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Appendix

A. Contributions
• Charline and Yee Whye conceived the project and Yee Whye initially came up with an equivariant form of self-attention.

• Through discussions between Michael, Charline, Hyunjik and Yee Whye, this was modified to the current
LieSelfAttention layer, and Michael derived the equivariance of the LieSelfAttention layer.

• Michael, Sheheryar and Hyunjik simplified the proof of equivariance and further developed the methodology for the
LieTransformer in its current state, and created links between LieTransformer and other related work.

• Michael wrote the initial framework of the LieTransformer codebase. Charline and Sheheryar wrote the code for
the shape counting experiments, Michael wrote the code for the QM9 experiments, Sheheryar wrote the code for the
Hamiltonian dynamics experiments, after helpful discussions with Emilien.

• Charline carried out the experiments for Table 1, Michael carried out most of the experiments for Table 2 with some
help from Hyunjik, Sheheryar carried out the experiments for Figure 3b and all the Hamiltonian dynamics experiments.

• Hyunjik wrote all sections of the paper except the experiment sections: the shape counting section was written by
Charline, the QM9 section by Michael and the Hamiltonian dynamics section was written by Emilien and Sheheryar.

B. Formal definitions for Groups and Representation Theory
Definition 2. A group G is a set endowed with a single operator · : G×G 7→ G such that

1. Associativity: ∀g, g′, g′′ ∈ G, (g · g′) · g′′ = g · (g′ · g′′)

2. Identity: ∃e ∈ G, ∀g ∈ G g · e = e · g = g

3. Invertibility: ∀g ∈ G,∃g−1 ∈ G, g · g−1 = g−1 · g = e

Definition 3. A Lie group is a finite-dimensional real smooth manifold, in which group multiplication and inversion are
both smooth maps.

The general linear group GL(n,R) of invertible n× n matrices is an example of a Lie group.

Definition 4. Let S be a set, and let Sym(S) denote the set of invertible functions from S to itself. We say that a group G
acts on S via an action ρ : G→ Sym(S) when ρ is a group homomorphism: ρ(g1g2)(s) = (ρ(g1) ◦ ρ(g2))(s) ∀s ∈ S.

If S is a vector space V and this action is, in addition, a linear function, i.e. ρ : G→ GL(V ), where GL(V ) is the set of
linear invertible functions from V to itself, then we say that ρ is a representation of G.

C. Proofs
Lemma 1. The function composition f ◦ fK ◦ ... ◦ f1 of several equivariant functions fk, k ∈ {1, 2, ...,K} followed by an
invariant function f , is an invariant function.

Proof. Consider group representations π1, . . . , πK that act on f1, . . . fK respectively, and representation π0 that acts on the
input space of f1. If each fk is equivariant with respect to πk, πk−1 such that fk ◦ πk−1 = πk ◦ fk, and f is invariant such
that f ◦ πk = f , then we have

f ◦ fk ◦ ... ◦ f1 ◦ π0 = f ◦ fk ◦ ... ◦ π1 ◦ f1
...
= f ◦ πk ◦ fk ◦ ... ◦ f1
= f ◦ fk ◦ ... ◦ f1,

hence f ◦ fK ◦ ... ◦ f1 is invariant.
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Lemma 2. The group equivariant convolution Ψ : IU → IU defined as: [Ψf ](g) ,
∫
G
ψ(g′−1g)f(g′)dg′ is equivariant

with resepct to the regular representation π of G acting on IU as [π(u)f ](g) , f(u−1g).

Proof.

Ψ[π(u)f ](g) =

∫
G

ψ(g′−1g)[π(u)f ](g′)dg′

=

∫
uG

ψ(g′−1g)f(u−1g′)dg′

=

∫
G

ψ(g′−1u−1g)f(g′)dg′

= [Ψf ](u−1g

= [π(u)[Ψf ]](g).

The second equality holds by invariance of the left Haar measure.

Proposition 1. The lifting layer L is equivariant with respect to the representation π.

Proof. Note L[π(u)fX ](g) = fi for g ∈ s(uxi)H and [π(u)L[fX ]](g) = L[fX ](u−1g) = fi for g ∈ us(xi)H . Hence
L[π(u)fX ] = π(u)L[fX ] because the two cosets are equal: s(uxi)H = us(xi)H ∀u ∈ G. Note that this holds because:

• If g ∈ s(xi)H = {g ∈ G|gx0 = xi}, then g maps x0 to xi, hence ug maps x0 to uxi. So if g ∈ s(xi)H then
ug ∈ s(uxi)H = {g ∈ G|gx0 = uxi}, the set of all g that map x0 to uxi. In summary, us(xi)H ⊂ s(uxi)H

• Conversely, if g ∈ s(uxi)H , then we know that u−1g maps x0 to xi, so u−1g ∈ s(xi)H , hence g ∈ us(xi)H . In
summary, s(uxi)H ⊂ us(xi)H

• We have shown us(xi)H ⊂ s(uxi)H and s(uxi)H ⊂ us(xi)H , thus s(uxi)H = us(xi)H .

Proposition 2. LieSelfAttention is equivariant with respect to the regular representation π.

Proof. Let IU = L(G,RD) be the space of unconstrained functions f : G→ RD. We can define the regular representation
π of G acting on IU as follows:

[π(u)f ](g) = f(u−1g) (7)

f is defined on the set Gf = ∪ni=1s(xi)H (i.e. union of cosets corresponding to each xi). Note Gπ(u)f = uGf , and Gf
does not depend on the choice of section s.

Note that for all provided choices of kc and kl, we have:

kc([π(u)f ](g), [π(u)f ](g′)) = kc(f(u−1g), f(u−1g′)) (8)

kl(g
−1g′) = kl((u

−1g)−1(u−1g′)) (9)

Hence for all choices of F , we have that

απ(u)f (g, g′) = F (kc([π(u)f ](g), [π(u)f ](g′)), kl(g
−1g′))

= F (kc(f(u−1g), f(u−1g′)), kl((u
−1g)−1u−1g′))

= αf (u−1g, u−1g′) (10)

We thus prove equivariance for the below choice of LieSelfAttention Φ : IU → IU that uses softmax normalisation,
but a similar proof holds for constant normalisation. Let Af (g, g′) , exp(αf (g, g′)), hence Equation (10) also holds for
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Af .

[Φf ](g) =

∫
Gf

wf (g, g′)f(g′)dg′ (11)

=

∫
Gf

Af (g, g′)∫
Gf
Af (g, g′′)dg′′

f(g′)dg′ (12)

Hence:

wπ(u)f (g, g′) =
Aπ(u)f (g, g′)∫

Gπ(u)f
Aπ(u)f (g, g′′)dg′′

=
Af (u−1g, u−1g′)∫

uGf
Af (u−1g, u−1g′′)dg′′

=
Af (u−1g, u−1g′)∫
Gf
Af (u−1g, g′′)dg′′

= wf (u−1g, u−1g′) (13)

Then we can show that Φ is equivariant with respect to the representation π as follows:

Φ[π(u)f ](g) =

∫
Gπ(u)f

wπ(u)f (g, g′)[π(u)f ](g′)dg′

=

∫
uGf

wf (u−1g, u−1g′)f(u−1g′)dg′

=

∫
Gf

wf (u−1g, g′)f(g′)dg′

= [Φf ](u−1g)

= [π(u)[Φf ]](g) (14)

Equivariance holds for any αf that satisfies Equation (10). Multiplying αf by an indicator function 1{d(g, g′) < λ} where
d(g, g′) is some function of g−1g′, we can show that local self-attention that restricts attention to points in a neighbourhood
also satisfies equivariance. When approximating the integral with Monte Carlo samples (equivalent to replacing Gf with
Ĝf ) we obtain a self-attention layer that is equivariant in expectation for constant normalisation of attention weights (i.e.
E[Φ̂[π(u)f ](g)] = Φ[π(u)f ](g) = [π(u)[Φf ]](g) where Φ̂ is the same as Φ but with Ĝf instead of Gf ). However for
softmax normalisation we obtain a biased estimate due to the nested MC estimate in the denominator’s normalising constant.

D. Introduction to Self-Attention
Self-attention (Vaswani et al., 2017) is a mapping from an input set of N vectors {x1, . . . , xN}, where xi ∈ RD, to
an output set of N vectors in RD. Let us represent the inputs as a matrix X ∈ RN×D such that the ith row Xi: is xi.
Multihead self-attention (MSA) consists of M heads where M is chosen to divide D. The output of each head is a
set of N vectors of dimension D/M , where each vector is obtained by taking a weighted average of the input vectors
{x1, . . . , xN} with weights given by a weight matrix W , followed by a linear map WV ∈ RD×D/M . Using m to index the
head (m = 1, . . . ,M ), the output of the mth head can be written as:

fm(X) ,WXWV,m ∈ RN×D/M

where W , softmax(XWQ,m(XWK,m)>) ∈ RN×N

where WQ,m,WK,m,WV,m ∈ RD×D/M are learnable parameters, and the softmax normalisation is performed on each
row of the matrix XWQ,m(XWK,m)> ∈ RN×N . Finally, the outputs of all heads are concatenated into a N ×D matrix
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and then right multiplied by WO ∈ RD×D. Hence MSA is defined by:

MSA(X) , [f1(X), . . . , fM (X)]WO ∈ RN×D. (15)

Note XWQ(XWK)> is the Gram matrix for the dot-product kernel, and softmax normalisation is a particular choice of
normalisation. Hence MSA can be generalised to other choices of kernels and normalisation that are equally valid (Wang
et al., 2018; Tsai et al., 2019).

E. LieSelfAttention: Details
We explore the following non-exhaustive list of choices for content-based attention, location-based attention, combining
content and location attention and normalisation of weights:

Content-based attention kc(f(g), f(g′)):

1. Dot-product: 1√
dv

(
WQf(g)

)>
WKf(g′) ∈ R

for WQ,WK ∈ Rdv×dv

2. Concat: Concat[WQf(g),WKf(g′)] ∈ R2dv

3. Linear-Concat-linear: WConcat[WQf(g),WKf(g′)] ∈ Rds
for W ∈ Rds×2dv .

Location-based attention kl(g−1g′) for Lie groups G:

1. Plain: ν[log(g−1g′)]

2. MLP: MLP(ν[log(g−1g′)])

where log : G → g is the log map from G to its Lie algebra g, and ν : g → Rd is the isomorphism that extracts the free
parameters from the output of the log map (Finzi et al., 2020). We can use the same log map for discrete subgroups of
Lie groups (e.g. Cn ≤ SO(2), Dn ≤ O(2)). See Appendix F for an introduction to the Lie algebra and the exact form of
ν ◦ log(g) for common Lie groups.

Combining content and location attention αf (g, g′):

1. Additive: kc(f(g), f(g′)) + kl(g
−1g′)

2. MLP: MLP[Concat[kc(f(g), f(g′)), kl(g
−1g′)]]

3. Multiplicative: kc(f(g), f(g′)) · kl(g−1g′)

Note that the MLP case is a strict generalisation of the additive combination, and for this option kc and kl need not be
scalars.

Normalisation of weights {wf (g, g′)}g′∈Gf :

1. Softmax: softmax
(
{αf (g, g′)}g′∈Gf

)
2. Constant: { 1

|Gf |αf (g, g′)}g′∈Gf

We also outline how to extend the single-head LieSelfAttention described in Algorithm 1 extends to Multihead
equivariant self-attention. Let M be the number of heads, assuming it divides dv, with m indexing the head. Then the
output of each head is:

V m(g) =

∫
Gf

wf (g, g′)WV,mf(g′)dg′ ∈ Rdv/M (16)
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The only difference is that WQ,m,WK,m,WV,m ∈ Rdv/M×dv . The multihead self-attention combines the heads using
WO ∈ Rdv×dv , to output:

fout(g) = WO


V 1(g)

...
VM (g)

 (17)

F. Lie Algebras and Log maps
In this section we briefly introduce Lie algebras and log maps, mainly summarising relevant sections of Hall (2015). See the
reference for a formal and thorough treatment of Lie groups and Lie algebras.

Given a Lie group G, a smooth manifold, its Lie algebra g is a vector space defined to be the tangent space at the identity
element e ∈ G (together with a bilinear operation called the Lie bracket [x, y], whose details we omit as it is not necessary
for understanding log maps). We most commonly deal with matrix Lie groups, namely subgroups of the general linear
group GL(n;C), the group of all n × n invertible matrices with entries in C. This includes rotation/reflection groups
SO(n) and O(n), as well as the group of translations T (n) and roto-translations SE(n), that are isomorphic to subgroups
of GL(n+ 1;C). For example, SE(n) is isomorphic to the group of matrices of the form:

|
R x

|
— 0 — 1

 ∈ R(n+1)×(n+1)

where R ∈ SO(n) and x ∈ Rn. For such matrix Lie Groups G, the Lie algebra is precisely the set of all matrices X such
that exp(tX) ∈ G for all t ∈ R, where exp is the matrix exponential (exp(A) = I + A + A2/2! + . . .). Hence the Lie
algebra g can be thought of as a set of matrices, and the matrix exponential exp can be thought of as a map from the Lie
algebra g to G. This map turns out to be surjective for all the groups mentioned below, and hence we may define the log
map log : G→ g in the other direction. Since the effective dimension of Lie algebra, say d, is smaller than the number of
entries of the n× n (or (n+ 1)× (n+ 1) in the case of SE(n) and T (n)) matrix element of the Lie algebra, we use a map
ν : g→ Rd that extracts the free parameters from the Lie algebra element, to obtain a form that is suitable as an input to a
neural network. See below for concrete examples.

• G = T (n), t ∈ Rn, ν[log(t)] = t

• G = SO(2), R =

[
cos θ − sin θ

sin θ cos θ

]
∈ R2×2

ν[log(R)] = θ = arctan(R10/R01) (18)

• G = SE(2), R =

[
cos θ − sin θ

sin θ cos θ

]
∈ R2×2, t ∈ R2

ν[log(tR)] =

[
t′

θ

]
(19)

where t′ = V −1t, V =

[
a −b
b a

]
, a , sin θ

θ , b , 1−cos θ
θ

• G = SO(3), R ∈ R3×3, t ∈ R3:

ν[log(R)] = ν

[
θ

2 sin θ
(R−R>)

]
=

θ

2 sin θ

R21 −R12

R02 −R20

R10 −R01

 (20)



Equivariant Self-Attention for Lie Groups

where cos θ = Tr(R)−1
2 . Note that the Taylor expansion of θ/ sin θ should be used when θ is small.

• G = SE(3), R ∈ R3×3, t ∈ R3:

ν[log(tR)] =

[
t′

r′

]
(21)

where t′ = V −1t, r′ = ν[log(R)], V = I + 1−cos θ
θ2 (R−R>) + θ−sin θ

θ3 (R−R>)2.

Canonical lifting without Log map. Recall that location-based attention only requires a function kl(g−1g′) which we
are free to parameterise in any way. Since various groups G can naturally be expressed in terms of real matrices (see above),
g−1g′ ∈ G can be expressed as a (flattened) real vector. For example, any g ∈ SO(2) can simply be expressed as a vector
[t, θ]ᵀ where t ∈ R2 and θ ∈ [0, 2π). Therefore, we can bypass the log map ν ◦ log and directly use this vector, which we
found to be more numerically stable and sometimes resulted in better performance of LieTransformer. In particular,
for LieConv-SE2 and LieTransformer-SE2 on the Hamiltonian spring dynamics task, we did not use the log map
and instead opted for this “canonical” lift. We plan to also try this for LieConv-SE3 and LieTransformer-SE3 for
the QM9 task.

G. Memory and Time Complexity Comparison with LieConv
G.1. LieConv

• Inputs: {g, f(g)}g∈Gf where

– f(g) ∈ Rdv

– Gf defined as in Section 3.1.

• Outputs: {g, 1
|nbhd(g)|

∑
g′∈nbhd(g) kL(g−1g′)f(g′)}g∈Gf where

– nbhd(g) = {g′ ∈ Gf : ν[log(g)] < r}. Let us assume that |nbhd(g)| ≈ n ∀g.
– kL(g−1g′) = MLPθ(ν[log(g−1g′)]) ∈ Rdout×dv .

There are (at least) two ways of computing LieConv: 1. Naive and 2. PointConv Trick.

1. Naive

– Memory: Store kL(g−1g′) ∈ Rdout×dv ∀g ∈ Gf , g′ ∈ nbhd(g). This requires O(|Gf |ndoutdv) memory.
– Time: Compute kL(g−1g′)f(g′)∀g ∈ Gf , g′ ∈ nbhd(g). This requires O(|Gf |ndoutdv) flops.

2. PointConv Trick

One-line summary: instead of applying a shared linear map then summing across nbhd, first sum across nbhd then
apply the linear map.

Details: kL(g−1g′) = MLPθ(ν[log(g−1g′)]) = reshape(HM(g−1g′), [dout, dv]) where

– M(g−1g′) ∈ Rdmid are the final layer activations of MLPθ.
– H ∈ Rdoutdv×dmid is the final linear layer of MLPθ.

The trick assumes dmid � doutdv , and reorders the computation as:∑
g′∈nbhd(g)

reshape(HM(g−1g′), [dout, dv])f(g′)

= reshape(H, [dout, dvdmid])
∑

g′∈nbhd(g)

M(g−1g′)⊗ f(g′)

where⊗ is the Kronecker product: x⊗y = [x1y1, . . . x1ydy , . . . , xdxy1, . . . xdxydy ] ∈ Rdxdy . SoM(g−1g′)⊗f(g′) ∈
Rdvdmid .
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– Memory: Store M(g−1g′) ∀g ∈ Gf , g′ ∈ nbhd(g), and store H . This requires O(|Gf |ndmid + doutdvdmid)
memory.

– Time: Compute
∑
g′∈nbhd(g)M(g−1g′) ⊗ f(g′) via matrix multiplication: | |

M(g−1g′1) . . . M(g−1g′n)

| |




— f(g′1) —
...

— f(g′n) —

. This requires O(dvndmid) flops.

Then multiply by H , requiring O(dvdoutdmid) flops.
This is done for each g ∈ Gf , so the total number of flops is O(|Gf |dvdmid(n+ dout)).

G.2. Equivariant Self-Attention

• Inputs: {g, f(g)}g∈Gf where

– f(g) ∈ Rdv
– Gf defined as in Section 3.1.

• Outputs: {g, f(g) +
∑
g′∈nbhd(g) wf (g, g′)WV f(g′)}g∈Gf where

– nbhd(g) = {g′ ∈ Gf : ν[log(g)] < r}. Let us assume that |nbhd(g)| ≈ n ∀g.
– {wf (g, g′)}g′∈Gf = softmax

(
{αf (g, g′)}g′∈Gf

)
– αf (g, g′) = kf (f(g), f(g′)) + kx(g−1g′)

– kf (f(g), f(g′)) =
(
WQf(g)

)>
WKf(g′) ∈ R

– kx(g) = MLPφ(ν[log(g)]) ∈ R
– WQ,WK ,WV ∈ Rdv×dv .

• Memory: Store αf (g, g′) and WV f(g′) ∀g ∈ Gf , g′ ∈ nbhd(g). This requires O(|Gf |ndv) memory.

• Time: Compute kf (f(g), f(g′)) and wf (g, g′) ∀g ∈ Gf , g′ ∈ nbhd(g). This requires O(|Gf |nd2v) flops.

With multihead self-attention (M heads), the output is:

f(g) +WO


V 1

...
VM


where WO ∈ Rdv×dv , V m =

∑
g′∈nbhd(g) wf (g, g′)WV,mf(g′) for WK,m,WQ,m,WV,m ∈ Rdv/M×dv .

• Memory: Store αmf (g, g′) and WV,mf(g′) ∀g ∈ Gf , g′ ∈ nbhd(g),m ∈ {1, . . . ,M}. This requires O(M |Gf |n +
M |Gf |ndv/M) = O(|Gf |n(M + dv)) memory.

• Time: Compute kmf (f(g), f(g′)) and wmf (g, g′) ∀g ∈ Gf , g
′ ∈ nbhd(g),m ∈ {1, . . . ,M}. This requires

O(M |Gf |ndvdv/M) = O(|Gf |nd2v) flops.

H. Other Equivariant/Invariant building blocks
G-Pooling is simply averaging over the features across the group: Inputs: {f(g)}g∈Gf Output: f̄(g) , 1

|Gf |
∑
g∈Gf f(g)

Note that G-pooling is invariant with respect to the regular representation.

Pointwise MLPs are MLPs applied independently to each f(g) for g ∈ Gf . It is easy to show that any such pointwise
operations are equivariant with respect to the regular representation.

LayerNorm (Ba et al., 2016) is defined as follows:

Inputs: {g, f(g)}g∈Gf where
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• f(g) ∈ Rdv

• Gf defined as in Section 3.1.

Outputs: {g, β � f(g)−m(g)√
v(g)+ε

+ γ}g∈Gf where

• Division in fraction above is scalar division i.e.
√
v(g) + ε ∈ R.

• m(g) = Meancfc(g′) ∈ R.

• v(g) = Varcfc(g′) ∈ R.

• β, γ ∈ RD are learnable parameters.

BatchNorm We also describe BatchNorm (Ioffe & Szegedy, 2015) that is used in (Finzi et al., 2020) for completeness:

Inputs: {g, f b(g)}g∈Gf ,b∈B where

• f(g) ∈ Rdv

• Gf defined as in Section 3.1, B is the batch of examples.

Outputs: {g, β � fb(g)−m(g)√
v(g)+ε

+ γ}g∈Gf ,b∈B where

• Division in fraction above denotes pointwise division i.e.
√
v(g) + ε ∈ RD.

• m(g) = Meang′∈nbhd(g),b∈Bf b(g′) ∈ RD - Mean is taken for every channel.

• v(g) = Varg′∈nbhd(g),b∈Bf b(g′) ∈ RD - Var is taken for every channel.

• nbhd(g) = {g′ ∈ Gf : ν[log(g)] < r}.

• β, γ ∈ RD are learnable parameters.

A moving average of m(g) and v(g) are tracked during training time for use at test time. It is easy to check that both
BatchNorm and LayerNorm are equivariant wrt the action of the regular representation π on f (for BatchNorm, note
g′ ∈ nbhd(g) iff u−1g′ ∈ nbhd(u−1g)).

I. Experimental details
I.1. Counting shapes in 2D point clouds

Each training / test example consists of up to two instances of each of the following shapes: triangles, squares, pentagons
and the ”L” shape. The xi are the 2D coordinates of each point and fi = 1 for all points.

We performed an architecture search on the LieTransformer first and then set the architecture of the
SetTransformer such that the models have a similar number of parameters (1075k for the SetTransformer
and 1048k for both LieTransformer-T2 and LieTransformer-SE2) and depth.

Model architecture. The architecture used for the SetTransformer (Lee et al., 2019) consists of 8 layers in the encoder,
8 layers in the decoder and 4 attention heads. No inducing points were used.

The architecture used for both LieTransformer-T2 and LieTransformer-SE2 is made of 10 layers, 8 heads and
feature dimension dv = 128. The dimension of the kernel used is 12. One lift sample was used for each point.

Training procedure. We use Adam (Kingma & Ba, 2015) with parameters β1 = 0.5 and β2 = 0.9 and a learning rate of
1e− 4. Models are trained with mini-batches of size 32 until convergence.
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I.2. QM9

For the QM9 experiment setup we follow the approach of Anderson et al. (2019) for parameterising the inputs and for the
train/validation/test split. The fi is a learnable linear embeddings of the vector [1, ci, c

2
i ] for charge ci, with different linear

maps for each atom type. We split the available data as follows: 100k samples for training, 10% for a test set and the rest
used for validation.

In applying our model to this task, we ignore the bonding structure of the molecule. As noted in (Klicpera et al., 2019)
this should not be needed to learn the task, although it may be helpful as auxiliary information. Given most methods
compared against do not use such information, we follows this for a fair comparison (an exception is the SE(3)-Transformer
(Fuchs et al., 2020) that uses the bonding information). It would be possible to utilise the bonding structure both in the
neighbourhood selection step and as model features by treating only atoms that are connected via a bond to another atom as
in the neighbourhood of that atom.

We performed architecture and hyperparameter optimisation on the εHOMO task and then trained with the resulting
hyperparameters on the other 11 tasks. LieTransformer-T3 uses 13 layers of attention blocks (performance saturated
at 13 layers), using 8 heads (M ) in each layer and feature dimension dv = 848. The attention kernel uses the linear −
concat − linear feature embedding, identity embedding of the Lie algebra elements, and an MLP to combine these
embeddings into the final attention coefficients. The final part of the model used had minor differences to the one in diagram
1. Instead of a global pooling layer followed by a 3 layer MLP, a single linear layer followed by global pooling was used. A
single lift sample was used (since H = {e} for T (3)-invariant models), with the radius of the neighbourhood chosen such
that |nbhdη(g)| = 50 ∀g ∈ G and we uniformly sample 25 points from this neighbourhood. LieTransformer-SE3
used a similar hyperparameter setting, except using 30 layers (performance saturated at 30 layers) and 2 lift samples were
used for each input point (|Ĥ| = 2), with the radius of the neighbourhood η chosen such that the |nbhdη(g)| = 25 ∀g ∈ G
and we uniformly sample 20 points from this neighbourhood. All models were trained using Adam, with a learning rate of
3e− 4 and a batch size of 75 for 500 epochs. For the LieConv models we used the hyperparameter setting that was used
in Finzi et al. (2020).

Training these models with T (3) and SE(3) equivariance took approximately 3 and 6 days respectively on a single Nvidia
Tesla-V100.

I.3. Hamiltonian dynamics

Spring dynamics simulation. We exactly follow the setup described in Appendix C.4 of Finzi et al. (2020) for generating
the trajectories used in the train and test data.

Model architecture. In all results shown except Figures 7 and 8, we used a LieTransformer-T2 with 5 layers, 8 heads
and feature dimension dv = 160. The attention kernel uses dot-product for the content component, a 3-layer MLP with
hidden layer width 16 for the location component and addition to combine the content and location attention components.
(Also, see end of Appendix F for a relevant discussion about the use of the log map in location-attention kl for this task.)
We use constant normalisation of the weights. We observed a significant drop in performance when, instead of constant
normalisation, we used softmax normalisation (which caused small gradients at initialization leading to optimization
difficulties). The architecture had 842k parameters. Our small models (with 139k parameters) in Figures 7 and 8 use 3 layers
and feature dimension dv = 80, keeping all else fixed. LieTransformer-SE(2) and LieConv-SE(2) in Figures 7
and 8 used 2 lift samples, which were deterministically chosen to be Ĥ = C2 < SO(2), where C2 is the group of 180◦

rotations. In fact, this yields exact equivariance to T (2) oC2. Note that the true Hamiltonian H(q,p) for the spring system
separates as H(q,p) = K(p) + V (q) where K and V are the kinetic and potential energies of the system respectively.
Following Finzi et al. (2020), our model parameterises the potential term V . In particular, xi is particle i’s position and
fi = (mi, ki) where mi is its mass and ki is used to define the spring constants: kikj is spring constant for the spring
connecting particles i and j (see Appendix C.4 of Finzi et al. (2020) for details).

Training details. To train the LieTransformer, we used Adam with a learning rate of 0.001 with cosine annealing and
a batch size of 100. For a training dataset of size n, we trained the model for 400

√
3000/n epochs (although we found

model training usually converged with fewer epochs). When n ≤ 100, we used the full dataset in each batch. For training
the LieConv baseline, we used their default architecture (with 895k parameters) and hyperparameter settings for this task,
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except for the number of epochs which was 400
√

3000/n to match the setting used for training LieTransformer.1 The
small LieConv models (with 173k parameters) in Figures 7 and 8 use 3 layers and 192 channels (instead of the default 4
layers and 384 channels). Lastly, only for the data efficiency results in Figure 4, we used early stopping by validation loss
and generated nested training datasets as the training size varies, keeping the test dataset fixed.

Loss computation. One small difference between our setup and that of Finzi et al. (2020) is in the way we compute the test
loss. Since we compare models’ losses not only over 5-step roll-outs but also longer 100-step roll-outs, we average the
individual time step losses using a geometric mean rather than an arithmetic mean as in Finzi et al. (2020). Since the losses
for later time steps are typically orders of magnitude higher than for earlier time steps (see e.g. Figure 5), a geometric mean
prevents the losses for later time steps from dominating over the losses for the earlier time steps. During training, we use an
arithmetic mean across time steps to compute the loss for optimization, exactly as in Finzi et al. (2020). This applies for
both LieTransformer and LieConv.

J. Additional experimental results
J.1. Hamiltonian dynamics
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Figure 8. Comparison of models by group and number of parameters over 100-step trajectory roll-outs. Similar to the results of Figure
7, LieTransformer models outperform their LieConv counterparts when fixing the group and using approximately equal number of
parameters. Moreover, models (approximately) equivariant to SE(2) outperform their T(2) counterparts, with LieTransformer-SE(2) again
outperforming all other models despite having the smallest number of parameters. Plot shows the median across at least 5 random seeds
with interquartile range.

1This yields better results for LieConv compared to those reported by Finzi et al. (2020), where they use fewer total epochs.
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Figure 9. Plots of model error as a function of time step for various data sizes. As can be seen, the LieTransformer generally outperforms
LieConv across various training data sizes.
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Figure 10. Scatter plots comparing the MSE of the LieTransformer against the MSE of LieConv for various training dataset sizes. Each
point in a scatter plot corresponds to a 100-step test trajectory, indicating the losses achieved by both models on that trajectory. In the
middle figure we have highlighted the MSEs corresponding to the trajectories shown in Figures 6 and 11.
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(a) Test trajectory where LieTransformer has the highest error.
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(b) Test trajectory where LieConv has the highest error.

Figure 11. Additional example trajectories comparing LieTransformer and LieConv. Both models are trained on a dataset of size 400. See
Figure 10 for a scatter plot showing these test trajectories and the one in Figure 6 in relation to all other trajectories in the test dataset.


