
 909

Two-Layer Multiple Kernel Learning

Jinfeng Zhuang Ivor W. Tsang Steven C.H. Hoi
School of Computer Engineering
Nanyang Technological University

Singapore
zhua0016@ntu.edu.sg

School of Computer Engineering
Nanyang Technological University

Singapore
IvorTsang@ntu.edu.sg

School of Computer Engineering
Nanyang Technological University

Singapore
chhoi@ntu.edu.sg

Abstract

Multiple Kernel Learning (MKL) aims to
learn kernel machines for solving a real
machine learning problem (e.g. classifica-
tion) by exploring the combinations of mul-
tiple kernels. The traditional MKL ap-
proach is in general “shallow” in the sense
that the target kernel is simply a linear
(or convex) combination of some base ker-
nels. In this paper, we investigate a frame-
work of Multi-Layer Multiple Kernel Learn-
ing (MLMKL) that aims to learn “deep” ker-
nel machines by exploring the combinations
of multiple kernels in a multi-layer structure,
which goes beyond the conventional MKL
approach. Through a multiple layer map-
ping, the proposed MLMKL framework of-
fers higher flexibility than the regular MKL
for finding the optimal kernel for applica-
tions. As the first attempt to this new MKL
framework, we present a Two-Layer Multiple
Kernel Learning (2LMKL) method together
with two efficient algorithms for classification
tasks. We analyze their generalization perfor-
mances and have conducted an extensive set
of experiments over 16 benchmark datasets,
in which encouraging results showed that our
method performed better than the conven-
tional MKL methods.

1 Introduction

Kernel learning is one of the active research topics in
machine learning community. The family of kernel

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

based machine learning algorithms have been exten-
sively studied over the past decade [23]. Some well-
known examples include Support Vector Machines
(SVM) [9, 27], Kernel Logistic Regression [32], and
Kernel PCA for denoising [20, 17], etc. These kernel
methods have been successfully applied to a variety of
real applications and often observed promising perfor-
mance.

The most crucial element of a kernel method is ker-
nel, which is in general a function that defines an in-
ner product between any two examples in some in-
duced Hilbert space [10, 23, 15]. By mapping data
from an input space to the reproducing kernel Hilbert
space (RKHS) [10], which could be potentially high-
dimensional, traditional linear methods can be ex-
tended with reasonable effort to yield considerably bet-
ter performance. Many empirical studies have shown
that the choice of kernel often affects the resulting per-
formance of kernel methods significantly. In fact, in-
appropriate kernels can result in sub-optimal or very
poor performance.

For many real-world situations, it is often not an easy
task to choose an appropriate kernel function, which
usually may require some domain knowledge that
would be difficult for non-expert users. To address
such limitation, recent years have witnessed the ac-
tive research of learning effective kernels automatically
from data [4]. One popular example technique for ker-
nel learning isMultiple Kernel Learning (MKL) [4, 24],
which aims at learning a linear (or convex) combina-
tion of a set of predefined kernels in order to identify
a good target kernel for the applications. Comparing
with traditional kernel methods using a single fixed
kernel, MKL does exhibit its strength of automated
kernel parameter tuning and capability of concatenat-
ing heterogeneous data. Over the past few years, MKL
has been actively investigated, in which a number of
algorithms have been proposed to resolve the efficiency
of MKL [4, 25, 21, 29], and a number of extended MKL
techniques have been proposed to improve the regular

 910

Two-Layer Multiple Kernel Learning

linear MKL method [11, 12, 3, 28, 16, 8].

Despite being studied actively, unfortunately existing
MKL methods do not always produce considerably
better empirical performance when comparing with a
single kernel whose parameters were tuned by cross
validation [11]. There are several possible reasons to
account for such failure. One conjecture is that the
target kernel domain K of MKL using a linear com-
bination may not be rich enough to contain the opti-
mal kernel. Therefore, some emerging study has at-
tempted to improve the regular MKL by explore more
general kernel domain K using some nonlinear combi-
nation [28]. Following the similar motivation, we spec-
ulate that the insignificant performance gain is proba-
bly due to the shallow learning nature of regular MKL
that simply adopts a flat (linear/nonlinear) combina-
tion of multiple kernels.

To this end, this paper presents a novel framework
of Multi-Layer Multiple Kernel Learning (MLMKL),
which applies the idea of deep learning to improve
the MKL task. Deep architecture has been being
actively studied in machine learning community and
has shown promising performance for some applica-
tions [13, 14, 19, 5]. Our study was partially inspired
by the recent work [6] that first explored kernel meth-
ods with the idea of deep learning. However, unlike
the previous work, our study in this paper mainly
aims to address the challenge of improving the exist-
ing MKL techniques with deep learning. Specifically,
we introduce a multilayer architecture for MLMKL, in
which all base kernels in antecedent-layers are com-
bined to form some inputs to other kernels in subse-
quent layers. We also provide an efficient alternating
optimization algorithm to learn the decision function
and the weight of base kernels simultaneously. To fur-
ther minimize the requirement of domain knowledge to
design the choices and the numbers of base kernels in
each antecedent-layers, we also present an infinite base
kernel learning algorithm for our proposed MLMKL
framework.

The rest of this paper is organized as follows. Section 2
gives some preliminaries of multiple kernel learning
and deep learning. Section 3 first presents the frame-
work of MLMKL and then proposes a Two-Layer MKL
method, followed by the development of two efficient
algorithms and the analysis of their generalization per-
formance. Section 4 discusses an extensive set of ex-
periments for performance evaluation over a testbed
with 16 publicly available benchmark data sets. Sec-
tion 5 concludes this paper.

2 Preliminaries

In this Section, we introduce some preliminaries of
MKL and some emerging studies on deep learning for
kernel methods.

2.1 Multiple Kernel Learning

Consider a collection of n training samples Xn
1 =

{(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd is the input fea-
ture vector and yi is the class label of xi. In general,
the problem of conventional multiple kernel learning
(MKL) can be formulated into the following optimiza-
tion scheme [4]:

mink∈K minf∈Hk
λ∥f∥Hk

+
n∑

i=1

ℓ(yif(xi)), (1)

where ℓ(·) denotes some loss function, e.g. the hinge
loss ℓ(t) = max(0, 1−t) used for SVM, Hk is the repro-
ducing kernel Hilbert space associated with kernel k, K
denotes the optimization domain of the candidate ker-
nels, and λ is a regularization parameter. The above
optimization aims to simultaneously identify both the
optimal kernel k from domain K and the optimal pre-
diction function f from the reproducing kernel Hilbert
space Hk induced by the optimal kernel k. If the op-
timal kernel k is given a prior, the above formulation
is essentially reduced to the kernel SVM.

By the representer theorem [22], the decision function
f(x) for the above formulation is in form of a linear
expansion of kernel evaluation on the training samples
xi’s,

f(x) =

n∑
i=1

βik(xi,x), (2)

where βi’s are the coefficients.

In traditional MKL [18], K is chosen to be a set of a
convex combination of predefined base kernels:

Kconv =
{
k(·, ·) =

m∑
t=1

µtkt(·, ·) :

m∑
t=1

µt = 1, µt ≥ 0, t = 1, . . . ,m
}
, (3)

where each candidate kernel k is some combination of
the m base kernels {k1, . . . , km}, and µi is the coeffi-
cient of the ith base kernel. From (3), we can expand
the decision function in (2) with the multiple kernels:

f(x) =
n∑

i=1

βi

m∑
t=1

µtkt(xi,x) =
n∑

i=1

m∑
t=1

βiµtkt(xi,x),

(4)

 911

Jinfeng Zhuang, Ivor W. Tsang, Steven C.H. Hoi

where the final kernel is a linear combination ofm base
kernels.

Although it has been studied extensively, similar to
SVM [27], the traditional MKL approach fall shorts
in that the resulting kernel machine is “shallow” since
it often adopts a simple conic combination of multi-
ple kernels and train the classifier with the combined
kernel in a “flat” architecture, which may not be pow-
erful enough to fit diverse patterns in some real-world
complicated tasks.

2.2 Deep Learning and Multilayer Kernels

Recently, a lot of machine learning studies have ad-
dressed one limitation of conventional learning tech-
niques (such as SVM) regarding their shallow learning
architectures. It has been shown that the deep archi-
tecture, such as multilayer neural nets, is often more
preferable over the shallow ones. Very recently, Cho
and Saul [6, 7] first introduced the idea of deep learn-
ing to kernel methods, which can be applied either in
deep architectures or in shallow structures, like SVM.
An l-layer kernel is the inner product after multiple
feature mapping of inputs:

k(l)(xi,xj) =
⟨
Φ(Φ(. . . (Φ(xi))))︸ ︷︷ ︸

l times

,Φ(Φ(. . . (Φ(xi))))︸ ︷︷ ︸
l times

⟩
,

here Φ is the underlying feature mapping function of
k, ⟨·, ·⟩ computes the inner product.

Specifically, we consider an example of two-layer RBF
kernel. An RBF kernel is typically defined as

k(xi,xj) = e−γ∥xi−xj∥2

,

where γ > 0 is the kernel parameter. By applying
the idea of two-layer kernel with the RBF kernel, the
composition yields⟨
Φ(Φ(xi)),Φ(Φ(xj))

⟩
= e−γ∥Φ(xi)−Φ(xj)∥2

= e−2γ(1−k(xi,xj)) = κe2γk(xi,xj),(5)

where κ is a constant that can be omitted. The similar
idea can be applied for other types of kernels. In [6,
7], the authors provided a multiple layer composition
approach with respect to a special family of arc-cosine
kernel functions.

Remark. The work studied in [6] has some limitations.
First, the proposed multi-layer kernel was applied to
only a single type of kernel, typically some special ker-
nel function, such as the arc-cosine kernel [6]. In a
real application, a more desirable solution is to allow
a combination of a variety of different kernels when de-
signing the deep kernel. Second, the multi-layer kernel
proposed in [6] is often “static”, i.e., some fixed kernel

(where degree n and level l parameters were chosen
manually). No solution has been provided to optimize
the kernel by learning the optimal parameters auto-
matically. Our work was partially motivated by this
work to address the above limitations.

3 Multi-Layer Multiple Kernel
Learning

In this Section, we first introduce a general framework
of Multi-Layer Multiple Kernel Learning (MLMKL),
and then present an MLMKL paradigm, i.e., Two-
Layer Multiple Kernel Learning.

3.1 Framework

Following the optimization framework of MKL, the ba-
sic idea of MLMKL is to relax the optimization do-
main K in traditional MKL optimization by adopting
a family of deep kernels. Specifically, we first define a
domain of l-level multi-layer kernels as follows:

K(l) =
{
k(l)(·, ·) = g(l)

(
[k

(l−1)
1 (·, ·), . . . , k(l−1)

m (·, ·)]
)}

,

where g(l) is some function to combine multiple (l−1)-
level kernels, which must ensure the resulting combi-
nation is a valid kernel. With this domain, in a way
similar to regular MKL, we can formulate the opti-
mization problem of l-level MLMKL into:

mink∈K(l) minf∈Hk
λ∥f∥Hk

+
n∑

i=1

ℓ(yif(xi)).

To explain it intuitively, Figure 1 illustrates the archi-
tecture of an example three-layer MKL paradigm.

Despite sharing the similar optimization form,
MLMKL is much more challenging than the conven-
tional shallow MKL. This is because there are many
unknown structures and variables, including the ini-
tialization of base kernels, the unknown combination
functions g(l) at each level, and the final prediction
model f . Apparently, it is not possible to fully op-
timize every aspect. In the following, we attempt
to attack this challenge by considering a simplified
paradigm, i.e., Two-Layer Multiple Kernel Learning
(2LMKL).

3.2 Two-Layer Multiple Kernel Learning

To simplify the notations, we restrict our discussion
on a Two-Layer Multiple Kernel Learning task in this
Section. Our algorithm can also be extended to gen-
eral multiple-layer MKL. Further, we employ an RBF
kernel for the combination function g(2) and define the

 912

Two-Layer Multiple Kernel Learning

Figure 1: The architecture of the proposed deep multiple kernel learning framework. Here shows an example of
three-layer MKL, and some connections are not displayed to simplify the figure.

two-layer multiple kernel domain as follows:

K(2) =
{
k(2)(xi,xj ;µ) = exp

(m∑
t=1

µtk
(1)
t (xi,xj)

)
:

µ ∈ Rm
+

}
, (6)

where µt denotes the weight of t-th antecedent-layer
kernel. Thus we can formulate the two-layer MKL
with the kernel K(2):

min
k∈K(2)

min
f∈Hk

1

2
∥f∥2Hk

+C
n∑

i=1

max(0, 1−yif(xi))+
m∑
t=1

µt .

Note the last term is introduced as a regularization
to prevent the coefficients being too large. We can
further turn the above formulation into the following
equivalent min-max optimization:

minµmaxα

n∑
i=1

αi−
1

2

n∑
i,j=1

αiαjyiyjk
(2)(xi,xj ;µ)+

m∑
t=1

µt

s.t. 0≤αi ≤ C,
n∑

i=1

αiyi=0, µt≥0, t=1, . . . ,m, (7)

where α = [α1, . . . , αn]
⊤ is the vector of dual vari-

ables and µ = [µ1, . . . , µm]⊤. Once solving the above
optimization to find the solutions for α and µ, it is
straightforward to obtain the final decision function of
the Two-Layer MKL machine:

f(x;α,µ) =
n∑

i=1

αiyik
(2)(xi,x;µ) + b, (8)

where the bias term b can be easily determined from
KKT conditions. Due to the nonlinearity of exp(·)
function, we expect that the decision function in (8)
can represent richer prediction tasks than that in (4).

The next challenge is how to resolve the above op-
timization. We consider an alternative optimization
scheme. That is, (1) fix α and solve µ; and (2) fix µ
and solve α. Specifically, let us denote by J(α,µ) the
following function:

J(α,µ) =
1

2

n∑
i,j=1

αiαjyiyjk
(2)(xi,xj ;µ)−

n∑
i=1

αi−
m∑
i=1

µi.

Since k(2) is positive semi-definite, the objective is con-
vex over α. Thus it can be solved by standard QP
solvers for a fixed µ. However, for any pair (i, j) of
yiyj = −1, αiαjyiyjk

(2)(xi,xj ;µ) ≤ 0. Thus, J is
non-convex over µ. We simply compute the d-th com-
ponent of the gradient w.r.t. µ:[
∇Jµt−1

]
d
:=

[
∇µJ(α

t,µt−1)
]
d

=
1

2

∑
ij

αiαjyiyjk
(2)(xi,xj ;µ

t−1)k
(1)
d (xi,xj)− 1. (9)

Then we update µ by gradient ascent:

µt = max(µt−1 + η∇Jµt−1 ,0).

The step size η can be set by Armijo’s rule such that
the convergence is guaranteed. Let Θ = {θ1, . . . , θm}
denote the set of hyper-parameters corresponding to

base kernels k
(1)
t ’s inside k(2) in (6). Algorithm 1 shows

the detailed optimization steps of the proposed two-
layer MKL algorithm with the given Θ.

3.3 Improved Two-Layer MKL Algorithm
with Infinite Base Kernel Learning

Notice that, similar to traditional MKL algorithms,
our proposed MLMKL algorithm also must assume a

 913

Jinfeng Zhuang, Ivor W. Tsang, Steven C.H. Hoi

Algorithm 1 Two-Layer MKL (2LMKL): (α,µ) =
TwoLayerMKLwithTheta(Θ0;X

n
1)

Input: Training sample Xn
1 , initial set of base kernel

parameters Θ0 = {θ1, . . . , θm};
Output: weight vector µ of base kernels, dual vari-
ables α of SVM.

1: Randomly initialize µ0, compute initial base ker-
nels with Θ;

2: repeat
3: Compute the current kernel matrix with µt−1;
4: αt = argminα J(α,µt−1) by SVM solver;
5: Compute ∇µJ(α

t,µt−1) by (9) as descent di-
rection;

6: Determine the step size ηt by Armijo’s rule, up-
date µt = max(µt−1 + ηt∇Jµt−1 ,0);

7: until convergence

set of predefined base kernels inside k(2) as in K(2)

provided beforehand. If the number of base kernels is
too small, k(2) may not flexible enough to fit compli-
cated patterns in a real problem. On the other hand,
both the time cost and space cost of MKL/MLMKL in-
crease with the cardinality of Kconv/K(2). This may be
computationally inefficient when using too many base
kernels. Moreover, though the proposed deep MKL ar-
chitecture provides a flexibility for the design of multi-
layer kernels, determining an appropriate set of base
kernels usually require some domain knowledge, which
may be difficult for some non-expert users.

To partially address some of the above challenges, here
we propose to generate the base kernels inside k(2) it-
eratively. This can be done by selecting a base kernel
that optimizes the objective function in (7), which is
similar to the idea of infinite kernel learning [2, 11] ex-
cept that our base kernels are in the antecedent layer.
Assume the inner base kernel is continuously param-
eterized by θ, for example, the bandwidth parameter
of Gaussian kernel, or the degree of polynomial kernel.
To expand the base kernel set K, we choose a θ such
that the resultant single kernel maximizes J with the
current solution α:

max
θ∈R+

J(α, θ) =
1

2

n∑
i,j=1

αiαjyiyj exp(k(xi,xj ;θ)).

(10)
Again, this problem is non-convex over θ. Similar to
solving µ, we compute the gradient of (10) w.r.t. θ
and do gradient ascent. For example, if the inner base
kernel is a Gaussian kernel k(xi,xj ; θ) = exp(−θ∥xi −
xj∥2), the gradient can be then computed as follows:

∇Jθ=
1

2

∑
i,j∈Nn

αiαjyiyje
(k(xi,xj ;θ))k(xi,xj ; θ)∥xi−xj∥2.

(11)

After that, we employ a line search approach to de-
termining the step size for gradient ascent. The pro-
posed improved two-layer MKL algorithm iterates be-
tween the following two steps: (1) iteratively solve the
dual variables α and the kernel weight µ as similar to
the previous algorithm; (2) add a new θ to Θ by the
base kernel generation method. Finally, Algorithm 2
summarizes the details of the improved two-layer mul-
tiple kernel learning algorithm, which is denoted as
2LMKLInf for short.

Algorithm 2 Infinite Two-Layer MKL (2LMKLInf):
(α,µ,Θ) = TwoLayerMKL(Θ0;X

n
1)

Input: Initial set of base kernel parameters Θ0, train-
ing sample Xn

1 ;
Output: Final set of base kernel parameters Θ,
weight vector µ of base kernels, dual variables α.

1: Initialize Θ = Θ0;
2: while true do
3: (α,µ) = TwoLayerMKLwithTheta(Θ;Xn

1);
4: θ = NewKernel(α;Xn

1);
5: if J(α, θ) ≤ J(α,µ) then
6: break;
7: end if
8: Θ = Θ ∪ θ;
9: end while

10:

11: Function θ = NewKernel(α;Xn
1);

12: Randomly initialize θ0;
13: while J(α, θt−1) is improving do
14: Compute the gradient ∇Jθ by the similar ap-

proach in Eqn. (11);
15: Determine a step size ηt, update θt = θt−1 +

ηt∇Jθ;
16: end while

3.4 Analysis of Generalization Performance

We are aware of the trend of seeking new kernel com-
bination methods beyond the traditional MKL. How-
ever, the kernel is the prior knowledge of the data. The
construction of kernel cannot be fully “automated”.
When we add more flexibility to kernel learning, we
are also potentially increasing the difficulty of find-
ing the optimal kernel. It calls for theoretical analysis
on these generalized kernel combination methods. We
base our analysis of two-layer MKL mainly on the no-
tion of pseudo-dimension of the kernel optimization
domain K(2) [26].

Theorem 1. [26] Let L(f) = P(f(xi)yi ≤ 0)
be the generalization risk of some prediction func-
tion f learned by solving (1), and Ln(f) =
1
n

∑n
i=1 1(f(xi)yi < γ) be the empirical error. For

a kernel family K with pseudo-dimension dK, the gen-

 914

Two-Layer Multiple Kernel Learning

Table 1: The statistics of the 16 binary-class data sets used in our experiments.

Data Set Breast Ionosphere Diabetes Waveform Sonar Adult Liver German

instances 683 351 768 400 208 1,605 345 1,000
dimensions 10 33 8 21 60 123 6 24

Data Set Splice Australian Thyroid Ringnorm Heart Banana Titanic FlareSolar

instances 1,000 690 140 400 270 400 150 666
dimensions 60 14 5 20 13 2 3 9

eralization risk of f is bounded as:

L(f) ≤ Ln(f) +

√
Õ(dK + 1/γ2)/n,

where γ is the margin in loss function l(t) =
max(0, γ − t), the Õ notation hides logarithmic fac-
tors in its argument, the sample size and the allowed
failure probability.

Here the pseudo-dimension dK measures the richness
/ complexity of a kernel domain K:

Definition 1. Let K be a set of kernel functions map-
ping from X × X to R. We say that a set of paired
examples Sn = {(xi,x

′
i) ∈ X × X , i = 1, . . . , n}

is pseudo-shattered by K if there are real numbers
r ∈ Rn} such that for any b ∈ {−1, 1}n there is a
function k ∈ K with property sgn(k(xi,x

′
i) − ri) = bi

for any (xi,x
′
i) ∈ Sn. Then, we define a pseudo-

dimension dK of K to be the largest n such that there
exist a Sn that can be pseudo-shattered by K.

Theorem 2. Let K(1) = {k(1)1 , . . . , k
(1)
m } be the inner

base kernel family for the 2-layer deep kernel K(2) de-
fined in (6), where m is the number of base kernels.
Assuming the evaluation of k(1) always positive, then
the pseudo-dimension dK(2) is bounded by

dK(2) ≤ m.

Proof. First, we re-write K(2) as follows:

K(2) =
{∏

exp
(
µtk

(1)
t

)
: k

(1)
t ∈ K(1)

}
.

Thus each k(2) ∈ K(2) is the product of base kernels
in form of exp(µk(1)). Consider the logarithmic oper-
ation ln ◦K, where for each kernel k ∈ K and any pair
(xi,xj), we have (ln ◦k)(xi,xj) = ln k(xi,xj). There-

fore, ln ◦K(2) =
{∑

µtk
(1)
t : k

(1)
t ∈ K(1)

}
. This is a

linear space of dimension at most m (with basis K(1)

when all k(1) are linearly independent). According
to Theorem 11.4 of [1], the Pseudo-dimension [26] of
ln ◦K(2) is bounded by dln ◦K(2) ≤ m. We can recover
K(2) = exp ◦ ln ◦K(2). Since the exponential function is

monotonic, by applying Theorem 11.3 of [1], we arrive
at

dK(2) = dexp ◦ ln ◦K(2) ≤ dln ◦K(2) ≤ m. (12)

Remark: Despite the simplicity of its proof, Theorem 2
implies that the outer exponential computation of our
new kernel does not increase the complexity of the ker-
nel domain in terms of pseudo-dimension. Comparing
with MKL, our MLMKL method, with more flexible or
richer optimization domain, would thus have a better
chance in finding the best prediction function without
increasing the generalization risk explicitly.

Recently, Ying and Campbell [30] employed the

Rademacher chaos complexity Ûn(K) to measure the
richness of K through its ability of fitting noisy simi-
larity value:

Ûn(K;Xn
1) = Eε sup

k∈K

∣∣∣∣ 1n∑
i<j

εiεjk(xi,xj)

∣∣∣∣ : k∈K,xi∈Xn
1 ,

where εi is a Rademacher random variable taking value
±1 with uniform probability. We have

Corollary 1. The Rademacher chaos complexity of
K(2) is bounded by

Ûn(K(2)) ≤ (192e+ 1)κ2m, (13)

here κ = maxx k
(2)(x,x), n is the size of training sam-

ple, e is natural constant.

The above corollary can be followed directly by com-
bining Theorem 2 and the Rademacher chaos complex-
ity result in [31, Theorem 3]. Finally, the generaliza-

tion bound based on Ûn(K(2)) can be obtained immedi-
ately by combining the above Corollary with Lemma 9
of [30].

4 Experiments

4.1 Experimental Testbed and Setup

We evaluate the performance of the proposed Two-
Layer MKL algorithms for binary classification tasks

 915

Jinfeng Zhuang, Ivor W. Tsang, Steven C.H. Hoi

Table 2: The evaluation of classification performance by comparing with a number of different algorithms. Each
element in the table shows the mean and standard deviation of classification accuracy (%). The relative ranking
of different MKL algorithms on each data is shown in (). The last row shows the average rank score over all data
sets achieved by each algorithm.

Data Set SVM MKLlevel LpMKL GMKL IKL MKM 2LMKL 2LMKLInf

Breast 96.8±1.0 96.5±0.8 (5) 96.2±0.7 (7) 97.0±1.0 (2) 96.5±0.7 (5) 97.1±1.0 (1) 97.0±1.0 (2) 96.9±0.7 (4)
Diabetes 76.7±1.8 75.8±2.5 (4) 72.6±2.5 (6) 66.4±2.5 (7) 76.0±3.0 (3) 75.8±2.5 (4) 76.6±1.6 (1) 76.6±1.9 (1)
Australian 84.6±1.4 85.0±1.5 (5) 84.5±1.6 (6) 80.0±2.3 (7) 85.4±1.2 (3) 85.3±0.9 (4) 85.5±1.6 (2) 85.7±1.6 (1)
Splice 85.0±1.4 88.4±2.4 (3) 87.1±1.6 (4) 92.4±1.4 (2) 80.0±1.5 (7) 84.6±1.5 (6) 92.9±1.1 (1) 84.7±1.2 (5)
FlareSolar 67.5±2.0 67.6±2.0 (2) 64.8±1.8 (5) 65.3±1.8 (3) 64.8±1.8 (5) 64.4±1.7 (7) 68.1±1.8 (1) 65.3±1.8 (3)
Titanic 78.0±3.2 77.1±2.9 (2) 77.0±3.0 (5) 76.7±3.1 (7) 76.8±2.8 (6) 77.1±3.0 (2) 77.1±3.0 (2) 77.8±2.6 (1)
Iono 92.8±2.0 91.7±1.9 (7) 92.6±1.4 (4) 92.7±1.8 (3) 93.7±1.0 (2) 91.7±2.7 (6) 92.3±1.5 (5) 94.4±0.9 (1)
Banana 89.7±1.5 90.2±2.0 (1) 87.5±2.6 (4) 83.4±2.7 (6) 90.2±1.8 (1) 80.5±5.3 (7) 86.8±2.1 (5) 90.2±1.6 (1)
Ringnorm 98.5±0.7 98.1±0.8 (3) 96.7±1.0 (7) 97.5±1.0 (6) 98.5±0.7 (1) 97.7±1.0 (5) 97.9±0.8 (4) 98.5±0.8 (1)
Waveform 89.0±1.8 88.2±1.6 (6) 88.9±2.0 (4) 88.2±1.8 (6) 89.7±2.3 (3) 90.0±1.6 (2) 88.7±1.9 (5) 90.4±1.6 (1)
Heart 82.1±3.0 83.0±2.9 (4) 76.7±3.8 (7) 77.0±3.6 (6) 83.3±2.1 (2) 82.4±2.5 (5) 83.1±2.5 (3) 83.6±2.1 (1)
Sonar 83.8±3.4 78.3±3.5 (7) 84.8±3.2 (1) 78.8±4.6 (6) 81.0±5.0 (4) 83.1±3.8 (3) 79.0±4.3 (5) 84.6±2.4 (2)
Thyroid 93.9±2.9 92.9±2.9 (6) 93.1±2.2 (5) 94.6±2.1 (3) 94.8±2.0 (1) 92.6±3.0 (7) 93.4±3.1 (4) 94.8±2.2 (1)
Liver 70.5±4.1 62.3±4.5 (6) 69.4±2.9 (2) 63.6±2.6 (4) 60.0±2.9 (7) 70.1±3.6 (1) 66.0±3.4 (3) 62.7±3.1 (5)
Adult 82.0±0.7 81.5±1.0 (4) 82.1±0.6 (1) 75.5±1.1 (6) 75.1±1.1 (7) 81.7±0.9 (3) 79.1±2.4 (5) 81.8±1.0 (2)
German 75.2±1.9 71.4±2.8 (5) 74.3±1.4 (3) 70.4±1.6 (6) 70.0±1.5 (7) 75.7±2.3 (1) 74.8±1.8 (2) 74.2±2.0 (4)

Rank N/A 4.38 4.44 5.00 4.00 4.00 3.13 2.13

over a testbed of 16 publicly available data sets as
shown in Table 11 2.

Following the settings of previous MKL studies [29],
for each data set, we create the set of base kernels K as
follows: (1) Gaussian kernels with 10 different widths
({2−3, 2−2, . . . , 26}) on all features and on each single
feature; (2) polynomial kernels of degree 1 to 3 on all
features and on each single feature. Each base ker-
nel matrix is normalized to unit trace. For each data
set, we randomly sample 50% of all instances as train-
ing data, and use the rest as test data. The training
instances are normalized to be of zero mean and unit
variance, and the test instances are also normalized us-
ing the same mean and variance of the training data.
To get stable results, for each data set, we repeat each
algorithm 20 times and compute the average results of
the 20 runs.

For comparison, we have tried our best to compare
as many state-of-the-art MKL methods as possible,
which were proposed under different contexts for vari-
ous applications. The goal of our experiment is mainly
to examine if deep MKL is effective for improving the
performance of the shallow MKL techniques. Specifi-
cally, we have compared the following algorithms:

SVM: The Support Vector Machine algorithm with a
single Gaussian kernel. The band-width param-
eter is selected via 5-fold cross validation on the
training data;

1
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

2
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark

MKLLevel: The convex multiple kernel learning algo-
rithm, that is, the target kernel class is Kconv de-
fined in (3). We use the extended level method
[29] to learn the kernel;

LpMKL: The MKL algorithm with Lp norm regulariza-
tion over the kernel weight [16]. We adopt their
cutting plane algorithm with second order Taylor
approximation of Lp;

GMKL: The Generalized MKL algorithm in [28]. The
target kernel class is the Hadamard product of
single Gaussian kernel defined on each dimension;

IKL: The Infinite Kernel Learning algorithm proposed
by [11]. We use LevelMKL as the embedded al-
gorithm to solve the kernel weight µ and α;

MKM: The Multilayer Kernel Machine with deep learn-
ing [6], which essentially trained SVM with mul-
tilayer arc-cosine kernel functions;

2LMKL: The proposed Two-Layer MKL algorithm de-
scribed in Algorithm 1;

2LMKLInf : The proposed Infinite Two-Layer MKL al-
gorithm described in Algorithm 2.

For parameter settings, the regularization parameter
C in MKL or our 2LMKL algorithms is determined
by 5-fold cross validation on the training data over
the range of {10−2, 10−1, . . . , 102}. For a fair com-
parison, the same set of base kernels was adopted by

 916

Two-Layer Multiple Kernel Learning

MKLLevel, LpMKL, and 2LMKL. For LpMKL, we ex-
amine p = 2, 3, 4 and report the best result. For fair
comparison, in MKM we chose the layer l = 2, and
found the best degree parameter ({0,1,2}) by cross
validation. For 2LMKLInf , the initial base kernel is
a Gaussian kernel with 10 parameters and polynomial
kernel with 3 degrees calculated on all the features.
During the iterative process, we add one Gaussian ker-
nel at each iteration.

4.2 Performance Analysis

Table 2 shows the detailed results of average classi-
fication accuracy and standard deviation values. To
compare the overall performance, we count the ranks
of the algorithms according to their performance on
each data set. The average rank is included in the last
row. From the results, we can draw several observa-
tions as follows.

First of all, by comparing the results between SVM
and the four existing MKL methods, we found that
the existing MKL algorithms do not always outper-
form SVM with an RBF kernel. For example, for the
MKLLevel algorithm, it outperformed SVM only over
five data sets (Australian, Splice, FlareSolar, Banana,
and Heart), and was surpassed significantly by SVM
over several data sets (German, Sonar, and Liver, etc).
Although it seems a little bit surprising, the similar
observation was reported in some previous empirical
study [11], which also found that regular MKL does
not always outperform SVM with an RBF kernel who
kernel parameter was tuned by cross validation. This
observation validates our motivation for overcoming
the shallow limitation of the regular MKL methods.

Second, by comparing the four existing MKL meth-
ods, we observed that IKL overall achieved the best
performance among them, and GMKL tended to per-
form slightly worse than the other methods. Specif-
ically, among all the MKL methods, IKL won three
best cases, LpMKL won two best cases, while either
MKLLevel or GMKL won only one out of 16 cases.
We conjecture the reason that IKL performed better
is probably because IKL has the possibility of using
a largely increased kernel set, which may be flexible
for the classification task. Similarly, the reason that
GMKL performed worse may be due to the relatively
smaller kernel set, in which the base kernel set consists
of only d kernels each of them was defined on a single
dimension.

Third, by examining the results achieved the two pro-
posed algorithms, 2LMKL and 2LMKLInf , we found
that both of them achieved rather impressive per-
formance. Both of them considerably outperformed
the other methods, including the existing MKL meth-

ods and the MKM method, over quite a number of
data sets. Specifically, among all the MKL methods,
2LMKL won five best cases while 2LMKLInf won 11
best cases out of 16 cases. The encouraging perfor-
mance showed our 2LMKL method is more effective
than the regular MKL methods through the explo-
ration of deep kernel learning capability, and is also
more effective than the previous MKM method with
deep learning.

Finally, comparing the two proposed two-layer MKL
algorithms themselves, we observed that 2LMKLInf

performed better than 2LMKL. This validates the ef-
ficacy of the proposed improvement by exploiting the
idea of indefinite kernel learning.

5 Conclusion

This paper presented a general framework of multi-
layer multiple kernel learning (MLMKL) to overcome
the shallow learning nature of regular MKL. Under the
framework, we propose a Two-Layer Multiple Kernel
Learning (2LMKL) method, and developed two effec-
tive algorithms to solve it. We analyzed the general-
ization risk of the proposed two-layer MKL algorithms
and conducted an extensive set of experiments. Our
empirical results showed that the proposed 2LMKL
algorithms usually perform better than the existing
shallow MKL methods, demonstrating the efficacy of
the 2LMKL approach.

Despite the promising results, MLMKL remains a
rather new area for future research. In our future
work, we plan to extend the current two-layer MKL
scheme to higher-layer MKL solutions to further en-
hance the efficacy. Akin to the training scheme of
deep learning[13], one can learn µ(l) in a bottom-up
and layer-wise manner. In other words, we can em-

bed the learned kernel k
(l)
s (summation of base ker-

nels at the current layer) into the base kernel functions

to generate the candidate kernels k
(l+1)
1 , . . . , k

(l+1)
n for

the next layer. Then conventional MKL algorithms
are adopted to solve the weight µ(l+1). This process
can be repeated to construct deep kernels. We will
also analyze the overfitting issue for MLMKL and in-
vestigate more theoretical insights about the power of
multi-layer multiple kernel learning.

Acknowledgments

This research was in part supported by Singapore
A* SERC Grant (102 158 0034), MOE Tier-1 Grant
(RG15/08), Tier-1 Grant (RG67/07) and Tier-2 Grant
(T208B2203).

 917

Jinfeng Zhuang, Ivor W. Tsang, Steven C.H. Hoi

References

[1] M. Anthony and P. Bartlett. Neural Networks
Learning: Theoretical Foundations. Cambridge
University Press, 1999.

[2] A. Argyriou, C. A. Micchelli, and M. Pontil.
Learning convex combinations of continuously pa-
rameterized basic kernels. In COLT, pages 338–
352, 2005.

[3] F. Bach. Exploring large feature spaces with hier-
archical multiple kernel learning. In NIPS, pages
105–112, 2008.

[4] F. Bach, G. Lanckriet, and M. I. Jordan. Mul-
tiple kernel learning, conic duality, and the SMO
algorithm. In ICML, 2004.

[5] Y. Bengio. Learning deep architectures for ai.
Foundations and Trends in Machine Learning,
2(1):1–127, 2009.

[6] Y. Cho and L. K. Saul. Kernel methods for deep
learning. In NIPS, pages 342–350, 2009.

[7] Y. Cho and L. K. Saul. Large-margin classifica-
tion in infinite neural networks. Neural Compu-
tation, 22(10):2678–2697, 2010.

[8] C. Cortes, M. Mohri, and A. Rostamizadeh.
Learning non-linear combinations of kernels. In
NIPS, 2009.

[9] C. Cortes and V. Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995.

[10] N. Cristianini and J. Shawe-Taylor. An intro-
duction to support Vector Machines: and other
kernel-based learning methods. Cambridge Uni-
versity Press, New York, NY, USA, 2000.

[11] P. V. Gehler and S. Nowozin. Infinite kernel learn-
ing. In TECHNICAL REPORT NO. TR-178,Max
Planck Institute for Biological Cybernetics, 2008.

[12] M. Gönen and E. Alpaydin. Localized multiple
kernel learning. In ICML, pages 352–359, 2008.

[13] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast
learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006.

[14] G. E. Hinton and R. Salakhutdinov. Reducing
the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

[15] T. Hofmann, B. Scholkopf, and A. J. Smola. Ker-
nel methods in machine learning. The Annals of
Statistics, 36(3):1171–1220, 2008.

[16] M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov,
K.-R. Muller, and A. Zien. Efficient and accurate
lp-norm multiple kernel learning. In NIPS, 2009.

[17] J. T. Kwok and I. W. Tsang. The pre-image prob-
lem in kernel methods. IEEE Transactions on
Neural Networks, 15(6):1517–1525, 2004.

[18] G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett,
L. E. Ghaoui, and M. I. Jordan. Learning the ker-
nel matrix with semidefinite programming. Jour-
nal of Machine Learning Research, 5:27–72, 2004.

[19] H. Larochelle, D. Erhan, A. C. Courville,
J. Bergstra, and Y. Bengio. An empirical evalua-
tion of deep architectures on problems with many
factors of variation. In ICML, pages 473–480,
2007.

[20] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller,
M. Scholz, and G. Rätsch. Kernel pca and de-
noising in feature spaces. In NIPS, pages 536–542,
1998.

[21] A. Rakotomamonjy, F. Bach, S. Canu, and
Y. Grandvalet. More efficiency in multiple ker-
nel learning. In ICML, pages 775–782, 2007.

[22] B. Schölkopf, R. Herbrich, and A. J. Smola.
A generalized representer theorem. In
COLT/EuroCOLT, pages 416–426, 2001.

[23] J. Shawe-Taylor and N. Cristianini. Kernel Meth-
ods for Pattern Analysis. Cambridge University
Press, New York, NY, USA, 2004.

[24] S. Sonnenburg, G. Rätsch, and C. Schäfer. A
general and efficient multiple kernel learning al-
gorithm. In NIPS, 2005.

[25] S. Sonnenburg, G. Rätsch, C. Schäfer, and
B. Schölkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7:1531–
1565, 2006.

[26] N. Srebro and S. Ben-David. Learning bounds for
support vector machines with learned kernels. In
COLT, pages 169–183, 2006.

[27] V. N. Vapnik. Statistical Learning Theory. Wiley,
1998.

[28] M. Varma and B. R. Babu. More generality in
efficient multiple kernel learning. In ICML, page
134, 2009.

[29] Z. Xu, R. Jin, I. King, and M. R. Lyu. An ex-
tended level method for efficient multiple kernel
learning. In NIPS, pages 1825–1832, 2008.

[30] Y. Ying and C. Campbell. Generalization bounds
for learning the kernel. In COLT, 2009.

[31] Y. Ying and C. Campbell. Rademacher
chaos complexity for learning the ker-
nel problem. In TECHNICAL REPORT,
http://secamlocal.ex.ac.uk/people/staff/yy267/
KLbound-version3.pdf, 2010.

[32] J. Zhu and T. Hastie. Kernel logistic regression
and the import vector machine. In NIPS, pages
1081–1088, 2001.

