
EXACT ALGORITHMS FOR COMPUTING

PAIRWISE ALIGNMENTS AND 3-MEDIANS FROM

STRUCTURE-ANNOTATED SEQUENCES

(EXTENDED ABSTRACT)

P.A. EVANS

Faculty of Computer Science, University of New Brunswick,

P.O. Box 4400, Fredericton, NB, E3B 5A3, Canada

H.T. WAREHAM

Department of Computer Science, Memorial University of Newfoundland,

St. John's, NF, A1B 3X5, Canada

Given the problem of mutation saturation in ancient molecular sequences, there is

great interest in inferring phylogenies from higher-order types of molecular data

that change more slowly, such as genomic organization and the secondary and

tertiary structures of ribosomal RNA and proteins. In this paper, we de�ne edit

distances based on two representations of RNA secondary structure, arc annota-

tion and hierarchical string annotation, and give algorithms for computing these

distances on pairs of annotated sequences, aligning pairs of annotated sequences,

and computing 3-median annotated sequences from triples of annotated sequences.

The 3-median algorithms can be used as part of a well-known iterative heuristic for

inferring phylogenies. All given algorithms are adapted from algorithms for com-

puting longest common annotated subsequences of pairs of annotated sequences.

1 Introduction

An evolutionary tree (or phylogeny) shows the set of speciation events by which

a set of given species arose from a common ancestor. Molecular sequences are

frequently used as data to infer such trees; however, accumulated sequence

mutations invariably obscure evidence of common ancestry for species that

diverged more than several hundred million years ago. Other types of molecular

data that change more slowly, such as genomic organization and the secondary

and tertiary structures of ribosomal RNA and proteins, are thus of interest in

inferring such \deep" relationships.

Ideally, one would like to infer both the tree and information about

hypothetical ancestors corresponding to internal vertices in that tree from given

data relative to some measure of edit distance that approximates the evolution-

ary divergence between pairs of species. A �rst step in this

direction is to infer internal-vertex information relative to a given tree

(the tree alignment problem).15 Unfortunately, even this problem is known to be

NP -complete (and thus unlikely to be solvable in polynomial time) for simple

Pacific Symposium on Biocomputing 6:559-570 (2001) 



edit distance on sequences when the tree is a star, e.g., all given sequences

are leaves and there is one internal vertex.4 One way of dealing with this is to

break up a tree into stars based on triples of species (3-medians) and optimally

compute the internal-vertex sequences associated with such 3-medians in an

iterative fashion until a (possibly locally) optimal tree is found.14 However,

though 3-medians can be computed in O(n3) time for sequences relative to

simple edit distance,13 computing 3-medians relative to many distances based

on genomic organization is NP -complete (as is, in some cases, computation of

that distance between pairs of species) (see DasGupta et al 1 and references).

In this paper, we de�ne edit distances based on two representations of RNA

secondary structure, arc annotation and hierarchical string annotation, and

give algorithms for computing these distances on pairs of annotated sequences,

aligning pairs of annotated sequences, and computing 3-median annotated

sequences from triples of annotated sequences. The algorithms for computing

these distances are adapted from algorithms given by Evans 2;3 for comput-

ing longest common annotated subsequences of pairs of annotated sequences

as modi�ed relative to classical algorithms for pairwise 9 and three-way 8

sequence alignment and tree alignment.13 Conservation of sequence annota-

tion (and hence structure) is important because sequence function depends on

sequence structure; hence, a structural change with little change in the primary

sequence is more signi�cant than a large change in the primary sequence that

still produces a similar structure. While the edit distance algorithms given

here all use weights, they weight structural information more heavily because

this information cannot be ignored.

Related Work: Sanko� 12 gave an algorithm that simultaneously aligns a

given set of RNA sequences, constructs a phylogeny for those sequences, and

reconstructs optimal secondary structures for both given and reconstructed

sequences in that tree; unfortunately, it is not obvious how this algorithm can

be adapted to work with given secondary-structure assignments.

Various distance measures on RNA secondary structures have been proposed

(see Moulton et al 7 and references); however, though many of these measures

have been used to compare groups of or align pairs of structure-annotated

sequences, none have been applied to infer phylogeny.

Background: An arc-annotated sequence (S; P ) is a sequence S over an alpha-

bet � and an arc-annotation P � f1; : : : ; jSjg2. Such arcs are commonly used

to represent pairwise molecular bonds in DNA, RNA, and protein sequences.

Within such an annotation, two arcs (i1; i2) and (i3; i4) cross if i3 � i2, and

nest if i1 � i3 � i4 � i2. There are many possible restrictions on arc anno-

tation; 3 in this paper, we restrict P such that for all (i1; i2) and (i3; i4) 2 P ,

i1 = i3 if and only if i2 = i4, and i2 6= i3, i.e., each sequence position can be an

Pacific Symposium on Biocomputing 6:559-570 (2001) 



endpoint for at most one arc and is thus linked to at most one other sequence

position. Note that arcs may still cross in such annotations, and hence can

encode pseudoknots, an important RNA con�guration that is seldom handled

by known algorithms (see Lyngs� and Pedersen 6 and references).

An alternative to representing RNA structure as a collection of individ-

ual bonds is to assign labels to speci�c substrings of the sequence that have

a particular structure. Such a representation is used in the European Ribo-

somal RNA Databases.10;11 Since substrings can contain other substrings, the

resulting hierarchy of layers is a substring-annotated sequence representation

that is similar to the rooted ordered tree representation discussed in Zhang

and Sasha,16 though it supports di�erent operations.

All weight-matrices w(x; y) considered in this paper are semimetrics, i.e.,

for all objects x; y in the matrix set, w(x; y) � 0, w(x; y) = 0 if and only if

x = y, and w(x; y) = w(y; x).

2 Arc Annotated Sequences

2.1 Pairwise Alignment with Arc Structure

Given two arc-annotated sequences (S1; P1) and (S2; P2) over an alphabet �

such that jS1j = jS2j = n, a symbol edit weight matrix w(x; y) for

x; y 2 �, a symbol indel penalty ws, and an arc mismatch penalty wa, the

arc-preserving edit distance between (S1; P1) and (S2; P2) is the minimum

cost over all sequences of operations that align (S1; P1) and (S2; P2). The

arc mismatch penalty is incurred when positions i1 and i2 of S1 are aligned

with j1 and j2 of S2, respectively, and either (i1; i2) 2 P1 or (j1; j2) 2 P2 but

not both, i.e., the arc is not preserved.

This edit distance is based on the problem of computing the longest com-

mon arc-preserving subsequence of a given pair of arc-annotated sequences.

This problem is known to be NP -complete in general; 2;3 however, there is

a special-case algorithm 2;3 that runs in O(9kn2) time, where where n is the

sequence length and k is an upper bound on the cutwidth of the arc structure,

i.e., the maximum number of arcs that cross any part of the sequence.

Theorem 2.1 The minimum arc-preserving edit distance between two

arc-annotated sequences can be computed in O(9kn2) time.

Proof: The required algorithm is given in Table 1. This algorithm keeps track

of the optimal subset of preserved arcs by representing all possible subsets of

arcs implicitly in 2k�2k = 4k dynamic-programming tables, and by activating

computations in and merging results computed within these tables as necessary

over the course of the algorithm's execution.

Pacific Symposium on Biocomputing 6:559-570 (2001) 



Table 1: An Algorithm for Computing Arc-Preserving Edit Distance.

1. Partition each of P1 and P2 into k sets, where each set contains

a chain of arcs that do not cross or nest. Number these chains 0

through k � 1.

2. For each of (S1; P1) and (S2; P2), for each subset of the set of

chains Pi, create a copy of sequence Si with the initial end-

points of all arcs in those chains removed and replaced by a space.

The set of sequences thus created is Si, and is generally indexed

by hi, where hi =
P

j2subset 2
j .

3. For each combination of h1 and h2, create a two-dimensional table,

n� n, that uses strings S1[h1] and S2[h2]. Each table position in-

cludes both a value T (h1;h2)[i; j], the minimum edit distance so far,

and a tree M (h1;h2)[i; j] of the initial arc endpoints matched along

the computation paths that produce that value. These matches

between initial endpoints are tentative assignments that will be

checked when the �nal endpoints of the arcs are encountered.

4. Calculate the longest common arc-preserving subsequence of

(S1; P1) and (S2; P2) by traversing the tables in n2 steps: Starting

with cell [1; 1] in table T (0;0), at each step, compute the values of

the corresponding cells in all active tables, where a table is active

if one arc from each of the chains in its associated subsets is being

considered for preservation.

5. return(T (0;0)[n; n])

The computations in step (4) of the algorithm are somewhat complex and

require more explanation. During the table traversal, the trees associated with

cells of these tables are merged and manipulated, requiring that the tree data

structure support the following operations:

merge: is applied to a �nite list of trees and their corresponding edit distance

values, and returns the merge of those trees that have the minimum

corresponding values. When the trees are merged, they are copied and

also simpli�ed from the root down by uniting identical children of the

same parent node.

Pacific Symposium on Biocomputing 6:559-570 (2001) 



test: looks for a given arc assignment pair in the tree; returns true if it is

found, false otherwise.

prune: given a tree and an arc assignment pair, removes all paths that do not

contain the pair, and then removes the pair itself.

trim: given a tree, an arc number k0, and a 
ag value, removes all nodes in

the tree that contain an arc assignment that involves an arc with that

number k0. This operation checks either the i or j values, depending on

the value of the 
ag.

extend: given a tree and an arc assignment pair, add the pair to the tree as

its new root.

The basic recurrence describing the edit distance calculation is

T [i; j] = min(T [i� 1; j] + ws; T [i; j � 1] + ws; (1)

T [i� 1; j � 1] + w(S1[i]; S2[j]))

This calculation is varied when arc endpoints are encountered as follows:

1. When an initial arc endpoint is encountered, both tables relative to the

table being considered that include that arc's chain in its subset are

activated and initialized by copying over needed values into the preceding

row or column in each table.

2. If a pair of initial endpoints is encountered, one from each sequence, the

algorithm attempts to match their arcs. Four tables relative to the table

being considered (essentially a pair of instances of (1) corresponding to

the two initial endpoints) are activated and initialized as in (1), but that

table which has both initial endpoints requires the tree at that position

to be extended by adding that arc assignment pair.

3. When a �nal arc endpoint is encountered, the table without the ini-

tial endpoint is calculated normally. The other table, where the initial

endpoint was allowed to align with a non-space symbol, is calculated

with an arc penalty if the �nal endpoint is also aligned with a non-space

symbol, i.e., the third term of the recurrence becomes T [i� 1; j � 1] +

w(S1[i]; S2[j] + wa. These two tables are then merged to �nd the min-

imum, and their trees are trimmed to remove all assignments that use

that arc.

Pacific Symposium on Biocomputing 6:559-570 (2001) 



4. If a pair of �nal endpoints is encountered, the algorithm uses test to

determine if the corresponding pair of initial endpoints are in the tree.

If they are, and the minimum value is produced by matching the

�nal endpoints (term T [i � 1; j � 1] + w(S1[i]; S2[j]), those endpoints

are matched and the tree is pruned. Otherwise, as the endpoints are not

in the tree or they do not produce the minimum value, the tables are

computed by adding the appropriate arc penalties to this term, i.e., if

the table allowed both initial endpoints to match a non-space symbol,

2wa is added; else, if it allowed only one initial endpoint to match a non-

space symbol, wa is added. Finally, the appropriate trees and tables are

merged as in (3).

Each of the tree operations except extend runs in time proportional to the size

of the tree, and extend runs in constant time. The algorithm initializes and

subsequently modi�es at most 4kn2 table entries, where the size of the tree

associated with each cell is bounded by the number of active arcs in that cell's

table. For any of the n2 table positions, the trees at that position (over all

tables) have a total of

kX
r=0

kX
s=0

�
k

r

��
k

s

��
r + s

s

�
� 9k (2)

associated endpoint entries;2;3 hence, the algorithm as a whole runs in O(9kn2)

time.

Corollary 2.2 An optimal alignment of two arc-annotated sequences can be

computed in O(9kn2) time.

Proof: The distance computation in Theorem 2.1 can be modi�ed to include

pointers for each table cell that point to the cell whose value was used to

generate the minimum distance at that point. Cells that include the endpoints

of arcs also need to note if the arc was used, and if a pair of arcs were matched

then they should also indicate which path in the arc assignment tree was used.

An optimal alignment can then be found by tracing back from T (0;0)[n; n]

through these pointers. If a cell points to an adjacent (but nondiagonal) cell

in the same table, a space is added to the alignment. If a cell points to a cell

at the same position in a di�erent table, no space is added. If an arc match is

encountered, then the path through the tree (to the matched initial endpoints)

is used to determine the path through the intermediate cells. This requires the

comparison of assignment trees, which can be done at each intermediate cell

in O(9k) time. Since this comparison operation will always make progress in

determining an alignment position, it needs to be done at most 2n times. Thus

Pacific Symposium on Biocomputing 6:559-570 (2001) 



the alignment can be extracted in O(9kn) time, and the algorithm as a whole

runs in O(9kn2) time.

2.2 Three Sequence Median with Arc Structure

Theorem 2.3 The minimum arc-preserving 3-median distance of a triple of

arc-annotated sequences can be computed in O(9kn3) time.

Proof: The algorithm in Theorem 2.1 can be modi�ed as follows:

� All three sequences and arcs are processed in the initial steps, and are

indexed by i, j, and g.

� The edit distance is computed using 8k three-dimensional tables of size

n�n�n, in which each cell stores the 3-median edit distance. Moreover,

as each tree entry can now be an assignment between a pair of arcs or

between three arcs, each cell will now have three trees, each maintaining

matching pairs in one pair of the given sequences.

� The edit distance recurrence is

T [i; j; g] = min
x2�

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

T [i; j; g � 1] + ws;

T [i; j � 1; g] + ws;

T [i� 1; j; g] + ws;

T [i; j � 1; g � 1]+

min(w(x; S2[j]) + w(x; S3[g]) + ws; 2ws);

T [i� 1; j; g � 1]+

min(w(x; S1[i]) + w(x; S3[g]) + ws; 2ws);

T [i� 1; j � 1; g]+

min(w(x; S1[i]) + w(x; S2[j]) + ws; 2ws);

T [i� 1; j � 1; g � 1] + w(x; S1[i])+

w(x; S2[j]) + w(x; S3[g])

(3)

� The calculation of values for �nal endpoints adds wa for each time that

an arc mismatches, and 2wa if all three �nal endpoints that are being

matched are from non-matching arcs. All three trees are managed in the

same way as before.

As trees with an upper bound of
�
r+s
s

�
will occur at most

�
k
r

��
k
s

�
2k times for

each of the three pairwise sequence comparisons, the number of tree entries

associated with any table cell is

3 �

kX
r=0

kX
s=0

�
k

r

��
k

s

�
2k
�
r + s

s

�
� 3 � 18k (4)

Pacific Symposium on Biocomputing 6:559-570 (2001) 



which means that the algorithm as a whole runs in O(18kn3) time.

This algorithm can be modi�ed as in the previous section to determine the

arc-annotated median sequence. Trees must now be compared in sets of three

to determine the paths for locations between the initial and �nal endpoints of

matched arcs. The edit distance calculation phase must also store the symbol

choice at each position in addition to the pointer to the previous cell. The

median sequence itself can then be extracted in the same manner as for the

pairwise alignment, and any arcs that were matched become part of the median

sequence. If arcs are mismatched, with the accompanying penalty as part of

the minimum calculation, then one of the arcs becomes part of the median

sequence.

Corollary 2.4 An optimal arc-preserving median sequence of three

arc-annotated sequences can be computed in O(18kn3) time.

3 Substring-Annotated Sequences

3.1 Pairwise Alignment with Substring Structure

An edit distance between two substring-annotated sequences can be de�ned

recursively starting from the top-level sequences. Each such sequence can be

considered as a sequence of substrings; comparisons are thus also done between

substrings instead of just between symbols. To �nd the edit distance between

the top level sequences, the distances between their children are found, and

then used in the distance computation. Deletion of subtrees produces a penalty

proportional to the number of leaves (length of the substring, li). Since the

sequences may have di�erent numbers of levels, any edit distance or alignment

algorithm should allow levels to be bypassed (with penalties for the removal

of the matched subtree's siblings).

Given two substring-hierarchy annotated sequences S1 and S2 such that

the maximum sequence length is n and the maximum number of substrings

per sequence is m, we compute the substring-preserving edit distance between

S1 and S2 using an initial weight matrix w(x; y) over � and a space penalty

ws. Since substrings may be labeled, let w(c1; c2) be the penalties for chang-

ing the type of substring from label c1 to label c2. The recursive alignment

computation can be eÆciently simulated using a dynamically calculated table

of substring edit weights under standard pairwise edit distance de computed

relative to the following recurrence:

T [i; j] = min(T [i; j � 1] + ws � lj ; T [i� 1; j] + ws � li; (5)

T [i� 1; j � 1] + w(S1[i]; S2[j]))

Pacific Symposium on Biocomputing 6:559-570 (2001) 



Table 2: An Algorithm for Computing Substring-Preserving Edit Distance.

1. Build the substring trees for both sequences.

2. Number the nodes in each tree in postorder, starting with j�j;
let kA (kB) be the root number in sequence A (B) and li be the

number of leaves (symbols) in the subtree rooted at node i.

3. Extract the sequence of child indices indseqAi (indseqBi) for each

node i in the substring tree for A (B).

4. Build a (kA +1)� (kB +1) weight table, and initialize submatrix

[0::j�j�1]� [0::j�j�1] of this table with the symbol edit weights.

5. for i = 0 to kA
for j = 0 to kB

d = de(indSeqAi; indSeqBj);

w(i; j) = min

8<
:

d+ w(ci; cj);

mint2indSeqAi
w(t; j) + ws � (li � lt);

mint2indSeqBj
w(i; t) + ws � (lj � lt)

6. return(w(kA; kB))

This weight table is an extension of the original table of symbol edit weights

that includes weights for matching a substring to a single symbol.

Theorem 3.1 The minimum substring-preserving edit distance between two

substring-annotated strings can be computed in O((n +m)2) time.

Proof: The required algorithm is given in Table 2. As each pair of substrings

or symbol instances is compared exactly once and each substring comparison

result is used three times, the algorithm runs in O((n +m)2) time.

This edit-distance computation can be converted to an alignment algorithm

with the addition of cell pointers and a modi�ed pointer traceback procedure.

Traceback needs to be done for each table used to compute the edit distance

of two index sequences; moreover, traceback must be done as soon as the

edit distance for those index sequences has been computed. The alignment

is then stored with the corresponding entry in the edit weight table. After

the computation of the overall edit distance is completed, the alignment is

Pacific Symposium on Biocomputing 6:559-570 (2001) 



extracted from the weight table by recursively substituting for the node indices

in the alignment.

Corollary 3.2 An optimal substring-preserving alignment of two

substring-annotated sequences can be computed in O((n +m)2) time.

Proof: The dynamic programming tables are computed in O((n+m)2) time,

traceback requires O(n +m) time, and the alignment can be extracted from

the weight table in O(n + m) time; hence, the algorithm as a whole runs in

O((n +m)2) time.

3.2 Three Sequence Median with Substring Structure

Once again, the pairwise alignment algorithm will be modi�ed to create a

3-median sequence algorithm. No algorithm can eÆciently consider all possible

symbols at each position because the alphabet has been extended to be a set

of hierarchical substrings. Thus the previously calculated substring medians

must be used to construct the sequence median. As the substrings can be

aligned with a space, the alignment score of pairs of substrings also needs to

be stored. The substring edit distance de is now calculated relative to triples

of substrings using the following recurrence:

T [i; j; g] = min
x2�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

T [i; j; g� 1] + ws � (lg);
T [i; j � 1; g] + ws � (lj);
T [i� 1; j; g] + ws � (li);
T [i; j � 1; g � 1] + w(S2[j]; S3[g]);

T [i; j � 1; g � 1] + ws � (lj + lg);

T [i� 1; j; g � 1] + w(S1[i]; S3[g]);

T [i� 1; j; g � 1] + ws � (li + lg);

T [i� 1; j � 1; g] + w(S1[i]; S2[j]);

T [i� 1; j � 1; g] + ws � (li + lj);

T [i� 1; j � 1; g � 1] + w(S1[i]; S2[j]; S3[g])

(6)

Note that w(S1[i]; S2[j]) is a two-string weight created during the pairwise

substring comparisons, and w(S1[i]; S2[j]; S3[g]) is the three-string weight com-

puted in the main part of the algorithm.

Theorem 3.3 The minimum substring-preserving 3-median distance for a triple

of substring-annotated sequences can be computed in O((n+m)3) time.

Proof: The required algorithm is given in Table 3. Each of (n+m)3 distances

between substrings or symbol instances will be calculated once, and used 7

times, so this algorithm runs in O((n +m)3) time.

Pacific Symposium on Biocomputing 6:559-570 (2001) 



If the medians of substring triples are stored with the edit distance entries in

the dynamic weight table, they can be extracted recursively in the same way

as the alignments are extracted in Corollary 3.2.

Corollary 3.4 An optimal substring-preserving median sequence of three

substring-annotated sequences can be computed in O((n +m)3) time.

4 Discussion

Future research should both test the algorithms given here on real data and

consider algorithms for the generalized n-median and tree alignment problems

relative to the annotations examined here. Though it seems reasonable to

conjecture that these problems will be NP -complete in general, there may yet

be algorithms that are usable in practice under restrictions such as bounded

cutwidth. Other types of sequence annotation should also be examined. In

terms of representation power and computational eÆciency, arc annotation is

general but expensive and hierarchical substring annotation is restricted but

cheap. Perhaps intermediate types of annotation, e.g., joining substrings with

arcs,3 may strike a better balance of power and eÆciency.

References

1. B. DasGupta et al in RECOMB'97 (ACM Press, New York, 1997).

2. P.A. Evans in CPM 1999 (Springer-Verlag, Berlin, 1999).

3. P.A. Evans, Algorithms and Complexity for Annotated Sequence

Analysis. Ph.D. thesis (University of Victoria, 1999).

4. C. de la Higuera and F. Casacuberta, Theor. Comp. Sci., 230, 39 (2000).

5. T. Jiang et al in CPM 2000 (Springer-Verlag, Berlin, 2000).

6. R.B. Lyngs� and C.N.S. Pedersen in RECOMB'2000 (ACM Press, New

York, 2000).

7. V. Moulton et al, J. Comp. Biol., 7(1/2), 277 (2000).

8. M. Murata et al, PNAS USA, 82, 3073 (1985).

9. S. Needleman and C. Wunsch, J. Mol. Biol., 48, 443 (1970).

10. Y. Van de Peer et al, Nucleic Acids Res., 28(1), 175 (2000).

11. P. De Rijk et al, Nucleic Acids Res., 28(1), 177 (2000).

12. D. Sanko�, SIAM J. Appl. Math., 45(5), 810 (1985).

13. D. Sanko� and R.J. Cedergren in Time Warps, String Edits, and

Macromolecules, ed. D. Sanko� and J.B. Kruskal (Addison-Wesley,

Reading, MA, 1983).

14. D. Sanko� et al, J. Mol. Evol., 7, 133 (1976).

15. L. Wang and T. Jiang, J. Comp. Biol., 1(4), 337 (1994).

16. K. Zhang and D. Shasha. SIAM J. Comp., 18, 1245 (1989).

Pacific Symposium on Biocomputing 6:559-570 (2001) 



Table 3: An Algorithm for Computing Substring-Preserving 3-Median Edit Distance.

1. Build the substring trees for all three sequences.

2. Number the nodes in each tree in postorder, starting with j�j; let
kA (kB) [kC ] be the root number in sequence A (B) [C] and li be

the number of leaves (symbols) in the subtree rooted at node i.

3. Extract the sequence of child indices indseqAi (indseqBi)

[indseqCi] for each node i in the substring tree for A (B) [C].

4. Run the pairwise substring-preserving edit distance algorithm for

each of the sequence-pairs (A;B), (A;C) and (B;C).

5. Build a (kA +1)� (kB +1)� (kC +1) weight table, and initialize

the [0::j�j � 1]� [0::j�j � 1] � [0::j�j � 1] submatrix of this table

with the symbol edit weights.

6. for i = 0 to kA
for j = 0 to kB
for g = 0 to kC
d = de(indSeqAi; indSeqBj ; indSeqCg);

w(i; j; g) = minc2C

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

d+ w(c; ci) + w(c; cj) + w(c; cg);

mint2indSeqAi

w(t; j; g) + ws � (li � lt);

mint2indSeqBj

w(i; t; g) + ws � (lj � lt);

mint2indSeqCg

w(i; j; t) + ws � (lg � lt);

mint12indSeqAi;t22indSeqBj

w(t1; t2; g) + ws�
((li � lt1) + (lj � lt2));

mint12indSeqAi;t22indSeqCg

w(t1; j; t2) + ws�
((li � lt1) + (lg � lt2));

mint12indSeqBj ;t22indSeqCg

w(i; t1; t2) + ws�
((lj � lt1) + (lg � lt2))

7. return(w(k1; k2; k3))

Pacific Symposium on Biocomputing 6:559-570 (2001) 


