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Abstract

We develop an automated variational infer-
ence method for Bayesian structured predic-
tion problems with Gaussian process (GP)
priors and linear-chain likelihoods. Our ap-
proach does not need to know the details
of the structured likelihood model and can
scale up to a large number of observations.
Furthermore, we show that the required
expected likelihood term and its gradients
in the variational objective (ELBO) can
be estimated efficiently by using expecta-
tions over very low-dimensional Gaussian
distributions. Optimization of the ELBO
is fully parallelizable over sequences and
amenable to stochastic optimization, which
we use along with control variate techniques
to make our framework useful in practice.
Results on a set of natural language pro-
cessing tasks show that our method can
be as good as (and sometimes better than,
in particular with respect to expected log-
likelihood) hard-coded approaches includ-
ing svM-struct and CRFs, and overcomes
the scalability limitations of previous infer-
ence algorithms based on sampling. Over-
all, this is a fundamental step to developing
automated inference methods for Bayesian
structured prediction.

1 INTRODUCTION

Developing automated inference methods for com-
plex probabilistic models has become arguably one
of the most exciting areas of research in machine
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learning, with notable examples in the probabilistic
programming community given by STAN (Hoffman
and Gelman, 2014) and CHURCH (Goodman et al.,
2008). One of the main challenges for these types of
approaches is to formulate expressive probabilistic
models and develop generic yet efficient inference
methods for them. From a variational inference per-
spective, one particular approach that has addressed
such a challenge is the black-box variational inference
framework of Ranganath et al. (2014).

While the works of Hoffman and Gelman (2014) and
Ranganath et al. (2014) have been successful with
a wide range of priors and likelihoods, their direct
application to models with Gaussian process (GP)
priors is cumbersome, mainly due to the large num-
ber of highly coupled latent variables in such models.
In this regard, very recent work has investigated
automated inference methods for general likelihood
models when the prior is given by a sparse Gaus-
sian process (Hensman et al., 2015b; Dezfouli and
Bonilla, 2015). While these advances have opened
up opportunities for applying GP-based models well
beyond regression and classification settings, they
have focused on models with i.i.d observations and,
therefore, are unsuitable for addressing the more
challenging task of structured prediction.

Structured prediction refers to the problem where
there are interdependencies between outputs and
it is necessary to model these dependencies explic-
itly. Common examples are found in natural lan-
guage processing (NLP) tasks, computer vision and
bioinformatics. By definition, observation models
in these problems are not i.i.d and standard learn-
ing frameworks have been extended to consider the
constraints imposed by structured prediction tasks.
Popular structured prediction frameworks are con-
ditional random fields (CRFs; Lafferty et al., 2001),
maximum margin Markov networks (Taskar et al.,
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From a non-parametric Bayesian modeling perspec-
tive, in general, and from a GP modeling perspective,
in particular, structured prediction problems present
very hard inference challenges because of the rapid
explosion of the number of latent variables with the
size of the problem. Furthermore, structured likeli-
hood functions are usually very expensive to compute.
In an attempt to build non-parametric Bayesian ap-
proaches to structured prediction, Bratiéres et al.
(2015) have proposed a framework based on a CRF-
type modeling approach with Gps, and use elliptical
slice sampling (EsS; Murray et al., 2010) as part
of their inference method. Unfortunately, although
their method can be applied to linear chain structures
in a generic way without considering the details of
the likelihood model, it is not scalable as it involves
sampling from the full GP prior.

In this paper we present an approach for automated
inference in structured GP models with linear chain
likelihoods that builds upon the structured Gp model
of Bratiéres et al. (2015) and the sparse variational
framework of Dezfouli and Bonilla (2015). In par-
ticular, we show that the model of Bratiéres et al.
(2015) can be mapped onto a generalization of the au-
tomated inference framework of Dezfouli and Bonilla
(2015). Unlike the work of Bratiéres et al. (2015),
by introducing sparse GP priors in structured pre-
diction models, our approach is scalable to a large
number of observations. More importantly, this ap-
proach is also generic in that it does not need to
know the details of the likelihood model in order
to carry out posterior inference. Finally, we show
that our inference method is statistically efficient, as
it only requires expectations over low-dimensional
Gaussian distributions in order to carry out posterior
approximation.

Our experiments on a set of NLP tasks, including
noun phrase identification, chunking, segmentation,
and named entity recognition, show that our method
can be as good as (and sometimes better than, in par-
ticular with respect to expected log-likelihood) hard-
coded approaches including svM-struct and CRFs,
and overcomes the scalability limitations of previous
inference algorithms based on sampling.

We refer to our approach as “gray-box” inference
since, in principle, for general structured prediction
problems it may require some human intervention.
Nevertheless, when applied to fixed structures, our
proposed inference method is entirely “black box”.
For example, as we will see, we can replace the exact
likelihood with a pseudo-likelihood without needing
to make any other modifications to our code.
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2 GAUSSIAN PROCESS MODELS
FOR STRUCTURED
PREDICTION

Here we are interested in structured prediction prob-
lems where we observe input-output pairs D =
{X,, yn}fj:’f, where Ngeq is the total number of ob-
servations, X,, € X is a descriptor of observation n
and y,, € ) is a structured object such as a sequence,
a tree or a grid that reflects the interdependences be-
tween its individual constituents. Our goal is that of,
given a new input descriptor X, , predicting its cor-
responding structured labels y,, and more generally,
a distribution over these labels.

A fairly general approach to address this problem
with Gaussian process (GP) priors was proposed by
Bratiéres et al. (2015) based on CRF-type models,
where the distribution of the output given the input is
defined in terms of cliques, i.e. sets of fully connected
nodes. Such a distribution is given by:

exp (D, fle, Xe,ye))
doyreyexp (. fle, Xe,yl)

p(y‘va) = (1)

where X, and y,. are tuples of nodes belonging to
clique ¢; f(c,Xc,y.) is their corresponding latent
variable; and f is the collection of all these latent
variables, which are assumed to be drawn from a zero-
mean GP prior with covariance function (-, -; @), with
0 being the hyperparameters. It is clear that such a
model is a generalization of vanilla CRFs where the
potentials are draws from a GP instead of being linear
functions of the features.

2.1 Linear chain structures

In this paper we focus on linear chain structures
where the output corresponding to datapoint n is a
linear chain of length T;,, whose corresponding con-
stituents stem from a common set. In other words,
X, is a T;, x D matrix of feature descriptors and y,
is a sequence of T, labels drawn from the same vocab-
ulary V. In this case, in order to completely define
the prior over the clique-dependent latent functions
in Equation (1), it is necessary to specify covariance
functions over the cliques. To this end, Bratiéres et al.
(2015) propose a kernel that is non-zero only when
two cliques are of the same type, i.e. both are unary
cliques or both are pairwise cliques. Furthermore,
these kernels are defined as:
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where Ky, is the covariance on unary functions and
Kbin is the covariance on pairwise functions. With a
suitable ordering of these latent functions, we obtain
a posterior covariance matrix that is block-diagonal,
with the first [V| blocks corresponding to the unary
covariances, each of size T, ; and the last block, cor-
responding to the pairwise covariances, being a diag-
onal (identity) matrix of size |V|?, where |V| denotes
the vocabulary size.

To carry out inference in this model, Bratiéres et al.
(2015) propose a sampling scheme based on elliptical
slice sampling (ESs; Murray et al., 2010). In the
following section, we show an equivalent formulation
of this model that leverages the general class of mod-
els with i.i.d likelihoods presented by Nguyen and
Bonilla (2014). Understanding structured Gp models
from such a perspective will allow us to generalize
the results of Nguyen and Bonilla (2014); Dezfouli
and Bonilla (2015) in order to develop an automated
variational inference framework. The advantages of
such a framework are that of (i) dealing with generic
likelihood models; and (ii) enabling stochastic opti-
mization techniques for scalability to large datasets.

3 FULL GAUSSIAN PROCESS
PRIORS AND AUTOMATED
INFERENCE

Nguyen and Bonilla (2014), building upon the work
of Opper and Archambeau (2009), developed an au-
tomated variational inference framework for a class
models with Gaussian process priors and generic i.i.d
likelihoods. Although such an approach is an im-
portant step towards black-box inference with Gp
priors, assuming i.i.d observations is, by definition,
unsuitable for structured models.

One way to generalize such an approach to structured
models of the types described in §2.1 is to differenti-
ate between GP priors over latent functions on unary
nodes and GP priors over latent functions over pair-
wise nodes. More importantly, rather than consider-
ing i.i.d likelihoods over all observations, we assume
likelihoods that factorize over sequences, while al-
lowing for statistical dependences within a sequence.
Therefore, our prior model p(f) = p(f")p(f>) for
linear chain structures decomposes as

VI

p(f) = [ [N (E™0,K;) | N(£™;0,K"™), (2)
j=1

where f is the vector of all latent function values of
unary nodes f"" and the function values of pairwise
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nodes P Accordingly, £ is the vector of unary
functions of latent process j, corresponding to the
jth label in the vocabulary, which is drawn from
a zero-mean GP with covariance function ;(-,; 0;).
This covariance function, when evaluated at all the

input pairs in {X,,}, induces the N x N covariance

matrix K;, where N = Zg:f
ber of observations. Similarly, is a zero-mean
|V|2-dimensional Gaussian random variable with co-
variance matrix given by KP™. We note here that
while the unary functions are draws from a GP in-
dexed by X, the distribution over pairwise functions

is a finite Gaussian (not indexed by X).

n is the total num-
fbin

Given the latent function values, our conditional
likelihood is defined by:

Nseq

p(yIf) = [] pynlfa), (3)

where, omitting the dependency on the input X for
simplicity, each individual conditional likelihood term
is computed using a valid likelihood function for se-
quential data such as that defined by the structured
softmax function in Equation (1); y, denotes the la-
bels of sequence n; and £, is the corresponding vector
of latent (unaries and pairwise) function values.

Theorem 1 The model class defined by the prior in
Equation (2) and the likelihood in Equation (3) con-
tains the structured GP model proposed by Bratiéres
et al. (2015).

The proof of this is trivial and can be done by (i) set-
ting all the covariance functions of the unary latent
process (k;) to be the same; (ii) making KP* = T;
and (iil) using the structured softmax function in
Equation (1) as each of the individual terms p(y,|f,)
in Equation (3). This yields exactly the same model
as specified by Bratiéres et al. (2015), with prior
covariance matrix with block-diagonal structure de-
scribed in §2.1 above. |

The practical consequences of the above theorem
is that we can now leverage the results of Nguyen
and Bonilla (2014) in order to develop a variational
inference (vI) framework for structured GP models
that can be carried out without knowing the details
of the conditional likelihood. Furthermore, as we
shall see in the next section, in order to deal with
the intractable nonlinear expectations inherent to Vi,
the proposed method only requires expectations over
low-dimensional Gaussian distributions.



3.1 Automated variational inference

In this section we develop a method for estimating
the posterior over the latent functions given the prior
and likelihood models defined in Equations (2) and
(3). Since the posterior is analytically intractable
and the prior involves a large number of coupled
latent variables, we resort to approximations given by
variational inference (vI; Jordan et al., 1998). To this
end, we start by defining our variational approximate
posterior distribution:

k=1
K V|
= Zﬂ'k N (£ brj, Br) , (5)
k=1 Jj=1
q(fbin) _ N(fbin; n,lbin7 Sbin)’ (6)

where ¢(f'") and ¢(fP™) are the approximate poste-
riors over the unary and pairwise nodes respectively;
each g (f") = N(f}"; by, Xy ) is a N-dimensional
full Gaussian distribution; and ¢(f’™) is a |V|?-
dimensional Gaussian.

In order to estimate the parameters of the above dis-
tribution, variational inference entails the optimiza-
tion of the so-called evidence lower bound (Lebo),
which can be shown to be a lower bound of the
true marginal likelihood, and is composed of a KL-
divergence term (Ly)), between the approximate pos-
terior and the prior, and an expected log likelihood
term (Eell):

Lo = —KL(q(F)[[p(F)) + (log p(yf))ye),  (7)

where the angular bracket notation (-) indicates
an expectation over the distribution ¢. Although
the approximate posterior is an N-dimensional dis-
tribution, the expected log likelihood term can be
estimated efficiently using expectations over much
lower-dimensional Gaussians.

Theorem 2 For the structured GP model defined in
Equations (2) and (3), the expected log likelihood
over the variational distribution defined in Equations
(4) to (6) and its gradients can be estimated using
expectations over Ty, -dimensional Gaussians and |V|*-
dimensional Gaussians, where T,, is the length of each
sequence and |V| is the vocabulary size.

The proof is constructive and can be found in the
(k,n) def

be the individual expected log-likelihood terms; and
A" and AP be the variational parameters corre-
sponding to unary and binary factors. Hence we
have that L. and its gradients are given by

Neea K

La=) Y L™, (8)

n=1 k=1
VA;;"Q(;{”) = <10gp(Yn‘fn)v)\‘,;“ IOg Akn (f;n)> ) (9)

Voin L5 = (10g p(yn|£) Vs log (£™)), (10)

where the expectations are computed wrt the approx-
imate marginal posterior qr, = g, (£2*)q(f?); and
Qrn (£2) is a (T}, X |V|)-dimensional Gaussian with
block-diagonal covariance Xy, each block of size
T,, x T},. Therefore, we can estimate the above terms
by sampling from 7;,-dimensional Gaussians indepen-
dently. Furthermore, ¢(f"") is a |V|?-dimensional
Gaussian, which can also be sampled independently.
In practice, we can assume that the covariance of
q(f"*) is diagonal and we only sample from univari-
ate Gaussians for the pairwise functions.

It is important to emphasize the practical conse-
quences of Theorem 2. Although we have a fully
correlated prior and a fully correlated approximate
posterior over N = ZnN:f T, unary function val-
ues, yielding full N-dimensional covariances, we have
shown that for these classes of models we can estimate
Len by only using expectations over T),-dimensional
Gaussians. We refer to this result as the statistical
efficiency of the inference algorithm.

Nevertheless, even when having only one latent func-
tion and using a single Gaussian approximation
(K = 1), optimization of the L, in Equation (7)
is completely impractical for any realistic dataset
concerned with structured prediction problems, due
to its high memory requirements O(N?) and time
complexity O(N?).

In the next section we will use a sparse GP approach
within our variational framework in order to develop
a practical algorithm for structured prediction.

4 SPARSE APPROXIMATION

In this section we describe a scalable approach to
inference in the structured Gp model defined in §3 by
introducing the so-called sparse GP approximations
(Quinonero-Candela and Rasmussen, 2005) into our
variational framework. Variational approaches to
sparse GP models were developed by Titsias (2009)
for Gaussian i.i.d likelihoods, then made scalable

supplementary material. Let £, = (log p(yn|f.)) 4 to large datasets and generalized to non-Gaussian



(i.i.d) likelihoods by Hensman et al. (2015a,b); Dez-
fouli and Bonilla (2015). The main idea of such
approaches is to introduce a set of M inducing vari-
ables {u,, }*_, for each latent process, which lie in
the same space as {f,,,} and are drawn from the same
GP prior. These inducing variables are the latent
function values of their corresponding set of inducing
inputs {Zm,}. Subsequently, we redefine our prior in
terms of these inducing inputs/variables.

In our structured GP model, only the unary latent
functions are drawn from GPs indexed by X. Hence
we assume a GP prior over the inducing variables and
a conditional prior over the unary latent functions,
which both factorize over the latent processes. This
yields the joint distribution over unary functions,
pairwise functions and inducing variables given by:

p(f, u) = p(u)p(f** [w)p(£*™), (11)

where the marginal prior over the inducing vari-
ables is p(u) = Hlji‘l p(u;); the conditional prior
is given by p(f*[u) = [, N(£}" 2, K;); and
the prior over the pairwise functions is defined as
before, i.e. p(f"") = N(fP;0, KP™). The means
and covariances of the individual conditional dis-
tributions over the unary functions are given by:
ﬂj = Ajl,lj and Kj = K}j(X,X) — Ajlﬁ](Zj,X) with
Aj = K(X,Z;)k(Z;,Z;) "

By keeping an explicit representation of the inducing
variables, our goal is to estimate the joint posterior
over the unary functions, pairwise functions and in-
ducing variables given the observed data. To this
end, we assume that our variational approximate
posterior is given by:

g(f,ulX) = q(uA")p(F" [u)g(F AP, (12)

where A = {A"", )\bin} are the variational parameters;
p(f™|u) is defined as above; ¢(£P|AP) is defined
as in Equation (6), i.e. a Gaussian with parameters
Abill _ {mbin Sbin}. and

Y )

K
@A™ = 3 megi (ulmy, i),

k=1

(13)

With qk(u|mk, Sk) = H‘Ji‘l N(Uj; mkj, Skj), )\un =
{mr, my, Si}, and my;, Si; denote the posterior
mean and covariance of the inducing variables for
mixture component k£ and latent function j.

4.1 Evidence lower bound

The KL term in the evidence lower bound now consid-
ers a KL divergence between the joint approximate
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posterior in Equation (12) and the joint prior in
Equation (11). Because of the structure of the ap-
proximate posterior, it is easy to show that the term
p(£""|u) vanishes from the KL (see e.g. Titsias, 2009),
yielding an objective function that is composed of
a KL between the distributions over the inducing
variables; a KL between the distributions over the
pairwise functions, and the expected log likelihood
over the joint approximate posterior:

Letbo(A) = = KL(g(u)[[p(w)) — KL(g(f"™)[|p(£"™))

Nseq
+ <Z logp(ynlfn)> : (14)
n=1 q(f.ulX)

where KL(q(fP™)||p(f*™*)) is a straightforward KL di-
vergence between two Gaussians and KL(g(u)|p(u))
is a KL divergence between a mixture of Gaussians
and a Gaussian, which we bound using Jensen’s in-
equality. The expressions for these terms are given
in the supplementary material.

Let us now consider the expected log-likelihood term
in Equation (14), which is an expectation of the con-
ditional likelihood over the joint posterior ¢(f, u|A).
The following result tells us that, as in the non-sparse
case, this term can still be estimated efficiently using
expectations over low-dimensional Gaussians.

Theorem 3 The expected log likelihood term in
Equation (14), with a generic structured condi-
tional likelihood p(y,|f,) and variational distribution
q(f,ul\) defined in Equation (12), and its gradi-
ents can be estimated using expectations over T, -
dimensional Gaussians and |V|*-dimensional Gaus-
stans, where T, is the length of each sequence and
|V| is the vocabulary size.

As in the full (non-sparse) case, the proof is construc-
tive and can be found in the supplementary material.
This means that, in the sparse case, the expected
log likelihood and its gradients can also be com-
puted using Equations (8) to (10), where the mean
and covariances of each gy, (f'") are determined by
the means and covariances of the posterior over the
inducing variables. Thus, as before, gg,(fi") is a
(T}, x |V|)-dimensional Gaussian with block-diagonal
structure, where each of the j = 1,...,|V| blocks has
mean and covariance given by

bkjn = Ajnmkja

pjn = K + A, S AL



where

def

A, S w(X, Z)K(Z;,Z)7

K = k(X Xn) — Ajuk(Z;,X,)

(17)
(18)

and as mentioned in §2.1, X, is the T}, X D matrix
of feature descriptors corresponding to sequence n.

4.2 Expectation estimates

In order to estimate the expectations in Equations
(8) to (10), we use a simple Monte Carlo approach
where we draw samples from our approximate dis-
tributions and compute the empirical expectations.
For example, for the Lq; we have:

Nseq K S

Far=g 3 S m D logplyal £, £, (19

n=1 k=1 i=1
un

with Ui, N (b(ny, Z(n)) and P
N (mPin 8bn) for j =1,...,5, where S is the num-
ber of samples, and each of the individual blocks of
by,(n) and Xy, are given in Equations (15) and (16),
respectively. We use a similar approach for estimat-
ing the gradients of the Lo and they are given in
the supplementary material.

~ ~

5 LEARNING

We learn the parameters of our model, i.e. the param-
eters of our approximate variational posterior and the
hyperparameters ({\, 8}) through gradient-based op-
timization of the variational objective (Lepo). One
of the main advantages of our method is the decom-
position of Lg) in Equation (19) and its gradients
as a sum of expectations of the individual likelihood
terms for each sequence. This result enables us to
use parallel computation and stochastic optimization
in order to make our algorithms useful in practice.

In our experiments, we use 500 inducing inputs {Z; }
and select them via K-means clustering. As discussed
in the supplementary material, the step sizes for
stochastic gradient descent were chosen automatically
and adaptively by our code.

5.1 Computational complexity

The time-complexity of our stochastic optimization
is dominated by the computation of the posterior’s
entropy, Gaussian sampling, and running the forward-
backward algorithm, which yields an overall cost of
O(M3 + T3 + ST,|V|?) for each sequence n. The
space complexity is dominated by storing inducing-
point covariances, which is O(M?). To put this in
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the perspective of other available methods, the ex-
isting Bayesian structured model with ESS sampling
(Bratiéres et al., 2015) has time and memory complex-
ity of O(N3) and O(N?) respectively, where N is the
total number of observations (e.g. words). CRF’s time
and space complexity with stochastic optimization
depends on the feature dimensionality, i.e. it is O(D).
The actual running time of CRF also depends on the
cost of model selection via a cross-validation proce-
dure. ESS sampling makes the method of Bratiéres
et al. (2015) completely unfeasible for large datasets
and CRF has high running times for problems with
high dimensions and many hyperparameters. Our
work aims to make Bayesian structured prediction
practical for large datasets, while being able to use
infinite-dimensional feature spaces as well as sidestep-
ping a costly cross-validation procedure.

5.2 Variance reduction

Our goal is to approximate an expectation of a func-
tion g(f) over the random variable f that follows
a distribution ¢(f), i.e. E,[g(f)] via Monte Carlo
samples. The simplest way to reduce the variance
of the empirical estimator g is to subtract from g(f)
another function h(f) that is highly correlated with
g(f). We note that, in the case of variational in-
ference, this technique was introduced in Blei et al.
(2012). In more detail, for any value of a, the function
g(f) := g(f) — ah(f) will have the same expectation
as g(f), i.e. E¢[g] = Eq[g], provided that E,[h] = 0.
In general, to ensure unbiasedness, E,[h], if easily
and efficiently computable, can be subtracted from
h to form an estimator § := g — h + E4[h]. More
importantly, as the variance of the new function is
Var[g] = Varlg] + a*Var[h] — 2aCov|g, h], our prob-
lem boils down to finding suitable & and h so as to
minimize Var[g].

In our case, ¢(f) is the variational distribution and
g(f) = logp(ynl|f.)Valogq(f) (see supplementary
material). Previous work (Ranganath et al., 2014;
Dezfouli and Bonilla, 2015) has found that a suit-
able correction term is given by h(f) = Vj log¢(f),
which has expectation zero. Given this, the optimal
4 can be computed as @ = Covlg, h]/Var[h]. The
use of control variates is essential to achieve good
performance in our framework.

5.2.1 Piecewise pseudo-likelihood

In order to demonstrate the flexibility of our ap-
proach, we also tested the performance of our frame-
work when the true likelihood is approximated by a
piecewise pseudo-likelihood (Sutton and McCallum,



Table 1: Datasets used in our experiments. For
each dataset we see the number of categories (or
vocabulary |V|), the number of features (D), the
number of training sequences (Ngeq), and the average

(across folds) number of training words (N). All
numbers refer to the small-scale experiments.
Dataset [V D Nseq N
BASE NP 3 6,438 150  3,739.8
CHUNKING 14 29,764 50 1,155.8
SEGMENTATION 2 1,386 20 942
JAPANESE NE 17 102,799 50 1,315.4

2007) that only takes in consideration the local inter-
actions within a single factor between the variables
in our model. We emphasize that this change did not
require any modification to our inference engine and
we simply used this pseudo-likelihood as a drop-in
replacement for the exact likelihood.

6 EXPERIMENTS

In this section we evaluate our approach using
small-scale experiments on the benchmarks used by
Bratiéres et al. (2015), which target several standard
NLP problems and are summarized in Table 1. These
include noun phrase identification (BASE NP); chunk-
ing, i.e. shallow parsing labels sentence constituents
(CHUNKING); identification of word segments in se-
quences of Chinese ideograms (SEGMENTATION); and
Japanese named entity recognition (JAPANESE NE).
We also consider larger-scale experiments on BASE
NP and CHUNKING, which have significantly more
training data available.

6.1 Small-scale experiments

When comparing the error rates on Table 2 we see
that our approach is on par with competitive bench-
marks which, unlike our method, exploit the structure
of the likelihood. More importantly, when analyzing
the test likelihoods on Table 3 we see that our method
with true likelihood (GP-VAR-T) is significantly better
than CRF for all benchmarks except SEGMENTATION,
where it has a similar performance. Finally, the log-
likelihood results of GP-ESS (Bratiéres et al., 2015)
are also consistently worse than ours, owing largely
to the higher computational cost of sampling.

6.2 Larger-scale experiments

Here we evaluate our approach on BASE NP and
CHUNKING using Ng.q = 500 training sequences and
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the remaining (323) sequences for testing, with a
five-fold cross-validation setting. This amounts to
roughly 11,611 words on average. We compare with
CRF, as this was the best baseline in our previous
experiments. We also note that that the original Gp-
ESS method is completely impractical in this setting.

On BASE NP, our method has a lower average test log-
likelihood (1265.52 vs. 1355.63) but a higher error
rate (5.15% vs 4.50%) than CRF. This reinforces our
previous message that our method can provide better
predictive probabilities than its competitors. How-
ever, our results on CHUNKING, 2511.48 vs 1862.96
for test log-likelihoods and 8.60% vs 7.20% for error
rates, indicate that our method lags behind CRF on
this dataset. We attribute this result to CHUNKING
having a much higher dimensionality than BASE NP,
which is a more critical issue with large datasets.

7 RELATED WORK

Recent advances in sparse GP models for regression
(Titsias, 2009; Hensman et al., 2013) have allowed the
applicability of such models to very large datasets,
opening opportunities for the extension of these ideas
to classification and to problems with generic i.i.d like-
lihoods (Hensman et al., 2015a; Nguyen and Bonilla,
2014; Dezfouli and Bonilla, 2015; Hensman et al.,
2015b). However, none of these approaches is ac-
tually applicable to structured prediction problems,
which inherently deal with non-i.i.d likelihoods.

Twin Gaussian processes (Bo and Sminchisescu, 2010)
address structured continuous-output problems by
forcing input kernels to be similar to output kernels.
In contrast, here we deal with the harder problem of
structured discrete-output problems, where one usu-
ally requires computing expensive likelihoods during
training. The structured continuous-output prob-
lem is somewhat related to the area of multi-output
regression with GPs for which, unlike discrete struc-
tured prediction with GPs, the literature is relatively
mature (Alvarez et al., 2010; Alvarez and Lawrence,
2011, 2009; Bonilla et al., 2008).

The original structured Gaussian process model,
(gpsTRUCT, Bratiéres et al., 2015) uses Markov
Chain Monte Carlo (McMC) sampling as the infer-
ence method and is not equipped with sparsifica-
tion techniques that are crucial for scaling to large
data. Bratiéres et al. (2014) have explored a dis-
tributed version of GPSTRUCT based on the pseudo-
likelihood approximation (Besag, 1975) where several
weak learners are trained on subsets of GPSTRUCT’s
latent variables and bootstrap data. However, within



Table 2: Mean error rates and standard deviations in brackets on small-scale experiments using 5-fold

cross-validation. The average number of observed words (V) on these problems range from 942 to 3740. svM
corresponds to structured support vector machines; CRF to conditional random fields; GP-ESS corresponds to
GPSTRUCT with ESs for inference (Bratiéres et al., 2015); GP-VAR-T corresponds to our method with true
likelihood; and GP-VAR-P corresponds to our our method with piecewise pseudo-likelihood.

Dataset Method

SVM CRF GP-ESS GP-VAR-T  GP-VAR-P
BASE NP 5.9 (0.4) 5.3 (0.5) 5.1(0.4) 5.6 (0.5) 5.2 (0.3)
CHUNKING 9.8 (1.0) 8.5 (1.0) 8.5(1.0) 9.4 (1.6) 9.0 (1.0)
SEGMENTATION ~ 16.2 (2.2) 154 (1.1) 149 (1.8) 14.5 (1.5) 15.3 (2.2)
JAPANESE NE 5.6 (0.8) 5.2 (0.7) 5.6 (0.7) 5.4 (0.6) 5.6 (0.6)

Table 3: Negative expected log-likelihoods and standard deviations in brackets on small-scale experiments
using 5-fold cross-validation. As before, CRF refers to conditional random fields; GP-ESS to GPSTRUCT with
ESs for inference (Bratiéres et al., 2015); GP-VAR-T to our method with true likelihood; and GP-VAR-P to our

method with piecewise pseudo-likelihood.

Dataset Method

CRF GP-ESS  GP-VAR-T GP-VAR-P
BASE NP 944 (835) 887 (57) 622 (34) 603 (21)
CHUNKING 517 (113) 704 (116) 407 (43) 587 (100)
SEGMENTATION 253 (41) 316 (52) 255 (45) 298 (53)
JAPANESE NE 592 (131) 806 (135) 339 (38) 411 (94)

each weak learner, inference is still done via MCMC. A
variational alternative for GPSTRUCT inference (Sri-
jith et al., 2014, 2016) is also available. However,
it relies on pseudo-likelihood approximations and
was only evaluated on small-scale problems. Unlike
this work, our approach can deal with both pseudo-
likelihoods and generic (linear-chain) structured like-
lihoods, and we rely on our sparse approximation
procedure and our automated variational inference
technique — rather than on bootstrap aggregation —
to achieve good performance on larger datasets.

8 CONCLUSION & DISCUSSION

We studied a Bayesian structured prediction model
with GP priors and linear-chain likelihoods. We devel-
oped an automated variational inference algorithm
that is statistically efficient in that only requires ex-
pectations over very low-dimensional Gaussians in
order to estimate the expected likelihood term in the
variational objective. We exploited these types of
theoretical insights as well as practical statistical and
optimization tricks to make our inference framework
scalable and effective. Our model generalizes recent
advances in CRFs (Koltun, 2011) by allowing general
positive definite kernels defining their energy func-

tions and opens new directions for combining deep
learning with structure models (Zheng et al., 2015).

As mentioned in the introduction, for general struc-
tured prediction problems one may need to set up the
configuration of the latent functions (e.g. the unary
and pairwise functions in the linear-chain case). Thus,
the process of developing an inference procedure for
a different structure (e.g. when considering higher-
order interactions) requires some human intervention.
Nevertheless, when applied to fixed structures our
approach is “black box” with respect to the choice of
likelihood, inasmuch as different likelihoods can be
used without any change to the inference engine.

Furthermore, we have already seen in our small-scale
experiments a possible way to extend our method
to more general structured likelihoods, where the
exact likelihood is replaced by a piecewise pseudo-
likelihood. Such an approach might be considered for
using our framework in models such as grids or skip-
chains, for which the evaluation of the true structured
likelihood would be intractable.

Overall, we believe our approach is a fundamental
step to developing automated inference methods for
general structured prediction problems.
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