Weakly Submodular Maximization Beyond Cardinality Constraints: Does
Randomization Help Greedy?

Lin Chen!? Moran Feldman? Amin Karbasi!2

Abstract

Submodular functions are a broad class of set
functions that naturally arise in many machine
learning applications. Due to their combinatorial
structures, there has been a myriad of algorithms
for maximizing such functions under various con-
straints. Unfortunately, once a function deviates
from submodularity (even slightly), the known al-
gorithms may perform arbitrarily poorly. Amend-
ing this issue, by obtaining approximation results
for functions obeying properties that generalize
submodularity, has been the focus of several re-
cent works. One such class, known as weakly
submodular functions, has received a lot of recent
attention from the machine learning community
due to its strong connections to restricted strong
convexity and sparse reconstruction. In this pa-
per, we prove that a randomized version of the
greedy algorithm achieves an approximation ra-
tio of (1 + 1/+)~2 for weakly submodular maxi-
mization subject to a general matroid constraint,
where v is a parameter measuring the distance
from submodularity. To the best of our knowl-
edge, this is the first algorithm with a non-trivial
approximation guarantee for this constrained op-
timization problem. Moreover, our experimental
results show that our proposed algorithm performs
well in a variety of real-world problems, includ-
ing regression, video summarization, splice site
detection, and black-box interpretation.

1. Introduction

Motivated by the frequent appearances of submodular func-
tions in both theoretical and practical settings, the last
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decade has seen a proliferation of works on maximization
of submodular functions. In particular, algorithms for maxi-
mizing a submodular function subject to various constraints
have found many applications in machine learning and data
mining, including data summarization (Mirzasoleiman et al.,
2016a; Wei et al., 2013), document summarization (Lin &
Bilmes, 2010; 2011), sensor placement (Krause et al., 2008;
Krause & Guestrin, 2005), network reconstruction (Chen
et al., 2016; Gomez Rodriguez et al., 2010), crowd teach-
ing (Singla et al., 2014), spread of influence (Kempe et al.,
2003) and article recommendation (El-Arini & Guestrin,
2011; Mirzasoleiman et al., 2016b).

Despite the above mentioned abundance of settings which
give raise to submodular functions, it has been observed
that there are also many settings inducing functions that
are close to submodular (in some sense), but not strictly
submodular. Unfortunately, algorithms that have been devel-
oped for maximization of true submodular functions often
fail miserably when given a function which is only close
to submodular (Hassidim & Singer, 2017). This hurdle has
motivated the development of algorithms whose guarantee
degrades gracefully with the distance of the function from
submodularity. In particular, such algorithms have been de-
veloped for functions that are: close to submodular under a
distance measure known as the supermodular degree (Feige
& Izsak, 2013; Feldman & Izsak, 2014; 2017), close to a
submodular function up to a multiplicative factor (Horel &
Singer, 2016), noisy versions of submodular functions under
various noise models (Hassidim & Singer, 2017), almost
submodular in the sense that they satisfy the submodularity
inequality f(A) + f(B) > f(AUB)+ f(ANB)uptoa
fixed constant (Bateni et al., 2013) or belong to a class of
functions known as hypergraph-r valuations which restricts
the kinds of interplay between elements that can affect a
function’s values (Abraham et al., 2012).

A particularly important class of close to submodular func-
tions, known as y-weakly submodular functions (where =y
is a parameter measuring the distance of the function from
being submodular), has received a lot of attention from the
machine learning community. Weakly submodular func-
tions were originally introduced by Das & Kempe (2011),
who showed that the standard greedy algorithm achieves a
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good approximation ratio of 1 —e™" for the problem of max-
imizing such functions subject to a cardinality constraint.
Further works developed more sophisticated algorithms for
the same maximization problem and demonstrated a large
repertoire of applications captured by it. For example, Elen-
berg et al. (2017) described a streaming algorithm for the
above maximization problem and used it to get a faster algo-
rithm for interpreting outputs of neural networks. By relying
on previous works which showed that submodular functions
can be maximized by faster versions of the standard greedy
algorithm that are either stochastic or distributed (Mirza-
soleiman et al., 2015; 2013), Khanna et al. (2017) showed
that these faster versions of the greedy algorithm can also be
used for maximizing weakly submodular functions. Finally,
Qian et al. (Qian et al., 2016) leveraged weak submodu-
larity in the design of an approach for the parallel Pareto
optimization problem for subset selection.

To the best of our knowledge, all existing works regarding
the maximization of y-weakly submodular functions assume
a simple cardinality constraint, and thus, cannot be applied
to applications which require more involved constraints. In
this paper we make a first step towards amending this sit-
uation. Specifically, we show that RESIDUAL RANDOM
GREEDY (originally proposed by Buchbinder et al. (2014)
for submodular maximization) yields—through a more in-
volved analysis—the first non-trivial approximation ratio
for maximizing a y-weakly submodular function subject to
a general matroid constraint.

The above result has two important implications. First, as
explained above, it opens the door to more involved appli-
cations. The second implication is related to the fact that
RESIDUAL RANDOM GREEDY can be viewed as a random-
ized version of the greedy algorithm. This makes it possible
to view our analysis of RESIDUAL RANDOM GREEDY as
an evidence that the standard greedy algorithm works most
of time. In other words, we expect the greedy algorithm to
produce a good approximation ratio on instances that are not
specifically engineered to make it perform poorly. To see
whether this is indeed the case, we have conducted four sets
of experiments. The first set studies the linear regression
problem on synthetic data, and the other sets correspond to
real-world application scenarios and use real data (the three
real-world application scenarios are video summarization,
splice site detection and black-box interpretation of images).
As expected, our experiments show that RESIDUAL RAN-
DOM GREEDY and the greedy algorithm have comparable
performance on real-world instances.

1.1. Preliminaries and Results

In this section we present the notation and definitions we
use in this paper, including the definition of y-weak sub-
modularity. We then use these notation and definitions to

present our result formally.

We say that a set function f: 2 — R over a ground set
N is monotone if f(A) < f(B) for every two sets A C
B C N. Furthermore, given two subsets A, B C N, we
denote by f(B | A) the marginal contribution of adding B’s
elements to A. More formally, f(B | A) = f(AU B) —
f(A). In many cases the subset B in the above definition
will be a singleton set {u}. In these cases we write, for
simplicity, f(u | A) instead of f({u} | A). Additionally,
we occasionally use A + u and A — w as shorthands for the
union A U {u} and the expression A \ {u}, respectively.

Using this notation we can now define y-weak submod-
ularity as follows (this definition differs slightly from the
original definition of «y-weakly submodular functions by Das
& Kempe (2011). We discuss this in more detail later in this
section). A set function f: 2V — R is y-weakly submodu-
lar for some v € (0, 1] if

> fu] A) = f(B]A) (1)

u€EB
for every two sets A, B C N.

Next, we would like to remind the reader of the formal
definition of a matroid. Consider a ground set A/ and a
non-empty collection Z C 2% of subsets of \. The pair
(N, Z) is a matroid if for every two sets A, B C N:

e ACBand BeZimply A € T.

e |A| < |B| and B € T imply the existence of an ele-
ment u € B\ Asuchthat AU {u} € T.

Furthermore, the sets in Z are called the independent sets of
the matroid. Matroids are important because they capture
many natural structures. For example, the set of forests
of a graph form a matroid known as the graphical matroid
of this graph. Consequently, the maximization of various
set functions subject to a general matroid constraint has
been studied extensively (see, for example, (Calinescu et al.,
2011; Feldman & Izsak, 2014; Feldman et al., 2011)).

In this paper we are interested in the problem of maximizing
a non-negative monotone y-weakly submodular function
f: 2N — R subject to a matroid M = (N, Z) constraint.
In other words, we want to find an independent set of the
matroid maximizing f. Our main result for this problem is
given by the following theorem.

Theorem 1.1. The RESIDUAL RANDOM GREEDY algo-
rithm of Buchbinder et al. (Buchbinder et al., 2014) has an
approximation ratio of at least (1+1/v)~2 for the problem
of maximizing a non-negative monotone y-weakly submodu-
lar function subject to a matroid constraint.

Two remarks about this result are now in place. First, we
would like to point out that RESIDUAL RANDOM GREEDY
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is quite efficient. In the analysis of such algorithms it is
standard practice to assume that the algorithm has access
to two oracles: a value oracle that given a set S C N
returns the value of the objective function for that set, and
an independence oracle that given S determines whether it
is independent. Given such oracles, RESIDUAL RANDOM
GREEDY requires only O(nk) queries to each one of them,
where n is the size of the ground set A" and k is the rank of
the matroid (i.e., the size of the largest independent set in
it). In the rest of this paper we often use n and k to denote
their values as defined here.

Our second remark regarding Theorem 1.1 is related to
the definition of y-weak submodularity given above. As
mentioned, this definition is slightly different from the orig-
inal definition of y-weakly submodular functions by Das &
Kempe (2011). The original definition was weaker in the
sense that it required Inequality (1) to hold only for small
sets, i.e., sets whose size is at most comparable to the size of
the largest possible feasible solution. For the sake of keep-
ing the definition as clean as possible, we dropped this extra
complication from our definition of weak submodularity.
However, when one employs algorithms for weak submod-
ular optimization to solve real-world problems, it is often
useful to have the weakest possible definition because this
makes it more likely for the real-world objective function
to fall into the definition. Thus, we would like to point out
that Theorem 1.1 applies even when the objective function
only obeys the following weaker definition (with respect to
the matroid M defining the constraint). Interestingly, this
weaker definition is even weaker than the original definition
of Das & Kempe (2011) for weak submodularity. A set func-
tion f: 2V S Ris (v, M)-restricted weakly submodular
for some « € (0, 1] and matroid M = (N, Z) if

S fu|A) =~ f(B]A)

ueB

for every two sets A, B C N suchthat AU B € 7.

2. Related Work

The study of the maximization of monotone submodular
functions subject to a matroid constraint can be traced back
to the 1970’s. Nembhauser et al. (1978) and Fisher et al.
(1978) proved that the standard greedy algorithm achieves
approximation ratios of 1 — 1/e ~ 0.632 and 1/2 for this
problem when the matroid is a uniform matroid and a gen-
eral matroid, respectively. The approximation ratio for uni-
form matroid constraints was discovered, at roughly the
same time, to be optimal (Nemhauser & Wolsey, 1978).
However, the question regarding the optimality of the (1/2)-
approximation algorithm for general matroid constraints
remained open for many years. A decade ago, this question
was finally solved by a celebrated result of Célinescu et al.

(2011) who described a (1 — 1/e)-approximation algorithm
for maximizing a monotone submodular function subject
to a general matroid constraint. The result of Célinescu
et al. (2011) proved that exactly the same approximation
ratio can be achieved for the maximization of monotone
submodular functions subject to uniform and general ma-
troid constraints, which implies that in some sense general
matroid constraints are no more difficult than uniform ma-
troid constraints. Nevertheless, there is still a significant
gap between the time complexities of the fastest algorithms
known for the two types of constraints (Buchbinder et al.,
2017; Mirzasoleiman et al., 2015), and closing this gap (or
proving that it cannot be done) remains an open question.

The result of Célinescu et al. (2011) has motivated a long
series of works on the maximization of non-monotone sub-
modular functions subject to a matroid constraint (Buch-
binder et al., 2014; Chekuri et al., 2014; Ene & Nguyen,
2016; Feldman et al., 2011; Gharan & Vondrak, 2011). The
currently best algorithm of this kind achieves an approxi-
mation ratio of 0.385 (Buchbinder & Feldman, 2016) for
general matroid constraints, and no better approximation
guarantee is known for uniform matroid constraints. On
the inapproximability side, it is known that no polynomial
time algorithm can achieve approximation ratios better than
0.491 and 0.478 for the maximization of non-monotone sub-
modular functions subject to uniform and general matroid
constraints, respectively.

3. Algorithm

In this section we present the RESIDUAL RANDOM GREEDY
algorithm, originally proposed by Buchbinder et al. (2014),
and prove Theorem 1.1. The pseudocode of this algorithm
is given as Algorithm 1. In this pseudocode we use the
notation M /S to denote the matroid obtained from the input
matroid M by contracting a set S. Informally, Algorithm 1
grows a solution S in k rounds, where each round consists
of two steps. In the first step, the algorithm assigns to each
element a weight which is equal to the marginal contribution
of this element to the current solution S. Then, in the second
step of the round, the algorithm finds a set M of maximum
weight among all sets whose union with the current solution
S is independent, and adds a uniformly random element
from M to S. We begin the analysis of Algorithm 1 with
the following simple observation.

Observation 3.1. Algorithm 1 always outputs a feasible set
while using O(nk) value and independence oracle queries.

Proof. The first part of the observation follows immediately
from the properties of a matroid. Specifically, it follows
from the fact that for any independent set .S of size less than
k there must exist a non-empty set M such that S U M is a
base, and moreover, for such a set M any subset of S U M
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Algorithm 1 Residual Random Greedy for Matroids
1: Initialize: Sy < <.
2: fori < 1,2,...,kdo
3: Let M; be a base of M /S;_; maximizing the sum
> wen, ful] Sic1).
4: Let u; be a uniformly random element from M.
5: S,‘ — Si—l + u;.
6: end for
7: Return Sy.

is independent.

To see why the second part of the observation holds, we
observe that the only line of Algorithm 1 which requires
access to the oracles is Line 3. This line can be viewed as
having two parts. The first part defines a weight f(u | S;—1)
for every element of '\ S (which requires O(n) value
oracle queries), while the second part finds a maximum
weight independent set in M /S;_1 subject to these weights
(which requires O(n) independence oracle queries when
done using the greedy algorithm). Thus, we get that each
execution of Line 3 requires O(n) oracle queries, and the
observation follows since this line is executed k times. [

In the rest of this section we analyze the approximation
ratio of Algorithm 1. Let us denote by OPT a set which
maximizes f among the independent sets of M. Since f is
monotone, we may assume that O PT is a base of M. We
need to construct, for every 0 < ¢ < k, a random set O PT;
for which S; U OPT; is a base. For the construction we use
the following lemma from Brualdi (1969).

Lemma 3.2. If A and B are two bases of a matroid M =
(N, Z), then there exists a one to one function g : A\ B —
B\ A such that for everyw € A\ B, (B+u) — g(u) € .

For i = 0, we define OPTy = OPT. Fori > 0, OPT;
is constructed recursively based on the algorithm’s behav-
ior. Assume that OPT;_; is already constructed, and let
gi: M; — OPT;_4 be a one to one function mapping every
element u € M; to an element of OPT;_; in such a way
that S;_1 UOPT;_1 — g;(u) + u is a base. Observe that
the existence of such a function follows immediately from
Lemma 3.2 since both S;_1 UOPT;_; and S;_1 U M; are
bases of M. We now set OPT; = OPT;_1 — g;(u;), which
guarantees that S; U OPT; is a base, as promised. For this
construction to be useful, it is important that the choice
of g; (among the possibly multiple functions obeying the
required properties) is done independently of the random
choice of u;, which guarantees that g;(u;) is a uniformly
random sample from OPT;_1.

The next lemma proves a lower bound on the expected
values of the sets we have constructed. Due to space con-
straints, the proof of this observation (and most other proofs

in this section) has been deferred to Appendix A in the
supplementary material. However, we note that this proof is
similar to the proof of Lemma A.1 of (Elenberg et al., 2017),
but the current lemma obtains a tighter bound.

Lemma 3.3. For every 0 < i < k, E[f(OPT;)] >
1\
1= (#4) ] ropm).

The next observation gives a lower bound on the increase
in E[f(S;)] as a function of i. Note that this bound uses the
sets {OPT;}F_, that we have constructed above.

Observation 3.4. For every 1 < i < k, E[f(S;)]

E[f(sz—l)] + - ]E[f(OPTi—lL]i%;rll)]*ﬂi[f(sifl)]'

v

Combining the last lemma and observation, we get the next
corollary.

Corollary 3.5. For every 1 < i < k, E[f(S)] >
—[2 Y. _ i
E[f(Si—1)] + - L ADERSOPD B -0)],

We are now ready to prove an approximation ratio for Al-
gorithm 1. The next theorem proves that the approximation
ratio of Algorithm 1 can be smaller than the approximation
ratio guaranteed by Theorem 1.1 only by a low order term
of O(k~1). In Appendix B, we show that this low order
term can be dropped, which implies Theorem 1.1.

Theorem 3.6. The approximation ratio of Algorithm 1 is at
least (1+1/7)"2 — O(k™1).

The proof of Theorem 3.6 consists mostly of solving the
recursive formula given by Corollary 3.5.

4. Experiments

We conducted four sets of experiments. In the first set, we
studied linear regression on synthetic data (Section 4.1), and
in the other three, we investigated real-world application sce-
narios using real data. These scenarios include video sum-
marization (Section 4.2), splice site detection (Section 4.3)
and black-box interpretation for images (Section 4.4).

4.1. Linear Regression

In this set of experiments, we are given an n X p matrix X
and a vector y € R™ which is a noisy version of the product
of the matrix X and an unknown vector 3 € RP. More
formally, y = X 3 + &, where the coefficients of the noise
vector € are i.i.d. standard Gaussian random variables. In
general, we are interested in the problem of, given such a
matrix X and a vector y, recovering 3 under the assumption
that it is sparse in some sense. In the current set of exper-
iment, we call a vector 3 sparse if and only if its support
supp(3) is independent in some input matroid M. In other
words, we want to find among the vectors whose support is
independent in M, the vector 3 which is the most likely to
be the vector which has been used to generate y.
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Number of features selected

(a) Under a graphic matroid constraint

Figure 1. Normalized log-likelihood vs. the number of features selected in linear

regression.

The log-likelihood function of this problem for vectors is
given by I(B) = —|ly — XB|* + C, where C is a con-
stant, and this yields the following log-likelihood func-
tion for support vectors g(S) = maxg,ppg)cs ((B) =
—ly — Xs(XLTXs)" ' XLy|?> + C, which was shown
to be weakly submodular by Elenberg et al. (2016). Thus,
our objective is to find a set S which is independent in
M and approximately maximizes this weakly submodular
function (given such a set S, one can calculate the vector
3 that we look for). Towards this goal, we have applied
RESIDUAL RANDOM GREEDY to the matroid M and the
normalized log-likelihood function f(S) £ ¢(S) — g(@)
(we do not apply RESIDUAL RANDOM GREEDY directly
to the log-likelihood function g since the last function is
not guaranteed to be non-negative). We then compare the
performance of RESIDUAL RANDOM GREEDY on this opti-
mization problem with the following baselines.

e RANDOM. The RANDOM algorithm samples an in-
dependent set in an iterative manner. Throughout its
execution, RANDOM maintains an independent set .S,
which is originally initialized to be the empty set. In
each iteration, RANDOM adds to S a uniformly random
element from the set of elements in AV whose addition
to S keeps S independent. This process continues until
S becomes a base, at which point no more elements
can be added to S.

e STANDARD GREEDY. Like the previous algorithm,
the STANDARD GREEDY algorithm maintains an in-
dependent set .S, which is originally initialized to be
the empty set and grows iteratively. In each iteration,
STANDARD GREEDY adds to S the element with the
largest marginal contribution (with respect to the objec-
tive function) among the elements of N whose addition
to S keeps S independent. Once more, the process ter-
minates when S becomes a base.

Number of features selected

Number of frames selected

(b) Under a partition matroid constraint

Figure 2. Determinant vs. number of frames
selected in the video summarization problem.

Before we present the results obtained by this set of ex-
periments, we would like to explain the way we used to
generate the inputs for the experiments. We chose n = 100
and p = 200, and constructed each row of the n X p ma-
trix X independently according to an autoregressive (AR)
process with o = 0.5 and noise variance o2 = 10 (in this
generation process, each entry of the row is a function of the
last few entries appearing before it in the row and a few ran-
dom bits). The support of the vector 3 was chosen randomly
using the above mentioned algorithm RANDOM (notice that
this algorithm does not use the objective function, and thus,
can be viewed as a way to sample an independent set from
a matroid), and each non-zero value of 3 was assigned a
uniformly random value from the set {—1, 1}. It remains to
explain the way we used to construct the matroid M itself,
which differs between the two experiments we conducted.

In one experiment we have used a graphic matroid M. To
generate the graph underlying this matroid, we started with
an empty graph over n vertices and added to it p random
edges, where each edge was chosen independently and con-
nected a uniformly random pair of distinct vertices. In the
other experiment we have used a partition matroid M with
10 partitions, which we denote by Bj, Bs, ..., Big. To
generate this partition matroid we used a few steps. First,
we uniformly sampled a random distribution out of the set
of all possible distributions over the 10 partitions (i.e., the
sampled distribution is a uniformly random point from the
standard 9-simplex). Then, we created p elements, and as-
signed each one of them to one of the partitions according to
the above mentioned distribution. Finally, for every partition
B;, we sampled its capacity—i.e., the maximum number of
elements of this partition that can appear in an independent
set—from the binomial distribution B(|B;|,0.25).

The results of the two experiments are illustrated in Fig-
ure 1. The plots in this figure show how the normalized
log-likelihood varies as the algorithms select more elements
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(also called “features”) under the constraints corresponding
to the above matroids. In both plots, the black line denotes
the normalized log-likelihood achieved by the ground truth
(i.e., the vector 3 used to generate y). We observe that
RESIDUAL RANDOM GREEDY and STANDARD GREEDY
yield comparable performance and both outperform RAN-
DOM. In particular, when they terminate, the normalized
likelihoods attained by RESIDUAL RANDOM GREEDY and
STANDARD GREEDY are almost equal.

4.2. Video Summarization

In this application our objective is to pick a few frames from
a video which summarize it (in some sense). One can for-
malize the problem of selecting such a summary as selecting
a set of frames maximizing the Determinantal Point Process
(DPP) objective function, which is a computationally effi-
cient tool that favors subsets of elements with higher diver-
sity (Kulesza et al., 2012). More formally, given an n frames
video, we have represented each frame by a p-dimensional
vector. Let X € R™*™ be the Gramian matrix of the n re-
sulting vectors and the Gaussian kernel; i.e., X;; is the value
of the Gaussian kernel between the i-th and j-th vectors.
The DPP objective function is now given as the determinant
function f : 2[" — R: f(S) = det(I + Xg), where X is
the principal submatrix of X indexed by .S. We note that
the identity matrix was added here to the objective to make
sure that the function f is monotone. Moreover, this func-
tion was shown to be weakly submodular with parameter
k(A —1)

minlgkgn m, where Al Z )\2 Z Z )\n > 1
j=1 "\

are the eigenvalues of I + X (Bian et al., 2017). In light
of the non-submodularity of the determinant function f,
rather than optimize it directly, prior works considered its
log, which is known to be submodular (Kulesza et al., 2012;
Xu et al., 2015). This allows the use of standard submod-
ular optimization techniques, but does not guarantee any
approximation ratio for the original objective function. For-
tunately, with the help of RESIDUAL RANDOM GREEDY,
we can maximize the determinant function f directly and
get a guaranteed approximation ratio.

The video that we have selected for this experiment lasts for
roughly 7 minutes and a half, and we chose to created a sum-
mary of it by extracting one representative frame from every
25 seconds. In other words, the constraint on the allowed
summarization is given by a partition matroid in which a set
S of frames is independent (i.e., belongs to 7) if and only
if |SN 250 — 1)+ 1,25]| <1,V1 <4< [n/25]. Given
this constraint, the optimization problem that we need to
solve is maxgez f(S). Figure 2 illustrates the performance
of RESIDUAL RANDOM GREEDY and the two benchmark
algorithms when they are applied to this problem. The
frames selected by the three algorithms are shown in Fig-
ure 3. Each algorithm selects one frame per 25 seconds,

and the selected 18 frames are arranged in these images
in chronological order from left to right and from top to
bottom. It is quite easy to observe that both RESIDUAL
RANDOM GREEDY and STANDARD GREEDY produce sum-
maries with higher diversity than RANDOM. For example,
the first two frames selected by RANDOM are about the same
young lady in red, while RESIDUAL RANDOM GREEDY and
STANDARD GREEDY choose one about the young lady and
the other one about the TV show studio; and again, the 12-
th and 13-th frames selected by RANDOM are both about
a lady in black, while RESIDUAL RANDOM GREEDY and
STANDARD GREEDY do not produce duplications, which
allows them to cover other content. Comparing the out-
puts of RESIDUAL RANDOM GREEDY and STANDARD
GREEDY is more subtle, but the result of RESIDUAL RAN-
DOM GREEDY seems to be slightly better. The 10-th and
14-th frames selected by RESIDUAL RANDOM GREEDY
show two participants that are not recognized by the other
two summaries; in contrast, STANDARD GREEDY chooses
five frames about TV show guests sitting behind a long blue
desk in the studio, which reduces the diversity of the frames.

4.3. Splice Site Detection

An important problem in computational biology is the identi-
fication of true splice sites from similar decoy splice sites in
nascent precursor messenger RNA (pre-mRNA) transcripts.
Splice sites are nucleotide sequences that mark the begin-
nings and ends of introns (nucleotide sequences removed by
RNA splicing during maturation of mRNA). In general, the
two ends of an RNA sequence are known as the 5’-end and
the 3’-end. In the case of introns, these ends are also known
as the splice donor site and the splice acceptor site, respec-
tively. We are interested in the problem of identifying splice
donor and splice acceptor sites. In other words, given a
sequence of nucleotides, we want to determine whether this
sequence represents a splice donor/acceptor site. A splice
donor site always includes the nucleotide sequence “GT” at
its 5’-end, while a splice acceptor site has the sequence “AG”
at its 3’-end. However, both kinds of sites include additional
nucleotides whose identity should be taken into account
when deciding whether a given sequence of nucleotides is a
splice donor/acceptor site

The MEMset dataset provides instances of true and false
splice donor/acceptor sites. We note that false splice
donor/acceptor sites also include the compulsory “GT”/“AG”
sequences, but differ from true sites in their other nu-
cleotides. A detailed description of this dataset is presented
in (Yeo & Burge, 2004). In this set of experiments, we
used logistic regression on the MEMset dataset to determine
the nucleotide values that have the largest influence on the
categorization of splice sites into true and false sites. As a
preprocessing step, we removed the consensus “GT” and
“AG” sequences. Then, we considered the natural explana-
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Figure 3. From top and bottom: frames selected by RESIDUAL RANDOM GREEDY, STANDARD GREEDY, and RANDOM as their video

summaries.

tory variables for this problem, i.e., a single variable taking
the four values A, C, T and G for every nucleotide of the
splice site. As these explanatory variables are categorical;
we converted each of them into four binary variables via
one-hot encoding. In other words, for each explanatory
variable x; (which takes values from {A, C, T, G}), we cre-
ated four binary dummy variables @)y, 5,2}, o, T4, 1, %},
where ;5 (¥)y;_o,2};_; and xy;) takes the value one ex-
actly when z; is A (C, T and G, respectively). Given this
encoding, a natural constraint is that at most one of the four
binary variables can be set to one; which is a partition ma-
troid constraint. Let us denote the j-th set of binary dummy
variables and the corresponding outcome variable by xgj
and y;, respectively. As is standard in logistic regression,

) > wir; ; and y; |
{zf;:1<i<dn} ~ Bernoulh(pj), where n is the total
number of categorical explanatory variables (thus, we have
4n binary dummy variables in total). The log-likelihood
function of logistic regression can now be written as I (w) =
>y (0 wiwy ;) — log(1 + exp(d_,; wiz; ;). As men-
tioned above, our objective is to find the set of nucleotide
values that has the most influence on this log-likelihood func-
tion. Thus, the objective function we want to optimize is
the normalized log-likelihood f(S) £ ¢(S) — g(@), where
9(S) = max,,.qupp(w)cs [(w). The weak submodularity of
this objective function was shown in (Elenberg et al., 2016).
In Figure 4, we present the result of applying RESIDUAL
RANDOM GREEDY and the two benchmark algorithms men-
tioned above to this optimization problem. The ranks of
the partition matroids for the donor and acceptor sites in
Figure 4 are 7 and 21, respectively, because this is the num-
ber of nucleotides provided for each one of these kinds of
sites by the MEMset dataset. One can note that STANDARD
GREEDY and RESIDUAL RANDOM GREEDY exhibit com-
parable performance (especially at their termination point),

we assume that for all j, log (

and both consistently outperform RANDOM.

4.4. Black-Box Interpretation

In this set of experiments, we consider the problem of in-
terpreting the predictions of black-box machine learning
algorithms—i.e., explaining the reasons for their predic-
tion. Specifically, we follow the setting of (Elenberg et al.,
2017; Ribeiro et al., 2016). Given an image I and a label
l, the LIME framework (Ribeiro et al., 2016) outputs the
likelihood that the image I has the label [. For example,
the top five labels (in terms of the likelihood) assigned by
the LIME framework to Figure 6(a) are Bernese mountain
dog (with likelihood 0.44), EntleBucher (with likelihood
0.21), Greater Swiss Mountain dog (with likelihood 0.046),
Appenzeller (with likelihood 0.033) and Egyptian cat (with
likelihood 0.0044). Here we ask which parts of the image
best explain the most likely label Bernese mountain dog; and
let us denote this label by /; from now on. To this end, we ap-
plied the SLIC algorithm (Achanta et al., 2012) to the image,
and this algorithm segmented the image into 25 superpixels
(each superpixel is a tile of adjacent pixels of the image).
Our task now is to select 10 superpixels that best explain the
label I;. We use N to denote a ground set consisting of all
the superpixels. For any subset S of AV, let I(.S) denote the
subimage where only superpixels in .S are present, and let
f(S) be the likelihood that the subimage I(.S) has the label
l1. Using this notation, our task can be formulated as the
following maximization problem: maxg < f(S5), where
k = 10. We have applied RESIDUAL RANDOM GREEDY,
STANDARD GREEDY and RANDOM to this optimization
problem; and the superpixels selected by the three algo-
rithms are visualized in Figures 6(b) to 6(d), respectively.
We note that the set function f(S) depends on the black-
box machine learning algorithm, and thus, and may not be
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(a) Splice donor site detection

Figure 4. Normalized log-likelihood vs. the number of nucleotides selected for splice

donor and acceptor sites.

(a) Original image (b) Res. Random Greedy

(c) Standard Greedy

(d) Random

Figure 6. Original image and visualization of the superpixels se-
lected by the three algorithms to explain the label Bernese moun-
tain dog.

weakly submodular, or even monotone, in general. Never-
theless, RESIDUAL RANDOM GREEDY and our benchmark
algorithms still produce interesting results when used to
optimize it.

Recall that the label that we try to explain is Bernese moun-
tain dog. The superpixels selected by RESIDUAL RANDOM
GREEDY (see Figure 6(b)) include all parts of the image
that form the head of a Bernese mountain dog, while the su-
perpixels selected by STANDARD GREEDY (see Figure 6(c))
only cover the nose of the dog and a small portion of its
body. Additionally, they also incorrectly include part of the
cat. The performance of RANDOM is the worst (see Fig-

Number of nucleotides selected

(b) Splice acceptor site detection

Figure 5. Likelihood that the subimage in-
duced by the selected superpixels has the
label vs. number of superpixels selected.

ure 6(d)) as it mostly selects superpixels which are irrelevant
to the dog. We also illustrate in Figure 5 the likelihood that
the subimage induced by the selected superpixels has the
label [; versus the number of superpixels selected. It can be
observed that RESIDUAL RANDOM GREEDY outperforms
STANDARD GREEDY when ten superpixels are selected. It
is also noteworthy to observe that the likelihood achieved by
RANDOM remains almost zero when the number of selected
superpixels varies from 1 to 10, reaching only the value
4.39 x 10~* at its highest point.

5. Conclusion

In this paper we have proved the first non-trivial approxima-
tion ratio for maximizing a y-weakly submodular function
subject to a general matroid constraint. Our result opens
the door for new applications and also suggests that the
greedy algorithm performs well in practice for this problem.
Moreover, we were able to demonstrate experimentally, on
multiple applications, this suggested good behavior of the
greedy algorithm.

The most significant question that we leave open is whether
the greedy algorithm has a good provable approximation
ratio for the above problem. We note that this is not neces-
sarily implied by the good practical behavior of the greedy
algorithm. For example, on the closely related problem
of maximizing a non-monotone submodular function, the
greedy algorithm performs well in practice despite having
an unbounded theoretical approximation ratio (Hassidim &
Singer, 2017). Personally, we tend to believe that the greedy
algorithm does have a good provable approximation ratio for
the problem because we were unable to design any example
on which the approximation ratio of the greedy algorithm
is non-constant (for a constant ). However, proving this
formally is likely to require new ideas, and is thus, a very
interesting area for future work.
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