Adaptive Antithetic Sampling for Variance Reduction

8. Proofs
8.1. Proof of Theorem 1

Theorem 1 [No Free Lunch] Let z € X where X is a finite
set. Let p(z) be a uniform distribution on X. Let g be
any antithetic distribution ¢(z1,x2). Let F be the set of
functions X — R such that Vary,,,)p(a.) [ (21:2)] # 0.
Then
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For sampling without replacement for any f € F
VaTQ(Il,wz) [ﬂf (1'1;2)]} _ 1 (23)
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Proof of Theorem 1. First we show that

Var!Z(ﬂchxz)[ﬂf(ml:?)]
(Vi ) [F(@0)] + Voo [ 2]+
2COV¢1(11,:62)(f($1)7 f(m2)))
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= ivarp(»L)[f(x)] + icovq(a:l,wg)(f(xl)a f(IQ))

In addition
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So
Varq(zl,a;z)[ﬂf(x112)] -1 COV 11,12)(f(x1)a f(x2))
- =1+
Vary (e, )p(as) [ (71:2)] Vary,)[f ()]
Denote |X'| by k, and the elements of X by vy, va, - - , vg.
We only have to show
C
max qu(zl,zg)(f(xl)a f(l‘g)) > _ 1 (24)
fer Vary, ) [f ()] kE—1

which is equivalent to Eq.(23).

Let X = {v1, -+ ,v} be the set of k values x can take.
Denote
q(vi,v1)  q(v1,v2) q(v1,vk)
Q= q(v2,v1)  q(vz,v2) q(v2, vk)
q(vg,v1)  qvg, va2) q(vk, vk)

Because g(x1,x2) is an antithetic distribution for the uni-
form distribution p(z), it must satisfy

Denote

F=(f(r), f(va),-, fop)"

Then because the marginal is uniform p(v;) = -+ =
p(vx) = 1/k

CovVg(ay,20) [f(21), f22)]
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(v1,v2) — p(v1)p(v2))
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where the last step is because

(frRNT =117 f=f f

T
fTQf: TQ—;Q

Therefore for each non-symmetric @, there is a symmetric
Q+QT
2

joint distribution that achieves the same covariance.
For the rest of this proof we assume that () is symmetric
without loss of generality. We will use the notation

def Q . 711T

R is a symmetric matrix

We also have

Vary(z,)p(as) Lf

1
=z Z f(z T2 Z fa1) f(22)
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‘We will use the notation

/def 1 1 T
R k:I_ ﬁll

To briefly summarize our notation we have

CoVy(ay a0 lf (x1), f(z2)] = fTRf
Varp(ac) [f(x)] = fTR/f

Now we try to find for any R, some f such that
FTRf/fT R f is large. In other words, we want to prove

'R fo 1
TR FTRF S Th—1 @

which is equivalent to Eq.(24). As is the condition of the
theorem, we require f € F to satisfy fT R’ f # 0.
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For any such matrix R, 1 must be an eigenvector with
eigenvalue 0. This is because by our definition

1 1 1

Rl=Q1-—11"1=-1--1=0
@ k2 k k
In addition, 1 is also an eigenvector of R’ with eigenvalue
0 because
R1= l1 — l1 =0

=2 L1=
For any f that is not a scalar multiple of 1, fTR'f > 0.
This is because

rank(R’') > rank(I) — rank(117) > k — 1

so 1 (or its scalar multiple) must be the only eigenvector
with 0 as its eigenvalue. In addition f7 R’ f > 0 because it
is a variance.

This also implies that f € F, if and only if fTR'f # 0, if
and only if f is not a scalar multiple of 1.

‘We consider two situations

1) R has at least one positive eigenvalue. Let f be the cor-
responding eigenvector, we have

ffRf >0  fTR'f>0
and certainly f is not a scalar multiple of 1, which means
that Eq.(25) must be true.

2) R does not have any positive eigenvalues. Because (@ is
a matrix with no negative entries, tr(¢)) > 0. In addition
tr(%117) = 1,50

1 1

tr(R) = tr(Q) — tr(—117) > —— (26)
k2 k

We know that R must have a zero eigenvalue, and all other

eigenvalues are non-positive. We arrange them in non-

ascending order

0>X>A32>--- 2> )

It is easy to see that Ay > — ﬁ because otherwise

1

tT(R) = Z)\z < —m(kﬁ — 1) < —%

which violates Eq.(26). Suppose the eigenvector corre-
sponding to Ay is g. Because R is symmetric, we can al-
ways select g orthogonal to the other eigenvectors. In par-
ticular, 71 = 0. The f we will choose is fpaqa = g — 1.
We know that fi,.q € F as it is not a scalar multiple of 1.
For fyaq, we have

fEhaRfrad = (g —1)TR(g — 1)

1 T
9°9
)

T
= >
9 Ry =g

where the above inequalities come from the fact that R1 =
1TR =0, and ng =0.

Similarly we have
Fraal foaa = (9= 1)TR'(g - 1)

= LD - 1) 5l D 1T (g - 1)

1 1 1
= (079 +k) = 5k =199

This means that for this choice of f,q =g — 1

fg;debad > 1

f‘g;dR/fbad - k-1
which proves Eq.(25).

Finally we show that sampling without replacement
achieves equality. For sampling without replacement

0 1

1
E(R—1)

k(k—1)
1 0 1
Q= E(k—1) k(k—1)
k(qu) k(qu) 0
1
= (11T -1
k(k — 1)( )
Then
1 1 1
R=Q-—11"= 11" - —— T
@ k2(k —1) k(k—1)

Note that the set of eigenvalues for 117 is

k,0,--.,0
so the eigenvalues for R must be
o+ ..t
T ok(k—1) 7 k(k—1)

Denote this eigen-decomposition as R = HTAH. As be-
fore let R' = £1 — 75117, Because R’ is a scalar multiple
of R, R’ must have the same eigenvectors as R, with eigen-

values
1 1

R
Denote the eigen-decomposition as R’ = HT A’ H. Choose
any f, we compute g = Hf. If g = (%,0,---,0) (* de-
notes any real number) we will have fTR'f = ¢g"A’g = 0

and our theorem excludes this degenerate situation. When
g # (%,0,---,0), we have

Covq(xl,:cz)(f(xl)v f(z2)> o fTRf
Varp(a)[f(2)] TR
g'Ag 1
B gTNg T k-1
This means that sampling without replacement achieves
our theoretical upper bound on minimax performance. [

0,
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8.2. Proof of Proposition 1

Proposition 1 Let gy (1., ) be a Gaussian-reparameterized
antithetic of order m for p(x). Then for any :

1. For any ¥y € ¥ nbiased, the estimator (10) is unbi-
ased

E(Ie(wl:m) [ﬂf(mlrm)] = ]Ep(:c) [f(m)]

2. If ¥y = I, the Gaussian-reparameterized antithetic is
equivalent to i.i.d sampling.

3. Given a Cholesky decomposition Xy = Ly L}, we can
sample from ¢y (x1.,,) by drawing m ii.d. samples
8= (01, - ,0m)" from N(0, I), and 1., = Lyd.

Proof of Proposition 1. Part 1: Because Xy € X, nbiaseds
each component €; of (€1, -+ ,€n) ~ N(0,%p) is
marginally €; ~ N(0, I;). By assumption, this means that
g(€;) ~ p(z). Combined with Eq. (3 ) thsi finishes the

proof.

Part 2: By construction, if ¥y = I then (€1, - ,€y,) ~
N(0,3y) are i.i.d. Thus g(¢;) are also i.i.d.

Part 3: Given a Cholesky decomposition Yy =

LoLT, we can sample (€1, ,€,,) via (€1, ,€m) =
0 p

Lo(z1,- - ,2my) Where (z1,- -+ ,Zp,) i N(0, Iy). O

8.3. Proof of Theorem 2

Theorem 2 For any € > 0, the map v defined in Eq.(13) is
a surjection from M™*™ into Xy npiased-

Proof of Theorem 2. We first check that 1) is well defined.

For any § € M"™*"™  denote Y = el + 00T ¢ Mmxm,
When ¢ > 0, this must be positive definite as a matrix
in Rmdxmd  Because 3 is positive definite as a matrix
R74xmd each element of diag(¥) as a matrix M must
be a positive definite element of M, and must have an in-
verse. This means that diag(%)~!/2 is also well defined.

Therefore ¥(0) is well defined.

It is obvious that 1)(#) has identity diagonal. It is also pos-
itive semi-definite, so ¥(0) € Xynbiased-

Now we prove that the map is a surjection. Choose any
X e 2:unbiascd’ let

¢(X) = diag(X) V22 diag(x)~1/2

then it is easy to see that ((3) = X. In addition, for any
diagonal matrix D € M whose diagonal elements are
all positive definite elements of M, we have ((DXD7T) =
3. We choose D = «l, where o« € Rwq; I is the iden-
tity matrix of M™*™_ We choose a sufficiently large «

such that a?X — €I is positive definite element of R™@> ™M,
By the cholesky decomposition in R™@*™4  there exists
6 € Rmdxmd guch that 997 = oY — eI. We have, by con-
struction, found a 6 that satisfy ¢)() = X. This is because
el + 007 = a?% = aXa, so ((el +06T) = X.

O
9. Results of IWAE
MNIST Omniglot
noise dimension 5 10 5 10
i.i.d sampling 113.79 98.92 | 142.50 130.65
negative sampling | 113.71 98.89 | 142.35 130.37
Our method 113.61 98.71 | 142.15 130.23

Table 1: Negative Log Likelihood of our methods com-
pared with negative sampling and i.i.d sampling on MNIST
and Omniglot dataset. Our method can achieve a tighter
bound on all settings.
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10. Results of GANs
Variance of Gradient on Mnist Inception Score on Mnist Inception Score on Mnist
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Figure 3: Variance reduction for GAN training. Left: Variance of gradient estimation for different batch sizes. Middle:
Inception score after 50 epochs of training for different mini-batch batch sizes m. Right: Inception score by wall-clock
time. For small batch size m, adaptive antithetic improves marginally compared to baselines; because of its overhead,
the overall wall-clock time is worse; for larger batch size m, adaptive antithetic performs significantly better, the overall
wall-clock time is also better.





