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Abstract
This paper studies nearest neighbor classification in a model where unlabeled data points arrive in a
stream, and the learner decides, for each one, whether to ask for its label. Are there generic ways to
augment or modify any selective sampling strategy so as to ensure the consistency of the resulting
nearest neighbor classifier?

1. Introduction

A binary classification problem is specified by an instance space X , a label space Y = {0, 1}, and a
distribution P on X ×Y . For (X,Y ) generated from P, let µ denote the marginal distribution ofX ,
and η the conditional expectation η(x) = E(Y |X = x). The error rate, or risk, of a rule h : X → Y
is P(h(X) 6= Y ). This is minimized by the rule h∗(x) = 1(η(x) ≥ 1/2), whose error rate is called
the Bayes-optimal risk, R∗.

Now suppose thatX is a metric space and that an infinite stream of examples, (X1, Y1), (X2, Y2),
. . ., is generated by independent draws from P. For n = 1, 2, . . ., there are various nearest neighbor
classifiers Tn based on the first n observations. The 1-NN classifier assigns a point x the label of its
nearest neighbor in X1, . . . , Xn. The k-NN classifier takes the majority label among x’s k nearest
neighbors; and the kn-NN classifier does the same, for kn growing with n. These schemes have all
been shown to be consistent, or nearly so: as n grows, the expected risk of Tn goes to R∗ for the
kn-NN classifier if kn = o(n), to R∗ +O(1/

√
k) for k-NN, and to at most 2R∗ for 1-NN (Fix and

Hodges, 1951; Cover and Hart, 1967; Stone, 1977).
In this paper, we investigate how consistency is affected by selective sampling. Suppose the

above setup is modified so that instances are free but labels have a unit cost. At each time step
n = 1, 2, . . ., a learning algorithm sees Xn and then decides on the spot whether or not to purchase
Yn. Nearest neighbor classifiers can be defined as before, except that now neighbors are chosen
from the set of Xi whose labels are known.

The goal in selective sampling is to get a low-error classifier while buying as few labels as
possible. There are plenty of sensible-sounding strategies for achieving this, for instance:

(S0) Given Xn, find its two nearest queried neighbors. Ask for Yn if their labels differ.

But this, and many others like it, fail to preserve consistency. To see why, suppose that X is
uniformly distributed in [0, 1] and that Y is 0 except when X ∈ [1/2 − α, 1/2 + α] (for small
α > 0), in which case it is 1. Rule (S0) is very likely to start with two 0-labels and then never ask
for any other label. Thus it incurs an asymptotic risk of 2α whereas R∗ = 0.
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Taking a high-level view of the problem, the behavior of η inside any specific ball can be quite
different from its behavior outside the ball (unless there are strong smoothness conditions). In order
to guarantee consistency, it is therefore essential that every ball in X of nonzero probability mass be
queried infinitely often. This is easy to achieve, for instance by querying each Yn with probability
1/n.

The first question we study is the following: in order to make a selective sampling strategy
consistent, is it enough to simply ensure the following?

(R0) Every Yn is queried with probability at least 1/n.

The answer is yes, ifR∗ = 0 and the decision boundary isn’t too strange (Theorem 2). Requirement
(R0) is easily added to any sampling strategy, and incurs an overhead of just log n queries in n time
steps.

On the other hand, if R∗ > 0, consistency can fail dramatically under condition (R0). We con-
struct a one-dimensional example in which R∗ is arbitrarily small and yet the asymptotic risk is
close to 1 (Theorem 3). We then propose a different sampling requirement that does yield consis-
tency for anyR∗ (Theorem 13). It is simple and can be tacked on to any selective sampling strategy;
however, it doubles the number of queries made by that strategy.

Finally, we consider rates of convergence. It has traditionally been somewhat tricky to give
these for nearest neighbor schemes, unless either the data is one-dimensional or (µ, η) satisfy strong
smoothness properties. We analyze a one-dimensional setting in which R∗ = 0 but there are an un-
known number of sign changes. We find that a scheme similar to (S0) works well, if augmented with
additional sampling of type (R0). In fact, it attains error ≤ ε after a number of queries proportional
to just log(1/ε) (Theorem 14).

Related work

After the pioneering work of Fix and Hodges (1951) on the kn-NN rule, Cover and Hart (1967)
showed consistency (within a factor of 2) of the 1-NN rule when X is a separable metric space
and η is continuous; they also analyzed the k-NN case. Later, Stone (1977) showed consistency
of the kn-NN rule in Euclidean spaces, without any distributional assumptions; see also (Devroye,
1981). This was extended to strong consistency by Devroye et al. (1994). There has been some work
that gives consistency results for nearest neighbor schemes under non-i.i.d. sampling (Kulkarni and
Posner, 1995). However, these prohibit the querying decision for a point Xn from depending upon
the results of earlier queries, which rules out selective sampling strategies.

On the active learning front, there have been many recent results focusing on learning parametric
models like linear separators. Consistency has been found to be a basic hurdle because the learner’s
attempt to pick out informative examples leaves it with a labeled set that can be unrepresentative of
the underlying distribution P (Dasgupta, 2011). There has also been some work on nonparametric
settings (Castro and Nowak, 2008; Hanneke, 2011), studying the best rates achievable in some
canonical cases. In this paper, we find that consistency is a problem for nearest neighbor methods
as well, but that it permits a more lightweight and generic solution than has been obtained in the
parametric setting.
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2. Preliminaries

Let (X , d) be a metric space, and for any x ∈ X and r ≥ 0, let B(x, r) be the closed ball of radius
r centered at x, that is, {z ∈ X : d(x, z) ≤ r}.

Let (X1, Y1), (X2, Y2), . . . be obtained by independent draws from distribution P on X × Y .
The learning algorithm sees the Xn in order, and for each, decides whether or not to query Yn. Let
Qn denote the multiset of instances among X1, . . . , Xn whose labels are queried; and let Ŷn(x) be
the label of x ∈ Qn. For any point x ∈ X , define

Γ(x, S) = nearest neighbor of x in S

Γk(x, S) = multiset of k nearest neighbors of x in S

(breaking ties by preferring recent points, say). The 1-NN classifier, on input x, returns Ŷn(Γ(x,Qn)).
The k-NN classifier returns the majority label amongst the Ŷn(z), for z ∈ Γk(x,Qn); ties are bro-
ken by, say, tossing a fair coin. And kn-NN is like k-NN, except that k is a growing function of
n.

We will denote a nearest neighbor classifier by Tn : X → Y . This function, and its risk
Rn = Pr(X,Y )(Tn(X) 6= Y ), are random variables depending on the training process. We say Tn is
consistent if ERn → R∗, taking expectation over the learning process up to time n, and we say it is
strongly consistent if Rn → R∗ almost surely.

3. Consistency in the realizable case

We start with the “realizable” case. Here we require R∗ = 0, as well as a technical assumption
about the boundary between the 0-label and 1-label regions. For i ∈ {0, 1}, let Xi consist of all
x ∈ X for which there is a closed ball B centered at x with (i) µ(B) > 0 and (ii) η(z) = i for all
z ∈ B. The specific realizability assumption is:

(A1) µ(X0 ∪ X1) = 1.

We will analyze selective sampling schemes which meet the following requirement.

(R1) There is a sequence of reals (a1, a2, . . .) such that the probability that Yn is queried, condi-
tional on Xn and all prior history, is at least an.

To make this formal, let Fn denote the σ-field of everything the learner has seen up to and including
time n. If we define

Y ′i =

{
Yi if queried
? if not queried

we can write Fn = σ(X1, Y
′
1 , . . . , Xn, Y

′
n). Our requirement for selective sampling is that

Pr(Yn is queried | Fn−1, Xn) ≥ an.

Define sn = a1 + · · ·+ an. We’ll see that as long as sn →∞, the k-NN estimator is consistent
for any fixed k. Thus, for instance, setting an = 1/n is good enough. More generally, for the
kn-NN estimator, a sufficient condition is sn/kn → ∞. We will treat the three cases together, by
considering a kn-NN estimator in which the sequence (kn) is allowed to be constant.

These results are based on the following consequence of the Borel-Cantelli lemma.
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Lemma 1 Pick any ball B with µ(B) > 0. If kn is a nondecreasing sequence of positive integers
and sn/kn →∞, then there is almost surely some n0 such that |Qn ∩B| ≥ kn for all n ≥ n0.

Proof Let Zt be the event that Xt lies in ball B and that Yt is queried; so Zt is Ft-measurable.
Define ξt = Pr(Zt|Ft−1) ≥ µ(B)at. Since

∑n
t=1 ξt ≥ µ(B)sn → ∞, it follows by Levy’s

martingale version of the Borel-Cantelli lemma (Williams, 1991, Theorem 12.15) that∑n
t=1 1(Zt)∑n
t=1 ξt

→ 1

almost surely. The numerator is |Qn ∩B| and the denominator is ≥ µ(B)sn. Thus with probability
one, there is some n1 such that |Qn ∩B| ≥ (1/2)µ(B)sn for any n ≥ n1.

By the condition on sn, there is some n2 such that sn/kn ≥ 2/µ(B) whenever n ≥ n2. Thus,
for n ≥ n0 = max(n1, n2), we have |Qn ∩B| ≥ kn.

Theorem 2 Let (kn : n = 1, 2, . . .) be any nondecreasing sequence of positive integers. For a
selective sampling scheme that meets requirement (R1), define sn = a1 + · · · + an. If (A1) holds,
and sn/kn →∞, then the resulting kn-NN predictor is strongly consistent.

Proof Let z denote a complete infinite instantiation ((x1, y
′
1), (x2, y

′
2), . . .) of the training process.

This z ∈ Z = (X × (Y ∪ {?}))∞ is a draw from the distribution — call it γ — induced by (µ, η)
and the learning algorithm. Any z specifies a sequence of kn-NN classifiers (Tn,z : n = 1, 2, . . .).

For any z, the classifier Tn,z has risk Rn,z = Pr(X,Y )(Tn,z(X) 6= Y ) = EXerrn(z,X), where
for any x ∈ X , we define

errn(z, x) = η(x)1(Tn,z(x) 6= 1) + (1− η(x))1(Tn,z(x) 6= 0).

We call a pair (z, x) “good” if this error goes to zero as n increases. More precisely, define G =
{(z, x) : lim supn errn(z, x) = 0} ⊂ Z × X .

Now, pick any x ∈ Xi, for i ∈ {0, 1}. By definition, η = i on some closed ball B around
x of nonzero probability mass. By Lemma 1, with probability one (over z), there exists some
n0 such that for n ≥ n0, the kn nearest queried neighbors Γkn(x,Qn) lie within B, whereupon
Tn(x) = i = η(x) and hence errn(z, x) = 0. In other words, for any x ∈ X0 ∪ X1, we have
γ({z : (z, x) ∈ G}) = 1. Since µ(X0 ∪ X1) = 1, it follows that (γ × µ)(G) = 1, where γ × µ is
the product measure.

Strong consistency, namely the property that

γ({z : lim
n→∞

Rn,z = 0}) = γ({z : lim
n→∞

EXerrn(z,X) = 0}) = 1,

now follows by straightforward manipulations (Lemma 16).

4. An illustrative example for the general case

We’ll now see that sampling requirement (R1), with sn = a1 + · · · + an → ∞, is no longer
sufficient to guarantee consistency when the optimal risk is nonzero. In the counterexample we
study, the optimal risk can be tuned to be arbitrarily close to 0, while the asymptotic risk of the
1-NN predictor gets close to 1.
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4.1. Model and result

Let (X,Y ) be a pair of random variables, where X is uniform distributed in [0, 1] and Y ∈ {0, 1}
is independent of X , with EY = η for some 0 < η < 1/2. The Bayes-optimal prediction is zero
everywhere, and has risk R∗ = η.

Suppose the learner uses the following selective sampling strategy when it sees Xn: if Xn’s
nearest queried neighbor has label 0, then it queries Yn, otherwise it queries Yn with probability
1/n. Recalling that Ŷt(Γ(x,Qt)) denotes the label of the nearest queried neighbor of x amongst
X1, . . . , Xt, we can write:

(S1) Given Xn:

• If Ŷn−1(Γ(Xn, Qn−1)) = 0 then query Yn (call this a “type 0” query).

• If Ŷn−1(Γ(Xn, Qn−1)) = 1 then query Yn with probability 1/n (“type 1” query).

This strategy meets requirement (R1), but nevertheless produces a 1-NN classifier whose asymptotic
expected risk is 1− η.

Theorem 3 Let Tn denote the 1-NN classifier based upon the points queried up to time n under
(S1). Pick any 0 < x < 1. Then Pr(Tn(x) = 1)→ 1 as n→∞.

4.2. Analysis outline

Fix any point 0 < x < 1. To simplify notation, we use Ŷn as a shorthand for the label of x’s
nearest queried neighbor, Ŷn(Γ(x,Qn)). We also use Ŷ L

n to denote the (label of the) nearest queried
neighbor to the left of x, and Ŷ R

n the nearest queried neighbor to the right of x.
We will show that for large n, it is very likely that Ŷ L

n = Ŷ R
n = 1, and hence Ŷn = 1. This

results from two effects. First, if this condition holds at any time t ≥ n/ lnn, it is likely to still hold
at time n because the sampling rule dampens querying between 1-labels. Second, if the condition
does not hold at any specific time t, then it has a constant probability of holding by the time two
more points arrive that are close to x and on either side of it, since each of these points has a constant
probability of being labeled 1.

The analysis is based on four events, each of which has probability 1 − o(1) of occurring. In
what follows, let w(n) be a decreasing function of n, and let f(n) and a(n) be functions that are
slowly increasing. We will make these specific later. Moreover, let In denote the closed interval
[x− w(n), x+ w(n)]; we will consider n large enough that In ⊂ [0, 1]. We divide the first n time
steps of the learning algorithm into two phases: denoting time by t,

Phase One: t = 1, 2, . . . , f(n).

Phase Two: t = f(n) + 1, . . . , n.

Finally, we will call a specific time t an arrival if x’s nearest neighbor changes at this time, that is,
if |x −Xt| < min(|x −X1|, . . . , |x −Xt−1|); and we will let Tn be the time of the a(n)th arrival
after phase one.

Here are the four events of interest.

(E1) During phase one, at least one point is queried in each half of In (left/right of x).

(E2) Ŷ L
t = Ŷ R

t = 1 for some f(n) < t < Tn.
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(E3) Tn ≤ n.

(E4) During phase two, no queries of type 1 are made in In.

Lemma 4 If E1, E2, E3, E4 all occur, then Ŷn = 1.

Proof If E1, E2, E3 occur, then there is a time f(n) < t ≤ n at which Ŷ L
t = Ŷ R

t = 1, and these
correspond to data points in In, on either side of x. Call these points xL and xR. The first query to
occur in the interval (xL, xR) after time t is necessarily a type-1 query; but E4 tells us there is no
such query. Thus Ŷn is the label of either xL or xR, and these are both 1.

4.3. Event E1

For integers n1 ≤ n2, let H(n1, n2) denote the harmonic sum

H(n1, n2) =
1

n1
+

1

n1 + 1
+ · · ·+ 1

n2
≈ ln

n2
n1
. (1)

Lemma 5 If n is large enough that In ⊂ [0, 1], then Pr(E1) ≤ 2 exp(−w(n)H(1, f(n))).

Proof The probability that Xi lies in the left half of In (which has width w(n)) and is queried is at
least w(n)/i. Thus the chance this never happens during phase one is at most

f(n)∏
i=1

(
1− w(n)

i

)
≤ exp (−w(n)H(1, f(n))) .

and the same applies to the right half of In.

4.4. Event E2

We will show that the condition Ŷ L
t = Ŷ R

t = 1 has a constant probability of being created between
any two arrivals. More precisely, suppose that t is the time of an arrival, and that the desired
condition does not hold right before t; in other words, one or both of Ŷ L

t−1, Ŷ R
t−1 are zero. Then there

is a constant probability that both of these values will become one before the arrival subsequent to
t.

Lemma 6 Pick any arrival time t. Then

Pr
(
∃ t′ ≥ t before next arrival with Ŷ L

t′ = Ŷ R
t′ = 1 | t arrival, Ŷ L

t−1Ŷ
R
t−1 = 0

)
≥ 1

12
η2.

We bound the probability that event E2 fails by applying the previous lemma repeatedly.

Lemma 7 Pr(E2|E1) ≤ (1− η2/12)a(n)−1.
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Proof If event E1 occurs, then by time f(n), there are queried points to the left and right of x. We
now apply Lemma 6 to each of the following a(n) − 1 arrivals; in each case, there is at least an
η2/12 probability that the condition Ŷ L

t = Ŷ R
t = 1 will exist at some time t before the next arrival.

4.5. Event E3

We need to analyze the likely number of arrivals between two times, say s and t. This is not compli-
cated, because when X1, . . . , Xt are ranked by distance from x, the result is a random permutation
of (1, 2, . . . , t). So, let π denote such a random permutation, and define the indicator variable

Zi =

{
1 if π(i) < π(1), . . . , π(i− 1)
0 otherwise .

Then A(s, t) = Zs +Zs+1 + · · ·+Zt has exactly the same distribution as the number of arrivals in
time steps s, s+ 1, . . . , t. We now give a Chebyshev bound on A(s, t).

Lemma 8 For any s ≤ t, and any c > 0,

Pr
(
|A(s, t)−H(s, t)| ≥ c

√
H(s, t)

)
≤ 1

c2
.

where H(s, t) is the harmonic sum defined in (1).

Lemma 9 If a(n) ≤ H(f(n) + 1, n)/2, then Pr(E3) ≤ 4/H(f(n) + 1, n).

Proof Recalling that Tn is the time of the a(n)th arrival after time f(n),

Pr(Tn > n) = Pr(A(f(n) + 1, n) < a(n)) ≤ Pr(A(f(n) + 1, n) < H(f(n) + 1, n)/2),

and then we apply Lemma 8 with c = (1/2)
√
H(f(n) + 1, n).

4.6. Event E4

Lemma 10 Pr(E4) ≤ 2w(n)H(f(n) + 1, n).

Proof The probability of a type-1 query in In at time i is at most 2w(n)/i. Thus

Pr(E4) ≤
n∑

i=f(n)+1

2w(n) · 1

i
= 2w(n)H(f(n) + 1, n).

To finish the proof of Theorem 3, we ensure that w(n) log f(n), a(n), and log(n/f(n)) are
increasing functions of n while w(n) log(n/f(n)) is a decreasing function of n; for instance:

w(n) =
1√
lnn

, f(n) =
n

lnn
, a(n) =

√
ln lnn.

For n large enough that [x − w(n), x + w(n)] ⊂ [0, 1], we can then bound Pr(Ŷn(Γ(x,Qn)) 6= 1)
by Pr(E1 ∨ E2 ∨ E3 ∨ E4), which decreases to zero as n→∞.
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5. Consistency in the general case

In the general case, when η takes values outside {0, 1}, we have seen that requirement (R1) does not
guarantee consistency. In the counterexample, we created a sampling rule satisfying this condition
but favoring 1-labels, and saw that it caused a 1-NN classifier to eventually predict 1 everywhere,
even if η were close to 0 everywhere.

To prevent the sampling strategy from being biased towards a particular label, we could stipu-
late, for instance, that the probability of querying the label of a new point x depends only on how
homogeneous the labels of its k nearest queried neighbors are; that is, if the sum of these nearest
labels is j, the probability should depend only on min(j, k − j). Something like this might work,
but it creates statistical dependencies between the queried labels that are long-ranging and complex,
making the analysis difficult.

Instead, we analyze a generic scheme which removes all complicated dependencies by dividing
the queried labels into two groups, one of which is used for making selective sampling decisions,
while the other is for use only by the final classifier. We call this latter multiset F (“future use”),
with Fn denoting its state at the end of the nth time step.

(R2) The querying strategy satisfies three rules: (1) Any queried point can be placed in Fn, and Fn
contains only queried points. (2) The decision to query Yn and/or place Xn in Fn depends on
Xn and on all prior history except for the labels of points in Fn−1. (3) There is a sequence of
reals (a1, a2, . . .) that the probability that Xn is placed in Fn is at least an, conditional upon
Xn and prior history.

If we define

Y ′i =


Yi if queried and not in F
! if queried and in F
? if not queried

.

then Gn = σ(X1, Y
′
1 , . . . , Xn, Y

′
n) is all the data the learner uses to make decisions during training.

What is hidden until prediction time is:

Y ′′i =

{
Yi if queried and in F
! otherwise

.

The final estimator Tn, when given a query x, returns the majority label in Ŷn(Γkn(x, Fn)) (where
kn might be constant).

(R2) amounts to the following conditions:

• Decisions about querying Yn and placing Xn in Fn are based only on Gn−1 and Xn.

• Pr(Xn is put in Fn | Gn−1, Xn) ≥ an.

For instance, one could start from any querying strategy, then make sure to query each Xn with
probability at least 2an, and then place each queried point in Fn with probability 1/2.

We have adopted the metric space setting of Cover and Hart, and will use the same two assump-
tions.

(A2) The metric space (X , d) is separable (contains a countable dense subset).
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The support of µ is defined as {x ∈ X : µ(B(x, r)) > 0 for all r > 0}. A consequence of separa-
bility (Cover and Hart, 1967) is that this set has µ-mass 1.

(A3) For x chosen from µ, almost surely either µ({x}) > 0 or x is a continuity point of η.

As a result of (A3), there is a subset X ′ ⊂ X with µ(X ′) = 1 that satisfies the following property:
for any x ∈ X ′ and any ε > 0, there is a closed ball Bε

x centered at x with µ(Bε
x) > 0, such that

|η(z)− η(x)| < ε for all z ∈ Bε
x.

The asymptotic behavior of the selective sampling scheme for nearest neighbor rests upon the
following fact, which is proved in exactly the same way as Lemma 1.

Lemma 11 Pick any ball B with µ(B) > 0. If kn is a non-decreasing sequence of positive integers
and sn/kn →∞ (where, as before, sn = a1 + · · ·+ an), then there is almost surely some n0 such
that |Fn ∩B| ≥ kn for all n ≥ n0.

The remainder of the analysis cobbles together ideas from earlier nearest neighbor work, while
clarifying that no unwanted dependencies are introduced by selective sampling.

As a consequence of Lemma 11, for large n, the nearest neighbors of a query point x will lie
sufficiently close to it that their η(·) values will be close to η(x), say within η(x) ± ε. What is the
probability that the majority vote over these k nearest neighbors coincides with the label at x? This
is a simple question about independent coin flips.

Lemma 12 Pick any 0 < ε, η < 1. Let Z,Z1, . . . , Zk ∈ {0, 1} be the outcomes of independent coin
flips with heads probabilities η, η1, . . . , ηk, respectively, where |ηi− η| ≤ ε. Let Mk be the majority
vote over Z1, . . . , Zk, breaking ties with a fair coin flip. Define C(k, ε, η) to be the supremum of
Pr(Mk 6= Z) over all choices η1, . . . , ηk ∈ [η − ε, η + ε]. Then

(a) C(1, ε, η) ≤ 2 min(η, 1− η) + ε.

(b) If k > 1 and either η = 1/2 or ε ≤ |1− 2η|/4, then C(k, ε, η) ≤ min(η, 1− η) + 2/
√
k.

Theorem 13 Let (kn : n = 1, 2, . . .) be any nondecreasing sequence of positive integers. Suppose
a selective sampling strategy meets requirement (R2). Define sn = a1+· · ·+an. If assumptions (A2)
and (A3) hold, and if sn/kn → ∞, the asymptotic expected risk of the resulting kn-NN classifier
can be bounded thus:

lim sup
n

ERn ≤


2R∗ if (kn) ≡ 1
R∗ + 2√

k
if (kn) ≡ k

R∗ if kn →∞

Proof Pick any εo > 0. For any x ∈ X , define

ε(x) =

{
εo if η(x) = 1/2
min(εo, |1− 2η(x)|/4) otherwise

As in Theorem 2, denote an instantiation of the complete learning process by

z = ((x1, y
′
1, y
′′
1), (x2, y

′
2, y
′′
2), . . .) ∈ Z = (X × (Y ∪ {?, !})× (Y ∪ {!}))∞.
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We can break this into the information used during learning, z′ = ((x1, y
′
1), (x2, y

′
2), . . .), and the

labels needed only for prediction, z′′ = (y′′1 , y
′′
2 , . . .).

Each z defines an infinite sequence of future-use sets Fn(z) and kn-NN classifiers Tn,z . The
expected risk at time n is

ERn = PrZ,X,Y (Tn,Z(X) 6= Y )

≤ PrZ,X(|Fn(Z) ∩Bε(X)
X | < kn) + PrZ,X,Y (Tn,Z(X) 6= Y, |Fn(Z) ∩Bε(X)

X | ≥ kn).

Let’s start with the first term. For x ∈ X ′, we know from Lemma 11 that almost surely over
Z, limn→∞ 1(|Fn(Z) ∩ Bε(x)

x | < kn) = 0. Applying dominated convergence twice, we first get
PrZ(|Fn(Z)∩Bε(x)

x | < kn)→ 0, and then, since µ(X ′) = 1, we also have PrZ,X(|Fn(Z)∩Bε(X)
X | <

kn)→ 0.
For the second term in the decomposition of ERn, we observe that the labels of points in Fn

can be thought of as being exposed only at the time of prediction. Hence, for any x and any z′,

PrY,Z′′(Tn,Z(X) 6= Y, |Fn(Z) ∩Bε(X)
X | ≥ kn | X = x, Z ′ = z′) ≤ C(kn, ε(x), η(x))

for the quantity C(·) of Lemma 12. Thus

PrZ,X,Y (Tn,Z(X) 6= Y, |Fn(Z) ∩Bε(X)
X | ≥ kn) ≤ EXC(kn, ε(X), η(X))

≤
{

2R∗ + εo if (kn) ≡ 1
R∗ + 2√

kn
otherwise

The theorem follows by noting that this holds for any εo > 0, and taking n→∞.

6. Rates of convergence in a simple setting

A simple model in which finite-sample rates of convergence can be obtained is when µ is continuous
on X = [0, 1], and η is piecewise 0 − 1. More precisely, there exist values 0 = θ0 < θ1 < · · · <
θk = 1 and η1, . . . , ηk ∈ {0, 1} such that

η(x) = ηi for all x in the interval Ii = (θi−1, θi).

The locations of the θi, and the value of k, are unknown to the learning algorithm.
This setup has been addressed in previous active learning work (Balcan et al., 2010; Hanneke,

2012), though not with nearest-neighbor methods. We will study a procedure inspired by strategy
(S0) in the introduction. Given Xn:

(S2) Find the nearest queried neighbors to the left and right of Xn. If either is absent, or if they
have different labels, query Yn (“type-I” query). Otherwise, query Yn with probability 1/nc

(“type-II” query).

Here 0 < c ≤ 1 is some constant. Type-II queries are essential for consistency in this setting
where there are an unknown number of sign changes. Since the rate at which they occur is easy to
characterize, we will focus upon analyzing type-I queries.
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The querying strategy cares only about the ordering of points in X , and not the actual distances
between them; hence, we may without loss of generality assume that µ is the uniform distribution
on [0, 1]. How would a supervised learner, that asked for every label, perform under these circum-
stances? After n examples, its estimate of each θi would be off by about 1/n, and thus its error rate
would be approximately k/n. This means it would need roughly k/ε labels before its error dropped
below ε.

Now let’s see what selective sampling does, when used for 1-NN classification. We will say
that interval Ii has been discovered at time n if Qn, the set of queries up to and including time n,
contains a point in Ii. Let No be the random time at which all intervals are finally discovered, that
is,

No = min{n : every Ii has been discovered at time n}.
We’ll see that the learning proceeds in two phases: an initial phase up to time No, during which the
rate of error reduction is similar to that of supervised learning, and a subsequent phase during which
the error rate drops geometrically with each query.

Theorem 14 There is an upper bound 0 ≤ Φn ≤ 1 on the error of the 1-NN classifier Tn under
querying strategy (S2), such that for any n > No,

Pr(type-I query at time n) = Φn−1

E(Φn | Φn−1, type-I query at time n) ≤
(

1− 1

4(k + 1)

)
Φn−1.

Proof Think of the queried points Qn−1 as partitioning [0, 1] into |Qn−1| + 1 buckets. We call a
bucket active if it contains some θi, where 0 ≤ i ≤ k. If n > No, no bucket contains more than
one θi and thus there are exactly k + 1 active buckets. Here is an example in which k = 3 and nine
points have been queried so far:

− −
θ0 θ1 θ2 θ3

+ + + + +− +

active bucket

If Xn falls into an inactive bucket B, its closest queried neighbors have the same label. If Yn is
queried, it will be a type-II query, and will split B into two inactive buckets.

If Xn falls into an active bucket B, it will be queried (type-I), and B will be split into two
buckets, one active and the other inactive. A quick calculation shows that the expected length of the
inactive portion is at least |B|/4, where |B| is the length of B.

Now, define Φn−1 to be the sum of |B| over all active buckets at time n− 1. This is exactly the
probability that Xn falls in an active bucket, in other words, the probability of a type-I query at time
n. Suppose this event occurs. Then, using our earlier calculation, the expected amount by which Φ
shrinks is

E(Φn−1 − Φn | Φn−1, Xn falls in an active bucket) ≥
∑

active B

|B|
Φn−1

· |B|
4
≥ 1

4(k + 1)
Φn−1
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where the last step follows from the Cauchy-Schwarz inequality.

What this implies is that, after No, the error rate of Tn drops below ε after about O(k/ε) unla-
beled points are seen, and during this time, O(k log(1/ε)) type-I queries are made.

How long is the initial discovery period No? It depends on the lengths of the intervals Ii, and
on the constant c in the sampling strategy: taking c < 1 reduces it substantially.

Lemma 15 Let ∆ = mini |Ii|. Then for any n,

Pr(No ≥ n) ≤
{
k exp(−∆ lnn) if c = 1
k exp(−∆n1−c) if 0 < c < 1

Proof Pick any interval Ii. The probability that at time m ≤ n, a point falls in this interval and
is queried is at least ∆/mc. Thus the probability that Ii is not yet discovered at time n is at most∏n
m=1(1−∆/mc) ≤ exp(−∆

∑n
m=1m

−c). The lemma then follows by lower-bounding the sum-
mation in the two regimes of interest, and taking a union bound over all Ii.

Finally, how many queries are made before time No? A quick calculation shows that in the first
m time steps, the expected number of type-I queries is O(k log(m/k)), because of the shrinkage
rate, while the expected number of type-II queries, because they are infrequent, isO(logm) if c = 1
and O(m1−c) if c < 1.
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Appendix A. Proof details

Lemma 6 Pick any arrival time t. Then

Pr
(
∃ t′ ≥ t before next arrival with Ŷ L

t′ = Ŷ R
t′ = 1 | t is an arrival, Ŷ L

t−1Ŷ
R
t−1 = 0

)
≥ 1

12
η2.

Proof Let’s say Ŷ L
t−1 and Ŷ R

t−1 are the labels of points xL and xR, respectively (see Figure 1).
Without loss of generality, |xL − x| ≤ |xR − x|. Since Xt is an arrival, it lies in [xL, xR] and is
equally likely to be on either side of x. So Pr(Xt < x) = 1/2, and we will henceforth condition
upon this event.

There are three cases, depending on which of Ŷ L
t−1 and Ŷ R

t−1 are zero.
Case 1: Ŷ L

t−1 = 0 and Ŷ R
t−1 = 1. In this case, Xt will be queried, and with probability η, will get

label 1. Remembering that we need Xt < x, we have

Pr(Ŷ L
t = Ŷ R

t = 1 | case 1) ≥ 1

2
η.

Case 2: Ŷ L
t−1 = Ŷ R

t−1 = 0. The previous arrival (before Xt) was either xL or something closer to x
that did not get queried. Since Xt is uniformly distributed, we have

Pr
(
|x−Xt| <

1

2
|x− xL|

∣∣∣∣ Xt is an arrival
)
≥ 1

2
.
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Let Eo denote the event |x−Xt| < |x− xL|/2. Say Xt′ , t′ > t, is the next point to fall in [Xt, xR].

Pr(Xt′ is in shaded region | Eo) =
|x− xR|/2

|x− xR|+ |x−Xt|
≥ 1

3
.

If this happens, Xt′ is further away from x than is Xt, and hence Xt′ is not an arrival. Also, both
Xt and Xt′ will have their labels queried, and with probability η2, both will be 1.

Pr(∃ t′ ≥ t before next arrival with Ŷ L
t′ = Ŷ R

t′ = 1 | case 2)

≥ Pr(Xt < x,Eo, Xt′ in shaded region, both labels are 1)

≥ 1

2
· 1

2
· 1

3
· η2 =

1

12
η2.

Case 3: Ŷ L
t−1 = 1 and Ŷ R

t−1 = 0. This is like case 2, except that the label of Xt will probably not
be queried. Thus

Pr(∃ t′ ≥ t before next arrival with Ŷ L
t′ = Ŷ R

t′ = 1 | case 3) ≥ 1

12
η2.

Lemma 8 For any s ≤ t, and any c > 0,

Pr
(
|A(s, t)−H(s, t)| ≥ c

√
H(s, t)

)
≤ 1

c2
.

where H(s, t) is the harmonic sum defined in (1).

Proof We have E(Zi) = 1/i, so E(A(s, t)) = H(s, t). For i 6= j, E(ZiZj) = 1/(ij). Thus

E(A(s, t)2) = E
(( t∑

i=s

Zi
)2)

=
∑
i

E(Z2
i ) +

∑
i6=j

E(ZiZj)

≤ H(s, t) +
∑
i,j

1

ij
= H(s, t) +H(s, t)2

and the variance of A(s, t) is E(A(s, t)2)− (E(A(s, t)))2 ≤ H(s, t). By Chebyshev’s bound,

Pr
(
|A(s, t)− EA(s, t)| ≥ c

√
H(s, t)

)
≤ var(A(s, t))

c2H(s, t)
≤ 1

c2
.

Lemma 12 Pick any 0 < ε, η < 1. Let Z,Z1, . . . , Zk ∈ {0, 1} be the outcomes of independent coin
flips with heads probabilities η, η1, . . . , ηk, respectively, where |ηi− η| ≤ ε. Let Mk be the majority
vote over Z1, . . . , Zk, breaking ties with a fair coin flip. Define C(k, ε, η) to be the supremum of
Pr(Mk 6= Z) over all choices η1, . . . , ηk ∈ [η − ε, η + ε]. Then
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(a) C(1, ε, η) ≤ 2 min(η, 1− η) + ε.

(b) If k > 1 and either η = 1/2 or ε ≤ |1− 2η|/4, then C(k, ε, η) ≤ min(η, 1− η) + 2/
√
k.

Proof Assume without loss of generality that η ≤ 1/2, and let p = Pr(Mk = 1). Then

Pr(Mk 6= Z) = Pr(Z = 1)Pr(Mk = 0) + Pr(Z = 0)Pr(Mk = 1) = η + p(1− 2η). (2)

For (a), we have p = η1 ≤ η + ε, and we’re done.
For (b), if η = 1/2, then we are done immediately by (2).
Otherwise, the condition on ε implies ηi ≤ η+ ε < 1/2. This means that p ≤ 1/2. To make the

argument carefully, we can first check by means of a coupling argument that p is maximized when
all the ηi are set to their maximum value. So assume this; then, since any outcome (Z1, . . . , Zk)
with majority vote 1 is at most as likely as the corresponding (1 − Z1, . . . , 1 − Zk) with majority
vote 0, it follows that p ≤ 1/2.

Now, consider the case when |1− 2η| ≤ 4/
√
k. Plugging directly into (2) above, we get

Pr(Mk 6= Z) ≤ η + p(1− 2η) ≤ η +
1

2
· 4√

k
= η +

2√
k
.

On the other hand, if |1−2η| > 4/
√
k, write Sk = Z1+ · · ·+Zk, so that ESk = η1+ · · ·+ηk ≤

k
2 − k

2 (12 − η) and var(Sk) = η1(1− η1) + · · ·+ ηk(1− ηk) ≤ k/4. Applying Chebyshev’s bound,
we have

p ≤ Pr
(
Sk ≥

k

2

)
≤ Pr

(
Sk ≥ ESk +

k

2

(
1

2
− η
))
≤ var(Sk)(

k
2

(
1
2 − η

))2 ≤ 1(
1
2 − η

)√
k
.

The result then follows from (2).

Lemma 16 Let α, β be probability measures on spaces A,B, and let α × β denote the product
measure. Given a sequence of measurable functions f1, f2, . . . : A×B → [0, 1], define G ⊂ A×B
by

G = {(a, b) : lim sup
n

fn(a, b) = 0}.

If (α× β)(G) = 1 then α({a : limn→∞ EB∼βfn(a,B) = 0}) = 1.

Proof For any a ∈ A, define Ga = {b : (a, b) ∈ G} ⊂ B, and let A0 ⊂ A consist of all a such that
β(Ga) = 1. We’ll see that α(A0) = 1. Since

EA∼αβ(GA) = EA∼αEB∼β1((A,B) ∈ G) = (α× β)(G) = 1,

it follows that β(GA) = 1 (and hence A ∈ A0) almost surely when A is drawn from α.
Now, consider any a ∈ A0. Pick B ∼ β independently. Almost surely, (a,B) ∈ G and

fn(a,B)→ 0. By dominated convergence, EB∼βfn(a,B)→ 0.
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