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Environmental exposure is a key factor of understanding health and diseases. Beyond genetic propen-
sities, many disorders are, in part, caused by human interaction with harmful substances in the water,
the soil, or the air. Limited data is available on a disease or substance basis. However, we compile a
global repository from literature surveys matching environmental chemical substances exposure with
human disorders. We build a bipartite network linking 60 substances to over 150 disease phenotypes.
We quantitatively and qualitatively analyze the network and its projections as simple networks. We
identify mercury, lead and cadmium as associated with the largest number of disorders. Symmetri-
cally, we show that breast cancer, harm to the fetus and non-Hodgkin’s lymphoma are associated
with the most environmental chemicals. We conduct statistical analysis of how vertices with sim-
ilar characteristics form the network interactions. This dyadicity and heterophilicity measures the
tendencies of vertices with similar properties to either connect to one-another. We study the dyadic
distribution of the substance classes in the networks show that, for instance, tobacco smoke com-
pounds, parabens and heavy metals tend to be connected, which hint at common disease causing
factors, whereas fungicides and phytoestrogens do not. We build an exposure network at the systems
level. The information gathered in this study is meant to be complementary to the genome and help
us understand complex diseases, their commonalities, their causes, and how to prevent and treat
them.

Keywords: Exposure; Complex Diseases; Substances; Bipartite Network; Dyadicity; Heterophilicity;
Human Phenotype Network.

1. Introduction

The environment in which we live undeniably affects our health. Prolonged exposure to chem-
ical substances present in water, soil or in the air directly impact our food sources, and are
passed along to humans through ingestion or inhalation where they are the cause of many
diseases and severe health issues.! Locally limited studies of specific chemical compounds are
becoming common, linking tobacco smoke to cardiovascular and respiratory diseases, and as-
bestos dust to several types of cancer. However, in the same way these complex diseases are
believed to be the result of multiple non-linear genetic interactions, one can speculate that
they can also be caused by long-term exposure to multiple environmental factors.

Human phenotypes, including physical traits, diseases and behaviors, have been success-
fully linked through their shared biology and thoroughly studied using mathematical and
statistical analyses of the networks they form.?? Indeed, networks offer a comprehensive ar-
ray of solid analytical tools while at the same time offering an intuitive representation of
interactions.*

The exposomed®

encompasses all human environmental exposures and complements the
genome for predicting disorders in “exposed” people. Starting with a systems biology approach,



combining exposome and network models,® we propose to integrate the global interactions
between environmental exposure and human phenotypes and diseases. This bird’s eye view
of the associations between human diseases and chemical compounds will help us establish
relationships at the system’s level — across disorder classes and our environment. While there
are many resources available to map diseases to the human genome, such as the National
Human Genome Research Institute GWAS Catalog” or the National Center for Biotechnology
Information’s database of Genotypes and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.
gov/gap), there is no equivalent initiative to aggregate and freely offer known environmental
exposure data. Using the Centers for Disease Control and Prevention’s (CDC) National Report
on Human Exposure to Environmental Chemicals, a subset of the whole exposome, we have
established causal interaction data through a thorough survey of the specialized literature. We
use the resulting data to build the human phenotype network (HPN) based on causal effects of
environmental chemical exposure. Notable predecessors to this study were limited to a single
disease,® occupational exposure and diseases,” infancy,!® or focused on health disparities in
different populations.!!

We analyze the networks both in quantitative and qualitative terms; identifying most
represented diseases, chemical substances, and most significant interactions among them and
offering clinical and biomedical interpretation. Beyond the substances themselves, we statisti-
cally determine the chemical families or groups most responsible for diseases and how disorders
and chemicals tend to cluster with those caused by some groups, but not others.

2. Methods

This section describes the steps necessary to compile the exposure data, starting from a list of
environmental chemical substances and relating them to diseases and phenotypes. Then, we
detail the method used to build the relationship network that will allow us to run a complete
array of quantitative and qualitative analyses on the substance-to-disease relationship. Finally,
we formally describe a method to study the global connection propensities of chemicals and
disorders with respect to the associated substance classification group.

2.1. Exposure Data

Environmental exposure data, and information on the diseases that they cause have not, to
the best of our knowledge, been aggregated in publicly accessible sources. To establish causal
effects at a global level, we use the CDC’s Fourth National Report on Human Exposure
to Environmental Chemicals (http://www.cdc.gov/exposurereport/), including its subse-
quent updated tables, and the NHGRI GWAS Catalog, accessed on 05/06/2014. The former
contains chemical substances, classified in families or groups that have been surveyed in the
American population. We extract 60 chemicals in 11 groups, found in the environment, that
form a plausible list of substances potentially harmful to our health. Table 1 recapitulates the
groups and number of chemical substances in each.

For each chemical substance we perform a meticulous PubMed and Google Scholar man-
ual literature survey and compile a list of the diseases and traits that it has been shown to
(negatively) impact. Causal association between a chemical substance and a disease is based



Table 1. Substance Groups and the number of substances in each group.

Substance Classification Groups Number of Substances
Disinfection By-Product

Environmental Phenols

Fungicides and Metalolites

Heavy Metals

Organochlorine Pesticides and Metabolites
Parabens

Perchlorate and Other Anions

Phytoestrogens and Metabolites

Polycyclic Aromatic Hydrocarbon Metabolites
Tobacco Smoke

Volatile Organic Compounds

— [
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on compelling evidence found in the literature and confirmed in multiple studies, limiting un-
certain associations to a minimum. We subsequently use the phenotype list from the GWAS
catalog and the International Classification of Diseases Ninth Revision (ICD-9) codes to clas-
sify all traits and identify redundancies. Our survey inventories 548 well-established causal
effects between these 60 substances and 151 human phenotypic traits and disorders. We how-
ever note that the data collected might contain a bias towards phenotypes and exposures that
are more heavily studied.

2.2. Building the Human Phenotype Network on Exrposure Data

The expansion of systems biology has given rise to a trend toward studying disease from a
global perspective, beyond the silos of traditional medicine. Graphs, or network, are commonly
used to study the interactions between phenotype and genotype. In the Human Disease Net-
work (HDN),? or its extension, the Human Phenotype Network,? nodes representing diseases
and phenotypes are linked by edges that represent various connections between disorders.
These connections can be established by identifying shared causal genes,? genetic variants
(SNPs),!? linkage-disequilibrium SNP clusters,? biological pathways,? or clinical symptoms.
The underlying connections of these networks contribute to the understanding of the basis of
disorders, which in turn lead to a better understanding of human disease.

Using the data collected during the substance-to-phenotype survey, we build a bipartite
network.? A bipartite network is a mathematical graph composed of two distinct sets of vertices
— in our case, diseases and chemical substances. Vertices can only connect across sets (Figure
1b), never within. In other words, a phenotype can only connect to a substance and vice-versa.
Bipartite networks can be projected onto the space of either vertex set (Figure la,c). In our
study, we project the bipartite network onto the phenotype space, linking diseases via causal
substances, and onto the substances space, which links chemicals causing common disorders.
The actual networks resulting from our study and their statistical properties are presented in
Section 3.

Furthermore, each node in the network is annotated with the substance classification
group(s) to which it belongs. In the case of chemicals, the annotation is straight forward, as
each substance belongs to exactly one class. For diseases, we identify all groups that contain
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Fig. 1. Schematic representation of a Bipartite Network (b) and its projection in the space of either vertex
set (a) and (c).

at least one causal substance. Additionally, we identify the “majority class” which represents
the class most represented within the list of associated chemicals. The majority class is only
used for coloring the network nodes in Section 3.

Assessing the Distribution of Vertex Characteristics within a Network

Beyond the standard properties, most network analyses focus on how the similar vertices are
connected across the network. This type of study is very common in social sciences, where the
detection of close-knit communities is a pivotal aspect of the analysis.!'® However, modules or
communities detection solely depends on the network structure. Alternatively, an important
quantitative tool available to graph analysis is the distribution of the vertices’ characteristics
across the network and how nodes with similar properties tend to link to one another. Park et
al.'% formally define the tendency of vertices with similar characteristics or, on the contrary,
vertices with dissimilar properties to connect as the dyadicity D and the heterophilicity H
respectively.

The dyadicity and heterophilicity of a given vertex characteristic in a network relies on
the binary nature of the property of interest. Either a vertex does have the studied property,
in which case it is flagged accordingly (usually with a binary value 1), or a vertex does not
have the given property (flagged with a 0). We define N as the total number of vertices in the
network, ny as the number of nodes with the property and ng as the number of vertices without,
therefore N = nj; +ng. Let M be the number of edges in the network. Each edge falls into one
of three dyads: connecting two vertices with the given property (1 — 1), two vertices without
(0—0), or one of each (1—0). We define my; as the number of (1—1) edges, mio as the number
of (1—0) edges, and mgo the number of (0—0) edges. Therefore, M = mq1 +m1g+moo. Without
losing information, we can use only mi; and my to analyze the dyadicity and heterophilicity
of the network’s vertices properties. The mathematical formulation of D and H can be found
in Fig. 2, where my; and mo are the expected values if the characteristic was distributed
randomly among the vertices, and p is the average probability that two nodes are connected.

If D > 1, the property is called dyadic. It is called anti-dyadic otherwise. Intuitively, if a
property is dyadic, nodes with that propriety tend to connect to one another. If anti-dyadic,
then vertices without that property tend to connect. Similarly, if H > 1 the property is called
heterophilic. Otherwise, it is heterophobic. Fig. 2(b) is a schematic representation of the (D; H)
coordinate space of properties. A property is heterophilic if nodes with and without the given
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Fig. 2. Dyadicity and Heterophilicity. (a) mathematical definition and (b) schematic representation.

property tend to connect and heterophobic otherwise. The fact that a vertex characteristic can
be dyadic and heterophilic (or anti-dyadic and heterophobic) at the same time is somewhat
counter-intuitive. This is because D and H are defined as a statistically significant deviation
of myy (myp) from its expected value my; (or myo respectively).

The binary properties can be virtually any attribute of the vertex to which the value is
Boolean (either “yes” or “no”). In our study, we focus on the tendencies of nodes (phenotype
or substance) associated with or within a certain substance class to connect to other members
of that class. Results of this study are shown in the next section.

3. Results

In this section we present the bipartite network and both its projections, including a quanti-
tative overview of the networks and degree distributions. Furthermore, we look into the most
connected (hubs) in each network and into the strongest interactions within the projections to
identify the highest risk factors and phenotype(s) at risk as well as the strongest connections
between phenotypes.

3.1. Bipartite Network and Projections: Quantitative Study

The bipartite network is made of two distinct sets of vertices, the chemical substances and the
diseases, resulting from the methods described in Section 2. This graph, represented in Fig.
3, is composed of 60 chemical substances (top row, red vertices) responsible for 151 human
disorders (bottom row, light blue vertices), linked by 548 “causal-effect” edges. The node sizes
are proportional to the vertex’s degree, i.e. the number of connections to the opposite set of
vertices.

The “mono-partite” networks resulting from the projections in either vertex space are
pictured in Fig. 4. Nodes are color coded according to their (majority) substance class. The
phenotype network has 151 nodes and is very densely connected (average degree of 40+ ), where
each edge signifies that the two endpoint diseases are associated with one or more common
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Fig. 3. Bipartite Phenotype-Substances Network. Top row, red vertices: environmental chemical substances.
Bottom row, blue vertices: human phenotypes and diseases. Vertex size is proportional to the degree.

substances. The 60 substances represented in the chemicals network are each connected to
about 20 other substances through shared disease(s) to which they have been associated.

3.2. Qualitative Observations and Biomedical Implications

In this section, we report qualitative observations and draw conclusions from detailed ob-
servation of the bipartite network and its projections. In the bipartite network in Figure 3,
the nodes are ranked by degree or number of edges to the opposite set. For a phenotype (in
blue), the edges represent the number of substances that are associated with the disease. For
the substances (in red), vertices’ sizes represent the number of phenotypes to which they are
associated. Mercury is reported to be associated with the most phenotypes, followed by lead
and cadmium. Therefore, we observe that heavy metals are the most prominent exposure class
in our environment. Breast cancer is linked to the most substances, followed by lymphoma
and lung cancer. Table 2 recapitulates these findings. On the right-hand side, we see the top 5
most connected nodes in each set of the bipartite network, in decreasing order of degree. The
left-hand side shows the top 5 most connected vertices in either projection.

In the projection of substances, an edge represents a common phenotype associated with
two different substances. DDT/DDE causes the most common diseases shared among environ-
mental chemicals, closely followed by cadmium, lead, arsenic, and mercury. In the substance
projection network, the highest edge weight is between lead and mercury, meaning that the
two substances linked to many of the same diseases or share the most edges. Note that the
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(a) projection of the bipartite network onto the disease/trait space. Node sizes are proportionate to the number
of substances associated. Edges are weighted by the number of shared substances. (b) projection of the bipartite
network on the substances space. Node sizes are proportionate to the number of diseases associated. Edges
are weighted as the number of shared diseases.



Table 2. Top 5 Most Connected Vertices in both projections and in each set of the bipartite network.
The number in parenthesis represents the degree of the vertex.

Projections Bipartite
Diseases Substances Diseases Substances

fetotoxicity (112) DDT/DDE (48) breast cancer (15) mercury (42)
congenital cadmium (46) fetotoxicity (14) lead (41)
malformations (104)
peripheral neuropathy lead (45) non-Hodgkin’s cadmium (39)
(103) lymphoma (14)
immune  suppression arsenic (45) lung cancer (13) arsenic (35)
(100)
lung cancer, anemia, mercury (42) abnormal sperm, thy- DDT/DDE (31)
delayed growth (99) roid disease, liver can-

cer, congenital malfor-

mations (12)

two substances are among the largest nodes when ranked by degree. Other significant edges
are those between lead and cadmium and cadmium and mercury. The edges with the highest
weights link substances that are related beyond just the similar phenotypes they might cause.
Lead and mercury residue from old mines are found together in the form of household dust.!”
Mushrooms and vegetables can contain lead and cadmium, poisoning consumers.'®1? Cad-
mium and mercury are found in soil near mercury mines and also in utility batteries.?? These
substances have a tendency to be present together even beyond the above examples, like in
automobile emissions and soil. The copresence of the above substances and heavy metals in
general may contribute to their similar health effects and should be noted when considering
their high edge weight. The node size can be ranked not just by degree, but also by the number
of phenotypes a substance causes. When this ranking is done, the largest nodes are mercury,
lead, cadmium, arsenic, and DDT/DDE, causing 42, 41, 39, 35, and 31 phenotypes, respec-
tively. This seems logical, because if a substance is associated with a large number of diseases,
there is a high probability other substances in the network share these diseases. Out of the
substances, lead, cadmium, mercury, arsenic, and DDT/DDE seem to have the most signifi-
cant health effects. The occurrence of some highly connected substances may be explained by
their co-presence in the world.

The phenotypes in the bipartite network that are associated with the most substances are
breast cancer, fetotoxicity, non-Hodgkin’s lymphoma, lung cancer, abnormal sperm, thyroid
disease, liver cancer, congenital malformations, cardiovascular disease, delayed growth, and
brain cancer. Breast cancer is linked to a combination of 15 substances; fetotoxicity and non-
Hodgkin’s lymphoma by 14; lung cancer by 13; abnormal sperm, thyroid disease, liver cancer,
conggriftahlmalferanstiemstbshé it aonbest diatiasiad aodiseationdalititd grelythetarstibinia caicar
W¥hkh the phenotype projection nodes are ranked by degree, the largest nodes are fetotoxicity,
congenital malformations, peripheral neuropathy, immune suppression, lung cancer, anemia,
and delayed growth. Ranking by degree indicates that these phenotypes are linked to the most
shared substances with other phenotypes. Breast cancer, non-Hodgkin’s lymphoma, abnormal
sperm, thyroid disease, liver cancer, cardiovascular disease and brain cancer are no longer
among the largest nodes when degree ranking is utilized. These phenotypes, though common



Table 3. Strongest connections among in pairs of Environmental Chemical Substances causing the most com-
mon diseases, and among pairs of Diseases and the number of substances they have in common.

Substance pair #shared diseases Disease pair #shared substances
lead — mercury 28 fetotoxicity — congenital malformations 9
lead — cadmium 23 fetotoxicity — delayed growth 8
mercury — cadmium 22 breast cances — non-Hodgkin’s limphoma 8
arsenic — cadmium 17 lung cancer — cardiovascular diseases 7
arsenic — mercury 17 fetotoxicity — renal cancer 7

among the network, must be caused by substances that do not cause as many phenotypes
as other substances. Phenotypes prevalent in degree ranking that are not among the most
common phenotypes in the network are peripheral neuropathy, immune suppression, and ane-
mia. These phenotypes are not related to the most substances but the substances that are
responsible for them also cause many other phenotypes. It may be suspected that fetotoxicity,
congenital malformations, lung cancer, and delayed growth are linked to the most prevalent
substances since the phenotypes exhibit strong connections between many substances and
phenotypes. Indeed, these phenotypes are caused by at least four out of the five most preva-
lent substances. Literature searches were done between each of the top edge weight phenotype
pairings in an attempt to identify a genetic link. When the Klf4 gene was deleted, mice showed
growth retardation and death before or just after birth.?! Thus, the relationship between Feto-
toxicity and Delayed Growth via exposure to substances may supplement an existing genetic
component. Liver cancer and non-Hodgkin’s lymphoma also seemed to be associated with a
shared gene: p53, a known cancer-causing gene. Though no specific genetic connection has been
identified between the two phenotypes, both have been independently linked to p53.2%2% Again,
this may partially explain the higher edge weight and indicate both genetic and environmental
relationships between the two phenotypes. Thirdly, there is a documented interaction between
cardiovascular disease and lung cancer outside of environmental exposure. A disruption in the
SMAD proteins has been linked to both cardiovascular disease and lung cancer.?* In addition
to literature searches, we study overlap in the genome based HPN®!2 for phenotype connec-
tions. Unfortunately, there were no phenotypes observed in the original HPN similar or relating
to fetotoxicity or congenital malformations, so the only pairings that could be searched were
non-Hodgkin’s lymphoma and liver cancer, breast cancer and non-Hodgkin’s lymphoma, and
lung cancer and cardiovascular disease. Only one shared edge, with a weight of thirty, was
found between lung cancer and cardiovascular disease in the GWAS pathway analysis. The
genetic and environmental relationships between fetotoxicity and delayed growth, liver cancer
and non-Hodgkin’s lymphoma, and lung cancer and cardiovascular disease may partially ex-
plain their higher edge weights. Other phenotype pairings with significant edges that yielded
no genetic connections may be related only by environmental exposure or the genetics of the
phenotype or interacting phenotypes have not been fully studied.

3.3. Distribution of Substance Classes with the Projection Networks

The dyadicity and heterophilicity analysis described in Section 2 is used to study the trends
within both projection networks of substance class correlations. Each substance class (found



in Table 1) is considered a binary attribute of the vertices. In the substances projection, a
vertex is associated with a single chemical class. In the phenotype network, nodes may be
associated with more than one substance class, the maximum being the number of substances
themselves. We report the numerical and plotted results of the dyadicity study for the pro-
jection networks in Figure 5.D and H are considered significant when their respective p-value
is < 0.05 (bold fonts in the table). We obtain significance measurements by performing 1,000
random permutation tests on the distribution of each characteristic within the network. On
the right-hand side, for each projection separately, we plot all substances’ coordinates in the
(D; H) space to facilitate the interpretation of the results in a qualitative manner.

projection: phenotype substance 5 :

Substance D H D H 18 Z\?gncqyacrl.lcc
Classification 6 Disinfecton gy Eviormmenta Hydrocarbon
Disinfection By- | 2.486 1.373 | 0.526  0.756 14 Products , Phenols o e
Products Z12 Volatile Organic o 1 orate and ’
Enviornmental 3.037 1.377 0 0.815 S ComPOUNGS o " G ther Anions Herbicides and
Phenols §' ) et =" *onytoestogens o“te:“
Fungicides and | 3.398 1.234 0 1.649 %Z: Metabolites . abens et s ungicides and
Metabolites <
Heavy Metals | 1.789 0.431 | 2.225 1.024 ” Heay Metals
Herbicides and | 3.022 1.161 | 2.630 1.406 ‘
Metabolites ° 05 1 15 2 25 3 35 4
Organochlorine | 2.23 0.955 | 2.152  0.991 dyadicity
Pesticides and 2 ungicides and
Metabolites 18 1 Metabolites
Parabens 1.942  0.745 | 2.192 0.611 16 | Herbicides and
Perchlorate and 2574 1263 0877 0661 14 Polycyclic Organochlorine
Other Anions Zio | o coonmanol  peti g
Phytoestroge-ns 2.427 1.263 0 0.703 z 1 VMetabé".tes A A Hommy Metals
and Metabolites £ 03 Disifection 8Y ¢ compounds parabens
Polycyclic Aro- 3.398 1.277 0 0.892 © 06 YPhytoestrogens Perchlorate and ¢ ~

: < and Other Anions Tobacco Smoke
matic Hydrocar- 04 1 Metabolites
bon Metabolites 02
Tobacco Smoke | 3.398 1.474 | 2.630 0.589 o+
Volatile Organic | 2.011 1.088 | 0.956 0.822 ° o U dyadity e ’
Compounds

Fig. 5. Dyadicity and Heterophilicity Analysis of the Substances Classification Distribution in both Projection
Networks. The statistically significant values (p — value < 0.05) are in bold and underlined. On the right-
hand side, at the top: plotted values for the phenotype projection. Bottom: plotted values for the substances
projection network.

Common to both networks, heavy metals, herbicides, organochlorine pesticides, and to-
bacco smoke are significantly dyadic. This means that diseases caused by chemicals in these
classes and the chemicals themselves tend to connect to other members of their respective
classes. In fact, in the phenotype network, all substance classes are significantly dyadic, ex-
cept for parabens. In the substances network, only parabens are additionally significantly
dyadic.

Looking at the vertices that favor connecting to nodes that do not share their characteristic



common to both networks, only volatile organic compounds have significant values. However,
in the phenotype network, those nodes are heterophilic, whereas they are heterophobic in the
substance network. In the phenotype network, disinfectants, phenols, fungicides, herbicides
are all also significantly heterophobic. Heavy metals and pesticides are heterophobic.

From a clinical viewpoint, the dyadicity analysis tells us that diseases caused by dyadic
classes, i.e. tobacco smoke and phenols tend to connect through their substances. In the pheno-
type network, there are no anti-dyadic classes. In the substances network, we see that tobacco
smoke and herbicides are dyadic, and their group members (substances) tend to cause the
same diseases. However, herbicides are also heterophilic, and are responsible for diseases be-
longing to different classes. Organochlorines and heavy metals are neither heterophilic nor
heterophobic, but dyadic, causing the same subset of diseases. At the other end of the spec-
trum, fungicides are highly heterophilic, taking part in causing diseases in many different
groups. Volatile organic compounds are the most neutral substances.

4. Conclusions & Future Work

Environmental exposure data are part of most recent GWAS. They are however limited to
the disease of interest and centered around factors possibly impacting that particular disease.
In this work, we take a global approach, conducting an in-depth literature search to identify
chemical substances present in the environment and their possible adverse effects on our health.
The result is the Human Phenotype Network, based on common causal substances. Breast
cancer and injury to the fetus are the most connected phenotypes in the network, making
them the most susceptible to environmental chemicals, namely the heavy metals: mercury,
lead and cadmium. These are in turn the environmental substances associated with the most
diseases. Moreover, the substance-class dyadicity analysis of both projected networks reveals
that all substance classes in the phenotype network are dyadic, and tend to connect to similar
classes. However, only about half of them are also heterophilic, also connecting to different
substance families.

The information gathered in this study is meant to be complementary to the genome in
helping us understand complex diseases, their commonalities, their causes, and how to prevent
and treat them. The current work is limited by the availability of reliable exposure data linked
to human diseases.

We are planning on extending this work in several directions. First, we will add geograph-
ical information into the model, as most of the environmental chemical substances are limited
in their physical locations. Secondly, it would be interesting, though challenging due to the
lack of available data, to segregate the diseases by ethnic background. Finally, we will merge
the chemical-substance based HPN to the genetic HPN,?® analyzing the overlap and differ-
ences. Combined, this new global HPN has the potential to inform us on both genetic and
environmental causes of a large array of common and complex disease.
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