) � l(✓̂�i, z)|, where Sa denotes the

set of examples from class a in the training data and S̃b denotes set of examples from class b in the test data.

(a) Influence for neural networks. (b) Influence for the random feature model. (c) Influence for the linear model.

Figure 5. Class-level sensitivity approximated by influence function for neural networks (based on a pre-trained 18-layer ResNet), a
random feature model (based on a randomly initialized 18-layer ResNet), and a linear model on CIFAR-10. Note that the sensitivity
here is based on sign values (l(✓̂, z)� l(✓̂�i, z)) instead of absolute values (|l(✓̂, z)� l(✓̂�i, z)|) as in Eq. (2).

our experiments. For the random feature model, we use the same 18-layer ResNet (with randomly initialized weights)
to extract random features and only train the last layer. As for the loss function, we use the cross-entropy loss for linear
models, random feature models, and neural networks. Furthermore, we analyze locally elastic stability in two settings:
locally elastic stability for the whole algorithm and locally elastic stability for a step-wise update of SGD.

Locally elastic stability via influence functions. As shown in Sec. 2.1, we use influence functions to estimate the quantity
|l(✓̂, z)� l(✓̂�i, z)| for all i’s in Eq. (2). Similar to Koh & Liang (2017), we compared the ResNet-18 with all but the top
layer frozen4, and a random feature model based on a randomly initialized ResNet-18 to a linear model in our experiments.
In the experiments for locally elastic stability via influence functions, we add the `2 regularization (�k✓k

2

2) with � = 1e�7.
We train the last layer (randomly initialized) of the ResNet-18, the random feature model, and the linear model using Adam
(Kingma & Ba, 2015) with learning rate 3e�4 for 50 epochs, learning rate 1.0 for 500 epochs5, and learning rate 3e�4 for
60 epochs each, and the mini-batch sizes are 50, 20, 50 respectively. The training accuracy for the ResNet-18, the random
feature model, and the linear model is 99.3%, 94.7%, and 94.7%, and the test accuracy for them is 93.1%, 29.8%, and
27.3%. The class-level sensitivity approximated by influence function for the neural networks, the random feature model,
and the linear model on CIFAR-10 is shown in Fig. 4. Furthermore, we also consider the influence based on sign values,

4We pre-train the model on the whole CIFAR-10 dataset first and keep the pre-trained weights.
5It is worthwhile to note that it is hard for the random feature model, especially based on large neural networks, to converge. For the

random feature model, we also use a widely-used learning rate decay, where the initial learning rate is annealed by a factor of 10 at 1/3
and 2/3 during training.

Generalization Bounds with Locally Elastic Stability

(a) Neural networks (epoch 0). (b) Neural networks (epoch 10). (c) Neural networks (epoch 50).

(d) Random feature model (epoch 0). (e) Random feature model (epoch 50). (f) Random feature model (epoch 250).

(g) Linear model (epoch 0). (h) Linear model (epoch 10). (i) Linear model (epoch 50).

Figure 6. Exact stepwise characterization of class-level sensitivity for neural networks, random feature models, and linear models trained
with different numbers of epochs by SGD on CIFAR-10. The class-level sensitivity for a stepwise update of SGD is C0(ca, cb) =

1
|Sa|·|S̃b|

P
zi2Sa

P
z2S̃b

|l(✓̂t � ⌘r✓l(✓̂t, zi), z)� l(✓̂t, z)|, where Sa denotes the set of examples with class a in the training data and

S̃b denotes the set of examples with class b in the test data.

l(✓̂, z)� l(✓̂�i, z) instead of absolute values |l(✓̂, z)� l(✓̂�i, z)| in Eq. (2), and the corresponding class-level sensitivity is
shown in Fig. 5.

Stepwise characterization of locally elastic stability. To provide the stepwise characterization of locally elastic stability,
we consider the trained parameters of SGD with different number of training epochs. Note that we didn’t make any
approximation for the experiments in this part. In the training stage, we train the ResNet-186, the random feature model,
and the linear model using SGD with learning rate 0.05, 1.0, and 0.3 separately, and the mini-batch sizes are 50, 20, 50
respectively. The training accuracy (test accuracy) for the ResNet-18 at epoch 0, 10, 50, 100 are 10.3% (10.6%), 22%
(20.2%), 37.6% (24.3%), and 99.9% (38.9%). Similarly, the training accuracy (test accuracy) for the random feature
model7 at epoch 0, 50, 250 are 10.3% (10.6%), 63.1% (28.0%), and 90.2% (30.1%). Similarly, the training accuracy
(test accuracy) for the linear model at epoch 0, 10, 50, 100 are 9.6% (7.6%), 53.4% (20.5%), 98.2% (22.7%), and 100%
(23%). To compute the class-level sensitivity C(ca, cb), we use the small probing learning rate 1e�6. The corresponding

6Note that we remove the batch normalization for the experiments in step-wise characterization of locally elastic stability for SGD
(only in this part).

7Because it is hard for the random feature model to converge, we use the Adam optimizer and a widely-used learning rate decay for
the random feature model, where the initial learning rate is annealed by a factor of 10 at 1/3 and 2/3 during training.

Generalization Bounds with Locally Elastic Stability

(a) Neural networks (epoch 0). (b) Neural networks (epoch 10). (c) Neural networks (epoch 50).

(d) Random feature model (epoch 0). (e) Random feature model (epoch 50). (f) Random feature model (epoch 250).

(g) Linear model (epoch 0). (h) Linear model (epoch 10). (i) Linear model (epoch 50).

Figure 7. Exact step-wise characterization of class-level sensitivity for neural networks, random feature models, and linear models
trained with different numbers of epochs by SGD on CIFAR-10. Note that the sensitivity here is based on sign values (l(✓̂, z)�l(✓̂�i, z))
instead of absolute values (|l(✓̂, z)� l(✓̂�i, z)|) as in Eq. (2).

class-level sensitivity based on absolute values(|l(✓̂, z)� l(✓̂�i, z)|) and sign values (l(✓̂, z)� l(✓̂�i, z)) are shown in Fig.
6 and Fig. 7.

Comparison among M� , sup
z02Z

Ez�(z0, z) and Ml on a 2-layer NNs. We consider a 2-layer NNs in the following
format:

f(W,a, x) =
1

k

kX

r=1

ar�(W
T

r
x)

where d is the input dimension, k is the dimension of the hidden layer, and � is the ReLU activation function. As for the
loss function, we use the square loss with `2 regularization as follows:

L(W,a, x) = (f(W,a, x)� y)2 +
�

2
(kWk

2
2 + kak22)

In our experiments, the value of each dimension of W , a, x is in [�1, 1], and the value of y is in {�1, 1}. As for the
data distribution, each dimension of x is sampled from a uniform distribution on [�0.5, 1] for positive samples with label
y = 1. Similarly, each dimension of x is sampled from a uniform distribution on [�1.0, 0.5] for negative samples with
label y = �1. We randomly sample a total of m = 10000 examples equally from positive and negative data distribution

Generalization Bounds with Locally Elastic Stability

Positive Examples Cat, Dog Deer, Horse Deer, Frog Car, Cat Plane, Cat
Negative Examples Car, Truck Car, Truck Ship, Truck Plane, Bird Car, Truck

Between Finer Classes (sign) 0.03 0.03 0.02 0.06 0.08
Within Finer Classes (sign) 0.05 0.09 0.08 0.24 0.15

Between Finer Classes (absolute) 1.52 1.90 2.05 4.50 3.19
Within Finer Classes (absolute) 1.53 1.92 2.09 4.66 3.23

Table 2. A fine-grained analysis of the sensitivity within superclasses (within fine-grained classes or between fine-grained classes) for
binary classification.

for both training and test data. As for the hyper parameters, we use d = 10, k = 100, and � = 1e�6 in our experiments.
We trained the 2-layer NNs 50 epochs with SGD on batches. The corresponding learning rate and batch size are 1.0 and
100.

In this setting, the upper bound of the loss function Ml is 121.00055 and M� = m�U

m
= sup

z02S,z2Z
�(z0, z) estimated

by the influence function as shown in Eq. (2) is 3464.97. We can see that M� is about 29 times of Ml. Similarly,
sup

z02Z
Ez�(z0, z) estimated by the influence function is 22.91. It indicates that sup

z02Z
Ez�(z0, z) in the locally elastic

stability is smaller than Ml and much smaller than M� = m�U

m
= sup

zj2S,z2Z
�(z, zj).

Class-level locally elastic stability. In this part, we consider the case where the sensitivity from one class to another class
is the maximum sensitivity instead of the mean sensitivity (in Fig. 4) among the 100 ⇥ 100 pairs. In this setting, we have
sup

zj2S,z2Z
�m(z, zj) = 3.05 and sup

z2Z
Ezj�m(z, zj) = 0.73 for the neural networks, and sup

zj2S,z2Z
�m(z, zj) =

314, sup
z2Z

Ezj�m(z, zj) = 210 for the linear model. Furthermore, the maximum and the mean of the diagonal (off-
diagonal) elements are 3.05 and 1.02 (1.65 and 0.21) for the neural networks in this setting. Similarly, the maximum and
the mean of the diagonal (off-diagonal) elements are 168 and 77 (314 and 82) for the linear model.

Fine-grained analysis. To better understand the locally elastic stability, we also provide some fine-grained analysis on the
CIFAR-10 dataset. In this part, we consider binary classification on two superclasses, and each superclass is composed
of two fine-grained classes. In the training data, we randomly sample 500 examples for each fine-grained class (2000
examples in total). In the test data, we have 1000 examples for each fine-grained class, so there are 4000 examples in total.
We repeat our experiments five times on different compositions of positive and negative examples as shown in Table 2. In
this part, we still use ResNet-18 as our model, and the sensitivity is approximated by the influence function. We first train
the ResNet-18 from scratch and then froze the weights except for the top layer. After that, we train the last layer (randomly
initialized) of the ResNet-18, and the class-level sensitivity is shown in Table 2. The results show that examples within fine-

grained classes (within the same superclass) have stronger sensitivity than examples between fine-grained classes (within

the same superclass) for neural networks.

