
Online Stochastic Optimization under Correlated Bandit Feedback

Mohammad Gheshlaghi Azar MOHAMMAD.AZAR@NORTHWESTERN.EDU

Rehabilitation Institute of Chicago, Northwestern University

Alessandro Lazaric ALESSANDRO.LAZARIC@INRIA.FR

Team SequeL, INRIA Nord Europe

Emma Brunskill EBRUN@CS.CMU.EDU

School of Computer Science, CMU

Abstract
In this paper we consider the problem of online
stochastic optimization of a locally smooth func-
tion under bandit feedback. We introduce the
high-confidence tree (HCT) algorithm, a novel
anytime X -armed bandit algorithm, and derive
regret bounds matching the performance of state-
of-the-art algorithms in terms of the dependency
on number of steps and the near-optimality di-
mension. The main advantage of HCT is that it
handles the challenging case of correlated ban-
dit feedback (reward), whereas existing meth-
ods require rewards to be conditionally indepen-
dent. HCT also improves on the state-of-the-art
in terms of the memory requirement, as well as
requiring a weaker smoothness assumption on
the mean-reward function in comparison with the
existing anytime algorithms. Finally, we discuss
how HCT can be applied to the problem of policy
search in reinforcement learning and we report
preliminary empirical results.

1. Introduction
We consider the problem of maximizing the sum of the
rewards obtained by sequentially evaluating an unknown
stochastic function. This problem is known as stochas-
tic optimization under bandit feedback or X -armed ban-
dit, since each function evaluation can be viewed as pulling
one of the arms in a generic arm space X . Our objective is
to minimize the cumulative regret relative to selecting at
each step the global maximum of the function. In partic-
ular, we focus on the case where the reward obtained by
pulling an arm (i.e., evaluating the function in a point) may

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

depend on prior history of evaluations and outcomes. This
implies that the reward, conditioned on its corresponding
arm, is not an independent and identically distributed (iid)
random variable, in contrast to prior work on X -armed ban-
dits (see e.g., Munos, 2013; Kleinberg et al., 2013; Bubeck
et al., 2011a). X -armed bandit with correlated reward is
relevant to many real-world applications, including internet
auctions, adaptive routing, and online games. As one im-
portant example, we show that the problem of policy search
in an ergodic Markov Decision Process (MDP), a popular
setting for learning in unknown MDPs, can be framed as an
instance of the setting we consider in this paper (Sect. 5).

Our approach builds on recent advances in X -armed ban-
dits for iid settings (Bull, 2013; Djolonga et al., 2013;
Bubeck et al., 2011a; Srinivas et al., 2009; Cope, 2009;
Kleinberg et al., 2008; Auer et al., 2007). Under regularity
assumptions on the mean-reward function (e.g., Lipschitz-
smoothness), these methods provide formal guarantees on
the cumulative regret, which is proved to scale sub-linearly
w.r.t. the number of steps n. To obtain this regret, these
methods heavily rely on the iid assumption. To handle
non-iid settings, we introduce a new anytime X -armed ban-
dit algorithm, called high-confidence tree (HCT) (Sect. 3).
Similar to the HOO algorithm of Bubeck et al. (2011a),
HCT makes use of a covering binary tree to explore the
arm space. The tree is constructed incrementally in an op-
timistic fashion, where the exploration of the arm space
is guided by upper bounds on the largest reward of the
arms covered by a particular node. Our key insight is
that to achieve small regret it is enough to expand an op-
timistic node only when the estimate of its mean-reward
has become sufficiently accurate. Under mild ergodicity
and mixing assumptions, this allows us to obtain an ac-
curate estimate of the reward of a particular arm even in
the non-iid setting. Despite handling a more general case
of non-iid feedback, our regret bounds matches (Sect. 4.1)
that of HOO (Bubeck et al., 2011a) and zooming algorithm

Online Stochastic Optimization under Correlated Bandit Feedback

(Kleinberg et al., 2008), both of which only apply to iid set-
ting, in terms of dependency on the number of steps n and
the near-optimality dimension d (Sect. 2). An important
part of the proof of this result is the development of concen-
tration inequalities for non-iid episodic random variables
(Sect. 4). In addition to this result, the structure of our
HCT approach has a favorable sub-linear space complexity
of O(nd/(d+2)

(log n)2/(d+2)

) and a linearithmic runtime
complexity, making it suitable for scaling to big data sce-
narios. These results meet or improve the space and time
complexity of prior work designed for iid data (Sect. 4.2).
Finally, we demonstrate the benefit in simulations (Sect. 6).

2. Preliminaries
The optimization problem. Let X be a measurable space
of arms. We formalize the optimization problem as an in-
teraction between the learner and the environment. At each
time step t, the learner pulls an arm xt in X and the en-
vironment returns a reward rt 2 [0, 1] and possibly a con-
text yt 2 Y , with Y a measurable space (e.g., the state
space of a Markov decision process). Whenever needed,
we relate rt to the arm pulled by using the notation rt(x).
The context yt and the reward rt may depend on the his-
tory of all previous rewards, pulls, contexts and the current
pull xt. For any time step t > 0, the space of histories
Ht := ([0, 1] ⇥ X ⇥ Y)

t is defined as the space of past
rewards, arms,and observations (with H

0

= ;). An en-
vironment M corresponds to an infinite sequence of time-
dependent probability measures M = (Q

1

, Q
2

, . . .), such
that each Qt : Ht�1

⇥ X ! M([0, 1] ⇥ Y) is a map-
ping from the history Ht�1

and the arm space X to the
space of probability measures on rewards and contexts. Let
Z = ([0, 1] ⇥ X ⇥ Y), at each step t we define the ran-
dom variable zt = (rt, xt, yt) 2 Z and we introduce the
filtration Ft as a �-algebra generated by (z

1

, z
2

, . . . , zt).
At each step t, the arm xt is Ft�1

-measurable since it is
based on all the information available up to time t� 1. The
pulling strategy of the learner can be expressed as an infi-
nite sequence of measurable mappings (

1

,
2

, . . .), where
 t : Ht�1

! M(X) maps Ht�1

to the space of probabil-
ity measures on arms. We refine this general setting with
two assumptions on the reward-generating process.
Definition 1 (Time average reward). For any x 2 X , S >
0 and 0 < s  S, the time average reward is r̄s!S(x) :=
1/(S � s+ 1)

P
S
s0=srs0(x).

We now state our first assumption which guarantees that
the mean of the process is well defined (ergodicity).
Assumption 1 (Ergodicity). For any x 2 X , any s > 0 and
any sequence of prior pulls (x

1

, x
2

, . . . , xs�1

), the pro-
cess (zt)t>0

is such that the mean-reward function f(x) :=
lim S!1E(r̄s!S(x)|Fs�1

) exists.

This assumption implies that, regardless of the history of

prior observations, if arm x is pulled infinitely many times
from time s, then the time average reward converges in ex-
pectation to a fixed point which only depends on arm x and
is independent from the past history. We also make the fol-
lowing mixing assumption (see e.g., Levin et al., 2006).
Assumption 2 (Finite mixing time). There exists a con-
stant � � 0 (mixing time) such that for any x 2 X ,
any S > 0, any 0 < s  S and any sequence of prior
pulls (x

1

, x
2

, . . . , xs�1

), the process (zt)t>0

is such that
we have that |E[P S

s0=s(rs0(x)� f(x))
��Fs�1

]|  �.

This assumption implies that the stochastic reward process
induced by pulling arm x can not substantially deviate from
f(x) in expectation for more than � transient steps. Note
that both assumptions trivially hold if each arm is an iid
process: in this case f(x) is the mean of x and � = 0.

Given the mean-reward f , we assume that the maximizer
x⇤

=argmaxx f(x) exists and we denote the correspond-
ing maximum f(x⇤

) by f⇤. We measure the performance
of the learner over n steps by its regret Rn w.r.t. the f⇤,
defined as Rn := nf⇤ � P

n
t=1

rt. The goal of learner, at
every 0  t  n, is to choose a strategy t such that the
regret Rn is as small as possible.

Related models. Although the learner observes a context
yt at each time t, this problem differs from the contex-
tual bandit setting (see e.g., Slivkins, 2009). In contextual
bandits, the reward rt is random realization of a function
r(xt, yt) of the selected arm and input context yt. The con-
textual bandit objective is typically to minimize the regret
against the optimal arm in the context provided at each step,
yt, i.e. x⇤

t = argmax r(x, yt). A key difference is that in
our model the reward, and next context, may depend on the
entire history of rewards, arms pulled, and contexts, instead
of only the current context and arm, and we define f(x)
only as the average reward obtained by pulling arm x. In
this sense, our model is related to the reinforcement learn-
ing (RL) problem of trying to find a policy that maximizes
the long run reward. Among prior work in RL our setting
is similar to the general reinforcement learning model of
Lattimore et al. (2013) which also considers arbitrary tem-
poral dependence between rewards and observations. The
main difference is that here we consider the regret in undis-
counted reward scenario, whereas the focus of Lattimore
et al. (2013) is on proving PAC-bounds in the discounted
case. Another difference is that in our model, unlike that of
Lattimore et al. (2013), the observation and action spaces
need not to be finite (see further discussion in Sect. 5).

The cover tree. Similar to recent optimization meth-
ods (e.g., Bubeck et al., 2011a), our approach seeks to min-
imize the regret by building an estimate of f using an in-
finite binary covering tree T , in which each node covers a
subset of X . We denote by (h, i) the node at depth h and
index i among the nodes at the same depth (e.g., the root

Online Stochastic Optimization under Correlated Bandit Feedback

node which covers X is indexed by (0, 1)). By convention
(h+1, 2i�1) and (h+1, 2i) refer to the two children of the
node (h, i). The area corresponding to each node (h, i) is
denoted by Ph,i ⇢ X . These regions must be measurable
and, at each depth, they partition X with no overlap, i.e.,

P
0,1 = X

Ph,i = Ph+1,2i�1

[Ph,2i 8h � 0 and 1  i  2

h.

For each node (h, i), we define an arm xh,i 2 Ph,i, which
is pulled whenever the node (h, i) is selected.

We now state a few additional geometrical assumptions.

Assumption 3 (Dissimilarity). The space X is equipped
with a dissimilarity function ` : X 2 ! R such that
`(x, x0

) � 0 for all (x, x0
) 2 X 2 and `(x, x) = 0.

Given a dissimilarity `, the diameter of a subset A ✓ X is
defined as diam(A) := supx,y2A `(x, y), while an `-ball of
radius " > 0 and center x 2 X is defined as B(x, ") :=

{x0 2 X : `(x, x0
)  "}.

Assumption 4 (Local smoothness). We assume that there
exist constants ⌫

2

, ⌫
1

> 0 and 0 < ⇢ < 1 such that for all
nodes (h, i):

(a) diam(Ph,i)  ⌫
1

⇢h

(b) 9 xo
h,i 2 Ph,i s.t. Bh,i := B(xo

h,i, ⌫2⇢
h
) ⇢ Ph,i,

(c) Bh,i \ Bh,j = ;,

(d) For all x 2 X , f⇤ � f(x)  `(x⇤, x).

These assumptions coincide with those in (Bubeck et al.,
2011a), except for the local smoothness (Asm. 4.d), where
the function is assumed to be Lipschitz between any two
arms x, x0 close to the maximum x⇤ (i.e., |f(x)� f(x0

)| 
`(x, x0

)), while here we only require the function to be Lip-
schitz w.r.t. the maximum. Finally, we characterize the
complexity of the problem using the near-optimality dimen-
sion, which defines how large is the set of ✏-optimal arms in
X . For brevity, we consider a slightly simplified definition
of near-optimality dimension w.r.t. (Bubeck et al., 2011a).

Assumption 5 (Near-optimality dimension). Let ✏ =

3⌫
1

⇢h and ✏0 = ⌫
2

⇢h < ✏, for any subset of ✏-optimal
nodes X✏ = {x 2 X : f⇤ � f(x)  ✏}, there exists a
constant C such that N �X✏, `, ✏0

�  C(✏0)�d, where d is
the near-optimality dimension of f and N (X✏, `, ✏0) is the
✏0-cover number of X✏ w.r.t. the dissimilarity measure `.

3. The High Confidence Tree algorithm
We now introduce the High Confidence Tree (HCT) algo-
rithm. Throughout this discussion, a function evaluation
corresponds to the reward received from pulling an arm.

Algorithm 1 The HCT algorithm.
Require: Parameters ⌫

1

> 0, ⇢ 2 (0, 1), c > 0, tree structure
(Ph,i)h�0,1i2

i and confidence �.
Initialize t = 1, Tt = {(0, 1), (1, 1), (1, 2)}, H(t) = 1,
U

1,1(t) = U
1,2(t) = +1,

loop
if t = t+ then . Refresh phase

for all (h, i) 2 Tt do

Uh,i(t) bµh,i(t) + ⌫
1

⇢h +

r
c2 log(1/˜�(t+))

Th,i(t)

end for;
for all (h, i) 2 Tt Backward from H(t) do

if (h, i) 2 leaf(Tt) then
Bh,i(t) Uh,i(t)

else
Bh,i(t) min

⇥
Uh,i(t), max

j2{2i�1,2i}
Bh+1,j(t)

⇤

end if
end for

end if;
{(ht, it), Pt} OptTraverse(Tt)

if Algorithm HCT-iid then
Pull arm xht,it and observe rt
t = t+ 1

else if Algorithm HCT-� then
Tcur = Tht,it(t)
while Tht,it(t) < 2Tcur AND t < t+ do

Pull arm xh,i and observe rt
(ht+1

, it+1

) = (ht, it)
t = t+ 1

end while
end if
Update counter Tht,it(t) and empirical average bµht,it(t)

Uht,it(t) bµht,it(t) + ⌫
1

⇢h +

r
c2 log(1/˜�(t+))

Tht,it
(t)

UpdateB(Tt, Pt, (ht, it))

⌧h(t) =
c2 log(1/˜�(t+))

⌫2

1

⇢�2ht

if Tht,it(t) � ⌧ht(t) AND (ht, it) =leaf(T) then
It = {(ht + 1, 2it � 1), (ht + 1, 2it)}
T T [It

Uht+1,2it�1

(t) = Uht+1,2it(t) = +1
end if

end loop

We first describe the general structure of HCT, before dis-
cussing two particular variants: HCT-iid, designed for the
case when arm rewards are iid, and HCT-� which han-
dles the correlated feedback case, where the reward from
pulling an arm may depend on all prior arms pulled and
resulting outcomes. Alg. 1 shows the structure of the algo-
rithm for HCT-iid and HCT-� and their minor differences.

The general structure. The HCT algorithm relies on a
binary covering tree T provided as input to construct a hi-
erarchical approximation of the mean-reward function f .
At each node (h, i) of the tree, the algorithm keeps track
of some statistics regarding the arm xh,i corresponding to
node (h, i). These include the empirical estimate bµh,i(t) of

Online Stochastic Optimization under Correlated Bandit Feedback

Algorithm 2 The OptTraverse function.
Require: Tree T

(h, i) (0, 1), P (0, 1)
T
0,1 = ⌧

0

(t) = 1;
while (h, i) /2 Leaf(T) AND Th,i(t) � ⌧h(t) do

if Bh+1,2i�1

� Bh+1,2i then
(h, i) (h+ 1, 2i� 1)

else
(h, i) (h+ 1, 2i)

end if
P P [{(h, i)}

end while
return (h, i) and P

Algorithm 3 The UpdateB function.
Require: Tree T , the path Pt, selected node (ht, it)

if (ht, it) 2 Leaf(T) then
Bht,it(t) = Uht,it(t)

else
Bht,it(t) = min

⇥
Uht,it(t), max

j2{2it�1,2it}
Bht+1,j(t)

⇤

end if;
for all (h, i) 2 Pt � (ht, it) backward do

Bh,i(t) = min

⇥
Uh,i(t), max

j2{2i�1,2i}
Bh+1,j(t)

⇤

end for

the mean-reward of xh,i computed as

bµh,i(t) := (1/Th,i(t))
XTh,i(t)

s=1

rs(xh,i), (1)

where Th,i(t) is the number of times node (h, i) has been
selected in the past and rs(xh,i) denotes the s-th reward
observed after pulling xh,i (while we previously used rt to
denote the t-th sample of the overall process). As explained
in Sect. 2, although a node is associated to a single arm xh,i,
it also covers a full portion of the input space X , i.e., the
subset Ph,i. Thus, similar to the HOO algorithm (Bubeck
et al., 2011a), HCT also maintains two upper-bounds, Uh,i

and Bh,i, which are meant to bound the mean-reward f(x)
of all the arms x 2 Ph,i. For any node (h, i), the upper-
bound Uh,i is computed as

Uh,i(t) := bµh,i(t)+⌫1⇢
h
+c

q
log(1/˜�(t+))/Th,i(t), (2)

where t+ = 2

blog(t)c+1 and ˜�(t) := min{c
1

�/t, 1}. Intu-
itively speaking, the second term is related to the resolution
of node (h, i) and the third term accounts for the uncer-
tainty of bµh,i(t) in estimating f(xh,i). The B-values are
designed to have a tighter upper bound on f(x) by taking
the minimum between Uh,i for the current node, and the
maximum upper bound of the node’s two child nodes, if
present.1 More precisely,

1Since the node’s children together contain the same input
space as the node (i.e., Ph,i = Ph+1,2i�1

[Ph,2i), the node’s
maximum cannot be greater than the maximum of its children.

Bh,i(t)=

8
><

>:

Uh,i(t) (h, i)2 leaf(Tt)

min[Uh,i(t), max

j2{2i�1,2i}
Bh+1,j(t)] otherwise.

(3)

To identify which arm to pull, the algorithm traverses the
tree along a path Pt obtained by selecting nodes with maxi-
mum Bh,i until it reaches an optimistic node (ht, it), which
is either a leaf or a node which is not pulled enough w.r.t.
to a given threshold ⌧h(t), i.e., Th,i(t)  ⌧h(t) (see func-
tion OptTraverse in Alg. 2). Then the arm xht,it 2 Pht,it

corresponding to selected node (ht, it) is pulled.

The key element of HCT is the condition to decide when
to expand the tree. We expand a leaf node only if we have
pulled its corresponding arm a sufficient number of times
such that the uncertainty over the maximum value of the
arms contained within that node is dominated by the size
of the subset of X it covers. Recall from Eq. 2 that the
upper bound Uh,i is composed of two terms beside the em-
pirical average reward. The first (⌫

1

⇢h) is a constant that
depends only on the node depth and from assumptions 3
and 4 it follows that it bounds the possible difference in
the mean-reward function between the representative arm
for this node and all other arms also contained in this node,
i.e., the difference between f(xh,i) and f(x) for any other
x 2 Ph,i. The second term depends only on t and decreases
with the number of pulls. At some point, the second term
will become smaller than the first term, implying that the
uncertainty over the rewards in Ph,i becomes dominated
by the potential difference in the mean-reward of the arms
in the node. This means that the domain Ph,i is too large,
and thus the resolution of the current approximation of f
in that region needs to be increased. Therefore HCT waits
until these two terms become of the same magnitude before
expanding a node. This happens when the number of pulls
Tht,it(t) exceeds a threshold

⌧h(t) := c2 log(1/˜�(t+))⇢�2ht/⌫2
1

. (4)

(see Sect. A of the supplement for further discussion). It
is at this point that expanding the node to two children can
increase the accuracy of the approximation of f(x), since
⌫
1

⇢h+1  ⌫
1

⇢h. Therefore if Tht,it(t) � ⌧h(t), the algo-
rithm expands the leaf, creates both children leaves, and set
their U -values to +1. Furthermore, notice that this expan-
sion only occurs for nodes which are likely to contain x⇤.
In fact, OptTraverse does select nodes with big B-value,
which in turn receive more pulls and are thus expanded
first. The selected arm xht,it is pulled either for a single
time step (in HCT-iid) or for a full episode (in HCT-�),
and then the statistics of all the nodes along the optimistic
path Pt are updated backwards. The statistics of all the
nodes outside the optimistic path remain unchanged.

Online Stochastic Optimization under Correlated Bandit Feedback

As HCT is an anytime algorithm, we periodically need to
recalculate the node upper bounds to guarantee their valid-
ity with enough probability (see supplementary material for
a more precise discussion). To do so, at the beginning of
each step t, the algorithm verifies whether the B and U val-
ues need to be refreshed or not. In fact, in the definition of
U in Eq. 2, the uncertainty term depends on the confidence
˜�(t+), which changes at t = 1, 2, 4, 8, Refreshing the
U and B values triggers a “resampling phase” of the inter-
nal nodes of the tree Tt along the optimistic path. In fact,
the second condition in the OptTraverse function (Alg. 2)
forces HCT to pull arms that belong to the current opti-
mistic path Pt until the number of pulls Th,i(t) becomes
greater than ⌧h(t) again. Notice that the choice of the confi-
dence term ˜� is particularly critical. For instance, choosing
a more natural ˜�(t) would tend to trigger the refresh (and
the resampling) phase too often thus increasing the compu-
tational complexity of the algorithm and seriously affecting
its theoretical properties. On the other hand, the choice of
˜�(t+) limits the need to refresh the U and B values to only
O(log(n)) times over n rounds and guarantees that U and
B are valid upper bounds with high probability.

HCT-iid and HCT-�. The main difference between the
two implementations of HCT is that, while HCT-iid pulls
the selected arm for only one step before re-traversing the
tree from the root to again find another optimistic node,
HCT-� pulls the the representative arm of the optimistic
node for an episode of Tcur steps, where Tcur is the num-
ber of pulls of arm xh,i at the beginning of episode. In
other words, the algorithm doubles the number of pulls of
each arm throughout the episode. Notice that a similar ap-
proach has been used before in other methods working with
ergodic processes, such as the UCRL algorithm for ergodic
MDPs (Jaksch et al., 2010). The additional stopping condi-
tion in the loop is such that not all the episodes may actually
finish after Tcur steps and double the number of pulls: The
algorithm may interrupt the episode when the confidence
bounds of B and U are not valid anymore (i.e., t � t+)
and perform a refresh phase. The reason for this change is
that in order to accurately estimate the mean-reward given
correlated bandit feedback, it is necessary to pull an arm
for a series of pulls rather than a single pull. Due to our as-
sumption on the mixing time (Asm. 2), pulling an arm for
a sufficiently long consecutive number of steps will pro-
vide an accurate estimate of the mean-reward even in the
correlated setting, thus ensuring that the empirical average
bµh,i actually concentrates towards their mean value (see
Lem. 2). It is this mechanism, coupled with only expand-
ing the nodes after obtaining a good estimate of their mean
reward, that allows us to handle the correlated feedback set-
ting. Although in this sense HCT-� is more general, we do
however include the HCT-iid variant because whenever the
rewards are iid it performs better than HCT-�. This is due

to the fact that, unlike HCT-iid, HCT-� has to keep pulling
an arm for a full episode even when there is evidence that
another arm could be better. We also notice that there is
a small difference in the constants c

1

and c: in HCT-iid
c
1

:=

8

p
⇢/(3⌫

1

) and c := 2

p
1/(1� ⇢), whereas HCT-�

uses c
1

:=

9

p
⇢/(4⌫

1

) and c := 3(3�+ 1)

p
1/(1� ⇢).

4. Theoretical Analysis
In this section we analyze the regret and the complexity of
HCT . All the proofs are reported in the supplement.

4.1. Regret Analysis

We start by reporting a bound on the maximum depth of
the trees generated by HCT .
Lemma 1. Given the threshold ⌧h(t) in Eq. 4, the depth
H(n) of the tree Tn is bounded as

H(n)  H
max

(n) = 1/(1� ⇢) log(n⌫2
1

/(2(c⇢)2)). (5)

This bound guarantees that HCT never expands trees be-
yond depth O(log n). This is ensured by the fact the HCT
waits until the mean-reward of a node is sufficiently well
estimated before expanding it and this implies that the num-
ber of pulls exponentially grows with the depth of tree, thus
preventing the depth to grow linearly as in HOO.

We report regret bounds in high probability, bounds in ex-
pectation can be obtained using standard techniques.
Theorem 1 (Regret bound of HCT-iid). Let Assump-
tions 3–5 hold and at each step t, the reward rt is indepen-
dent of all prior random events. Then the regret of HCT-iid
in n steps is, with probability 1� �,2

Rn  O
��

log (n/�)
�
1/(d+2)

n(d+1)/(d+2)

�
.

Remark (the bound). We notice that the bound perfectly
matches the bound for HOO up to constants (see Thm. 6
in (Bubeck et al., 2011a)). This represents a first sanity
check w.r.t. the structure of HCT , since it shows that chang-
ing the structure of HOO and expanding nodes only when
they are pulled enough, preserves the regret properties of
the algorithm. Furthermore, this result holds under milder
assumptions than HOO. In fact, Asm. 4-(d) only requires f
to be Lipschitz w.r.t. to the maximum x⇤. Other advantages
of HCT-iid are discussed in the Sect. 4.2 and 6.

Although the proof is mostly based on standard techniques
and tools from bandit literature, HCT has a different struc-
ture from HOO (and similar algorithms) and moving from
iid to correlated arms calls for the development of a signif-
icantly different proof technique. The main technical issue

2Constants are provided in Sect. A of the supplement.

Online Stochastic Optimization under Correlated Bandit Feedback

is to show that the empirical average bµh,i computed by av-
eraging rewards obtained across different episodes actually
converges to f(xh,i). In particular, we prove the follow-
ing high-probability concentration inequality (see Lem. 6
in the supplement for further details).
Lemma 2. Under Assumptions 1 and 2, for any fixed node
(h, i) and step t, we have that, w.p. 1� �,

|bµh,i(t)� f(xh,i)|  (3�+ 1)

s
2 log(5/�)

Th,i(t)
+

� log(t)

Th,i(t)
.

Furthermore Kh,i(t), the number of episodes in which
(h, i) is selected, is bounded by log

2

(4Th,i(t)) + log

2

(t).

This technical lemma is at the basis of the derivation of the
following regret bound for HCT-�.
Theorem 2 (Regret bound of HCT-�). Let Assump-
tions 1–5 hold and that rewards are generated accord-
ing to the general model defined in Sect. 2. Then the
regret of HCT-� after n steps is, w.p. 1 � �, Rn 
O
�
(log(n/�))1/(d+2)n(d+1)/(d+2)

�
.

Remark (the bound). The most interesting aspect of this
bound is that HCT-� achieves the same regret as HCT-iid
when samples are non-iid. This represents a major step
forward w.r.t. the existing algorithms, since it shows that
the very general case of correlated rewards can be managed
as well as the simpler iid case. In Sect. 5 we discuss how
this result can be used in policy search for MDPs.

4.2. Complexity

Time complexity. The run time complexity of both ver-
sions of HCT is O(n log(n)). This is due to the bounded-
ness of the depth H(n) and by the structure of the refresh
phase. By Lem. 1, we have that the maximum depth is
O(log(n)). As a result, at each step t, the cost of travers-
ing the tree to select a node is at most O(log n), which
also coincides with the cost of updating the B and U val-
ues of the nodes in the optimistic path Pt. Thus, the total
cost of selecting, pulling, and updating nodes is no larger
than O(n log n). Notice that in case of HCT-�, once a
node is selected is pulled for an entire episode, which fur-
ther reduces the total selection cost. Another computational
cost is represented by the refresh phase where all the nodes
in the tree are actually updated. Since the refresh is per-
formed only when t = t+, then the number of times all the
nodes are refreshed is of order of O(log n) and the bound-
edness of the depth guarantees that the number of nodes
to update cannot be larger than O(2

logn
), which still cor-

responds to a total cost of O(n log n). This implies that
HCT achieves the same run time as T-HOO (Bubeck et al.,
2011a). Though unlike T-HOO, our algorithm is fully any-
time and it does not suffer from the extra regret incurred
due to the truncation and the doubling trick.

Space complexity. The following theorem provides bound
on space complexity of the HCT algorithm.

Theorem 3. Under the same conditions of Thm. 2, let Nn

denote the space complexity of HCT-�, then we have that
E(Nn) = O(log(n)2/(d+2)nd/(d+2)

).

This result guarantees that the space complexity of HCT-�
scales sub-linearly w.r.t. n. An important observation is
that the space complexity of HCT-� increases slower, by
a factor of eO(n1/(d+2)

), than its regret. This implies that,
for small values of d, HCT does not require to use a large
memory space to achieve a good performance. An interest-
ing special case is the class of problem with near-optimality
dimension d = 0. For this class of problems the bound
translates to a space complexity of O(log(n)), whereas the
space complexity of alternative algorithms may be as large
as n (see e.g., HOO). The fact that HCT-� solves the op-
timization problem using only a relatively small memory
space makes it a suitable choice for big-data applications,
where the algorithms with linear space complexity can not
be used due to very large size of the dataset.

Switching frequency. Finally, we also remark another in-
teresting feature of HCT-�. Since an arm is pulled for an
entire episode before another arm could be selected, this
drastically reduces the number of switches between arms.
In many applications, notably in reinforcement learning
(see next section), this can be a significant advantage since
pulling an arm may correspond to the actual implementa-
tion of a complex solution (e.g., a position in a portfolio
management problem) and continuously switch between
different arms might not be feasible. More formally, since
each node has a number of episodes bounded by O(log n)
(Lem. 2), then the number of switches can be derived from
the number of nodes in Thm. 3 multiplied by O(log n),
which leads to O(log(n)(d+4)/(d+2)nd/(d+2)

).

5. Application to Policy Search in MDPs
As discussed in Sect. 2, HCT is designed to handle the very
general case of optimization in problems with strong cor-
relation among the rewards, arm pulls, and contexts, at dif-
ferent time steps. An important subset of this general class
is represented by the problem of policy search in infinite-
horizon ergodic Markov decision processes.

A MDP M is defined as a tuple hS,A, P i where S is the set
of states, A is the set of actions, P : S⇥A ! M(S⇥[0, 1])
is the transition kernel mapping each state-action pair to a
distribution over states and rewards. A (stochastic) policy
⇡ : S ! M(A) is a mapping from states to distribution
over actions. Policy search algorithms (Scherrer & Geist,
2013; Azar et al., 2013; Kober & Peters, 2011) aim at find-
ing the policy in a given policy set which maximizes the
long-term performance. Formally, a policy search algo-
rithm receives as input a set of policies G = {⇡✓; ✓ 2 ⇥},

Online Stochastic Optimization under Correlated Bandit Feedback

each of them parameterized by a parameter vector ✓ in a
given set ⇥ ⇢ <d. Any policy ⇡✓ 2 G induces a state-
reward transition kernel T : S ⇥ ⇥ ! M(S ⇥ [0, 1]).
T relates to the state-reward-action transition kernel P
and the policy kernel ⇡✓ as follows T (ds0, dr|s, ✓) :=R
u2A P (ds0, dr|s, u)⇡✓(du|s). For any ⇡✓ 2 G and ini-

tial state s
0

2 S, the time-average reward over n steps is
µ⇡✓

(s
0

, n) := 1/nE[
Pn

t=1

rt], where r
1

, r
2

, . . . , rn is the
sequence of rewards observed by running ⇡✓ for n steps
staring at s

0

. If the Markov reward process induced by ⇡✓
is ergodic, µ⇡✓

(s
0

, n) converges to a fixed point indepen-
dent of the initial state s

0

. The average reward of ⇡✓ is thus
defined as µ(✓) := limn!1 µ⇡✓

(s
0

, n). The goal of policy
search is to find the best ✓⇤ = argmax✓2⇥

µ(✓).3

It is straightforward now to match the MDP scenario to the
general setting in Sect. 2, notably mapping ⇥ to X and
µ(✓) to f(x) (further details are provided in Sect. D of the
supplement). This allows us to directly apply HCT-� to
the problem of policy search. The advantage of HCT-�
algorithm w.r.t. prior work is that, to the best of our knowl-
edge, it is the first policy search algorithm which provides
finite sample guarantees in the form of regret bounds on the
performance loss of policy search in MDPs (see Thm. 2),
which guarantee that HCT-� suffers from a small sub-
linear regret w.r.t. ⇡✓⇤ . Also, it is possible to prove that
the policy induced by HCT-� has a small simple regret,
that is, the average reward of the policy chosen by HCT-�
converges to µ(✓⇤) with a polynomial rate.4 Another in-
teresting feature of HCT-� is that it can be used in large
(continuous) state-action problems since it does not make
any restrictive assumption on the size of state-action space.

Related work. A related work to HCT-� is the UCCRL
algorithm by Ortner & Ryabko (2012), which extends the
original UCRL algorithm (Jaksch et al., 2010) to contin-
uous state spaces. Although a direct comparison between
the two methods is not possible, it is interesting to notice
that the assumptions used in UCCRL are stronger than for
HCT-�, since they require both the dynamics and the re-
ward function to be globally Lipschitz. Furthermore, UC-
CRL requires the action space to be finite, while HCT-�
can deal with any continuous policy space. Finally, while
HCT-� is guaranteed to minimize the regret against the
best policy in the policy class G, UCCRL targets the per-
formance of the actual optimal policy of the MDP at hand.
Another relevant work is the OMDP algorithm of Abbasi
et al. (2013) which deals with the problem of RL in contin-
uous state-action MDPs with adversarial rewards. OMDP
achieves a sub-linear regret under the assumption that the
space of policies is finite.

3Note that ⇡✓⇤ is optimal in the policy class G and it may not
coincide with the optimal policy ⇡⇤ of the MDP.

4Refer to Bubeck et al. (2011a); Munos (2013) for how to
transform cumulative regret bounds to simple regret bounds.

6. Numerical Results
While our primary contribution is the definition of HCT
and its technical analysis, we also give preliminary simula-
tion results to demonstrate some of its properties.

Setup. We focus on minimizing the regret across re-
peated noisy evaluations of the garland function f(x) =

x(1�x)(4�p| sin(60x)|) relative to repeatedly selecting
its global optima.5 We evaluate the performance of each al-
gorithm in terms of the per-step regret, eRn = Rn/n. Each
run is n = 10

5 steps and we average the performance on
10 runs. For all the algorithms compared in the following,
parameters6 are optimized to maximize their performance.

I.i.d. setting. In the first experiment we compare HCT-
iid to the truncated hierarchical optimistic optimization
(T-HOO) algorithm (Bubeck et al., 2011a). T-HOO is a
state-of-the-art X -armed bandit algorithm, developed as a
computationally-efficient alternative of HOO. In Fig. 1 we
show the per-step regret, the runtime, and the space require-
ments of each approach. As predicted by the theoretical
bounds, the per-step regret eRn of both HCT-iid and T-HOO
decreases rapidly with number of steps. Though the big-O
bounds are identical for both approaches, empirically we
observe that in this setting HCT-iid outperforms T-HOO by
a large margin. Similarly, though the computational com-
plexity of both approaches matches in the dependence on
the number of time steps, empirically we observe that our
approach outperforms T-HOO (Fig. 1). Perhaps the most
significant expected advantage of HCT-iid over T-HOO for
iid settings is in the space requirements. HCT-iid has a
space requirement for this domain that scales logarithmi-
cally with the time step n, as predicted by Thm. 3. In con-
trast, in this domain we observe a polynomial growth of
memory usage for T-HOO. These patterns mean that HCT-
iid can achieve a very small regret using a sparse cover tree
with only few hundred nodes, whereas T-HOO requires or-
ders of magnitude more nodes than HCT-iid.

Correlated setting. In this setting, we compare HCT-�
to PoWER, a standard RL policy search algorithm (Kober
& Peters, 2011), on a continuous-state-action MDP con-
structed out of the garland function.7 PoWER uses an
Expectation Maximization approach to optimize the pol-
icy parameters. We also compare our algorithm with T-
HOO, although this algorithm is designed for the iid set-
ting and it may fail to converge to the global optimum un-
der correlated bandit feedback. Fig. 2 shows per-step re-
gret of the 3 approaches in the MDP. Only HCT-� suc-

5We discuss some properties of the garland function in Sect. C
of the supplement where the function is illustrated in Fig. 3.

6For both HCT and T-HOO we introduce a tuning parameter
used to multiply the upper bounds, while for PoWER we optimize
the window for computing the weighted average.

7See Sect. C of the supplement for details.

Online Stochastic Optimization under Correlated Bandit Feedback

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

n

R̃
n

HCT−iid

T−HOO

0 50 100 150 200 250
10

−2

10
−1

10
0

cpu time (sec.)

R̃
n

HCT−iid
T−HOO

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

n

s
p
a
c
e

HCT−iid

T−HOO

Figure 1. Comparison of the Performance of HCT-iid and the Previous Methods under the iid Bandit Feedback.

0 2 4 6 8 10

x 10
4

10
−1

10
0

n

R̃
n

HCT−Γ

T−HOO

PoWER

0 10 20 30 40

10
−1

10
0

cpu time (sec.)

R̃
n

HCT−Γ

T−HOO
PoWER

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

n

s
p
a
c
e

HCT−Γ

T−HOO

PoWER

Figure 2. Comparison of the Performance of HCT� � and the Previous Methods under Correlated Bandit Feedback (MDP setting)

ceeds in finding the globally optimal policy, since only for
HCT-� the average regret tends to converge to zero (as
predicted by Thm. 2). The PoWER method finds worse
solutions than both stochastic optimization approaches for
the same amount of computational time, likely due to us-
ing EM which is known to be susceptible to local optima.
On the other hand, its primary advantage is that it has a
very small memory requirement. Overall this illustrates
the benefit of HCT for online MDP policy search, since
it can quickly (as a function of samples and runtime) find
a global optima, and is, to our knowledge, one of the only
policy search methods guaranteed to do so.

7. Discussion and Future Work
In the current version of HCT we assume that the learner
has access to the information regarding the smoothness of
function f(x) and the mixing time �. In many problems
those information are not available to the learner. In the
future it would be interesting to build on prior work that
handles unknown smoothness in iid settings and extend it
to correlated feedback. For example, Bubeck et al. (2011b)
require a stronger global Lipschitz assumption and propose
an algorithm to estimate the Lipschitz constant. Other work
on the iid setting include Valko et al. (2013) and Munos
(2011), which are limited to the simple regret scenario, but
who only use the mild local smoothness assumption we de-
fine in Asm. 4, and do not require knowledge of the dis-
similarity measure `. On the other hand, Slivkins (2011)
and Bull (2013) study the cumulative regret but consider
a different definition of smoothness related to the zoom-
ing concept introduced by Kleinberg et al. (2008). Finally,

we notice that to deal with unknown mixing time, one may
rely on data-dependent tail’s inequalities, such as empirical
Bernstein inequality (Tolstikhin & Seldin, 2013; Maurer &
Pontil, 2009), replacing the mixing time with the empirical
variance of the rewards.

In the future we also wish to explore using HCT in other
problems that can be modeled as optimization with cor-
related bandit feedback. For example, HCT may be used
for policy search in partially observable MDPs (Vlassis &
Toussaint, 2009; Baxter & Bartlett, 2000), as long as the
POMDP is ergodic.

To conclude, in this paper we introduce a new X -armed
bandit algorithm, called HCT , for optimization under ban-
dit feedback and prove regret bounds and simulation results
for it. Our approach improves on existing results to handle
the important case of correlated bandit feedback. This al-
lows HCT to be applied to a broader range of problems than
prior X -armed bandit algorithms, such as policy search in
continuous MDPs.

Acknowledgements

This work was supported in part by the NSF Award SBE-
0836012 to the Pittsburgh Sciences of Learning Center.
We would like to thank R. Munos, A. Farahmand and A.
Slivkins for valuable discussions. A. Lazaric would like to
acknowledge the support of the Ministry of Higher Edu-
cation and Research, Nord-Pas- de-Calais Regional Coun-
cil and FEDER through the Contrat de Projets Etat Region
(CPER) 2007-2013, and the European Communitys Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement 231495 (project CompLACS).

Online Stochastic Optimization under Correlated Bandit Feedback

References
Abbasi, Yasin, Bartlett, Peter, Kanade, Varun, Seldin,

Yevgeny, and Szepesvari, Csaba. Online learning in
markov decision processes with adversarially chosen
transition probability distributions. In Burges, C.J.C.,
Bottou, L., Welling, M., Ghahramani, Z., and Wein-
berger, K.Q. (eds.), Advances in Neural Information Pro-
cessing Systems 26, pp. 2508–2516. 2013.

Auer, Peter, Ortner, Ronald, and Szepesvári, Csaba. Im-
proved rates for the stochastic continuum-armed bandit
problem. In COLT, pp. 454–468, 2007.

Azar, Mohammad Gheshlaghi, Lazaric, Alessandro, and
Brunskill, Emma. Regret bounds for reinforcement
learning with policy advice. In ECML/PKDD, pp. 97–
112, 2013.

Baxter, Jonathan and Bartlett, Peter L. Reinforcement
learning in pomdp’s via direct gradient ascent. In ICML,
pp. 41–48, 2000.

Bubeck, Sébastien, Munos, Rémi, Stoltz, Gilles, and
Szepesvári, Csaba. X-armed bandits. Journal of Ma-
chine Learning Research, 12:1655–1695, 2011a.

Bubeck, Sébastien, Stoltz, Gilles, and Yu, Jia Yuan. Lips-
chitz bandits without the lipschitz constant. In ALT, pp.
144–158, 2011b.

Bull, Adam. Adaptive-tree bandits. arXiv preprint
arXiv:1302.2489, 2013.

Cope, Eric. Regret and convergence bounds for immediate-
reward reinforcement learning with continuous action
spaces. IEEE Transactions on Automatic Control, 54(6):
1243–1253, 2009.

Djolonga, Josip, Krause, Andreas, and Cevher, Volkan.
High dimensional gaussian process bandits. In Neural
Information Processing Systems (NIPS), 2013.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-
optimal regret bounds for reinforcement learning. Jour-
nal of Machine Learning Research, 11:1563–1600,
2010.

Kleinberg, Robert, Slivkins, Aleksandrs, and Upfal, Eli.
Multi-armed bandits in metric spaces. In STOC, pp. 681–
690, 2008.

Kleinberg, Robert, Slivkins, Aleksandrs, and Upfal, Eli.
Bandits and experts in metric spaces. arXiv preprint
arXiv:1312.1277, 2013.

Kober, Jens and Peters, Jan. Policy search for motor prim-
itives in robotics. Machine Learning, 84(1-2):171–203,
2011.

Lattimore, Tor, Hutter, Marcus, and Sunehag, Peter. The
sample-complexity of general reinforcement learning.
In Proceedings of Thirtieth International Conference on
Machine Learning (ICML), 2013.

Levin, David A., Peres, Yuval, and Wilmer, Elizabeth L.
Markov chains and mixing times. American Mathemati-
cal Society, 2006.

Maurer, Andreas and Pontil, Massimiliano. Empiri-
cal bernstein bounds and sample variance penalization.
arXiv preprint arXiv:0907.3740, 2009.

Munos, Rémi. Optimistic optimization of a deterministic
function without the knowledge of its smoothness. In
NIPS, pp. 783–791, 2011.

Munos, Rémi. From bandits to monte-carlo tree search:
The optimistic principle applied to optimization and
planning. Foundations and Trends in Machine Learning,
2013.

Ortner, Ronald and Ryabko, Daniil. Online regret bounds
for undiscounted continuous reinforcement learning. In
Bartlett, P., Pereira, F.c.n., Burges, C.j.c., Bottou, L., and
Weinberger, K.q. (eds.), Advances in Neural Information
Processing Systems 25, pp. 1772–1780, 2012.

Scherrer, Bruno and Geist, Matthieu. Policy search: Any
local optimum enjoys a global performance guarantee.
arXiv preprint arXiv:1306.1520, 2013.

Slivkins, Aleksandrs. Contextual bandits with similarity
information. CoRR, abs/0907.3986, 2009.

Slivkins, Aleksandrs. Multi-armed bandits on implicit met-
ric spaces. In Advances in Neural Information Process-
ing Systems, pp. 1602–1610, 2011.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M.,
and Seeger, Matthias. Gaussian process bandits with-
out regret: An experimental design approach. CoRR,
abs/0912.3995, 2009.

Tolstikhin, Ilya O and Seldin, Yevgeny. PAC-bayes-
empirical-bernstein inequality. In Advances in Neural
Information Processing Systems, pp. 109–117, 2013.

Valko, Michal, Carpentier, Alexandra, and Munos, Rémi.
Stochastic simultaneous optimistic optimization. In Pro-
ceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), pp. 19–27, 2013.

Vlassis, Nikos and Toussaint, Marc. Model-free reinforce-
ment learning as mixture learning. In Proceedings of
the 26th Annual International Conference on Machine
Learning, pp. 1081–1088, 2009.

