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We present a new method for exploring cancer gene expression data based on tools from algebraic
topology. Our method selects a small relevant subset from tens of thousands of genes while simul-
taneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first
circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as
points in the sample space. Then we select a small subset of the genes as landmarks to construct
topological structures that capture persistent, i.e., topologically significant, features of the data set in
its first homology group. Furthermore, we demonstrate that many members of these loops have been
implicated for cancer biogenesis in scientific literature. We illustrate our method on five different
data sets belonging to brain, breast, leukemia, and ovarian cancers.
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1. Introduction

During the past few decades, science has made great progress in understanding the biology
of cancer [1, 2]. The latest technological tools allow assaying tens of thousands of genes si-
multaneously, providing large volumes of data to search for cancer biomarkers [3, 4]. Ideally,
scientists would like to extract some qualitative signal from this data in the hope to better
understand the underlying biological processes. At the same time it is desirable that the ex-
tracted signal is robust in the presence of noise and errors while effectively describing the
dataset [5, 6].

One suite of methods which have enjoyed increased level of success in recent years is based
on concepts from the mathematical field of algebraic topology, in particular, persistent homol-
ogy [7–9]. The key benefits of using topological features to describe data include coordinate-free
description of shape, robustness in the presence of noise and invariance under many trans-
formations, as well as highly compressed representations of structures [10]. Analysis of the
homology of data allows detection of high-dimensional features based on connectivity, such
as loops and voids, which could not be detected using traditional methods such as cluster-
ing [8, 11]. Further, identifying the most persistent of such features promises to pick up the
significant shapes while ignoring noise [8]. Such analysis of the stable topological features of
the data could provide helpful insights as demonstrated by several studies, including some
recent ones on cancer data [12, 13].
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1.1. Our contributions

We present a new method of topological analysis of various cancer gene expression data sets.
Our method belongs to the category of exploratory data analysis. In order to more efficiently
handle the huge number of genes whose expressions are recorded in such data sets (typically in
the order of tens of thousands), we transpose the data and analyze it in its dual space, i.e., with
each gene represented in the much lower dimensional (in the order of a few hundred) sample
space. We then sample critical genes as guided by the topological analysis. In particular, we
choose a small subset (typically 120–200) of genes as landmarks [14], and construct a family
of nested simplicial complexes, indexed by a proximity parameter. We observe topological
features (loops) in the first homology group (H1) that remain significant over a large range of
values of the proximity parameter (we consider small loops as topological noise). By repeating
the procedure for different numbers of landmarks, we select stable features that persist over
large ranges of both the number of landmarks and the proximity parameter. We then further
analyze these loops with respect to their membership, working under the hypothesis that their
topological connectivity could reveal functional connectivity. Through the search of scientific
literature, we establish that many loop members have been implicated in cancer biogenesis. We
applied our methodology to five different data sets from a variety of cancers (brain, breast,
ovarian, and acute myeloid leukemia (AML)), and observed that in each of the five cases,
many members of the significant loops in H1 have been identified in the literature as having
connections to cancer.

Our method is capable of identifying geometric properties of the data that cannot be
found by traditional algorithms such as clustering [15, 16]. By employing tools from alge-
braic topology, our method goes beyond clustering and detects connected components around
holes (loops) in the data space. The shown methodology is also different from techniques
such as graph [17, 18] or manifold learning [19–23]. Graph algorithms, while identifying con-
nectivity, miss wealth of information beyond clustering. Manifold learning algorithms assume
that the data comes from an intrinsically low-dimensional space and their goal is to find a
low-dimensional embedding. We do not make such assumptions about the data.

1.2. Related work

Several applications of tools from algebraic topology to analyze complex biological data from
the domain of cancer research have been reported recently. DeWoshkin et al. [12] used compu-
tational homology for analysis of comparative genomic hybridization (CGH) arrays of breast
cancer patients. They analyzed DNA copy numbers by looking at the characteristics of H0

group. Using Betti0 (β0) numbers, which are the ranks of the zeroth homology groups (H0),
their method was able to distinguish between recurrent and non-recurrent patient groups.

Likewise, Seeman et al. [13] applied persistent homology tools to analyze cancer data.
Their algorithm starts with a set of genes that are preselected using the nondimensionalized
standard deviation metric [13]. Then, by applying persistent homology analysis to the H0

group, the patient set is recursively subdivided to yield three subgroups with distinct cancer
types. By inspecting the cluster membership, a core subset of genes is selected which allows
sharper differentiation between the cancer subtypes.



Another example of topological data analysis is the work of Nicolau et al. [24]. Their
method termed progression analysis of disease (PAD) is applied to differentiate three sub-
groups of breast cancer patients. PAD is a combination of two algorithms – disease-specific
genome analysis (DSGA) [25] and the topology-based algorithm termed Mapper [26]. First,
DSGA transforms the data by decomposing it into two components – the disease component
and the healthy state component, where the disease component is a vector of residuals from a
Healthy State Model (HSM) linear fit. A small subset of genes that show a significant deviation
from the healthy state are retained and passed on to Mapper, which applies a specified filter
function to reveal the topology of the data. Mapper identified three clusters corresponding
to ER+, ER−, and normal-like subgroups of breast cancer. This work is somewhat different
from the previous two papers mentioned above because it does not explicitly analyze features
of any of the homology groups.

All studies mentioned above utilized β0 numbers, thus performing analyses that are topo-
logically equivalent to clustering. In contrast, our method relies on β1 numbers (ranks of H1

groups). One can think of β1 numbers characterizing the loops constructed from connected
components (genes) around “holes” in the data. The underlying idea is that connections
around holes may imply connections between the participating genes and biological functions.
Also, most of other methods use some data preprocessing to limit the initial pool of candidate
genes. Our method selects the optimal number of genes as part of the analysis itself.

2. Mathematical background

We review some basic definitions from algebraic topology used in our work. For details, refer
one of the standard textbooks [27, 28]. Illustrations of simplices, persistent homology, and
identification of topological features from landmarks are available in the literature [8, 14, 34].

2.1. Simplices and simplicial complexes

Topology represents the shape of point sets using combinatorial objects called simplicial com-
plexes. Consider a finite set of points in Rn. More generally, the space need not be Euclidean.
We just need a unique pairwise distance be defined for every pair of points. The building blocks
of the combinatorial objects are simplices, which are made of collections of these points.

Formally, the convex hull of k+1 affinely independent points {v0, v1, . . . , vk} is a k-simplex.
The dimension of the simplex is k, and vjs are its vertices. Thus, a vertex is a 0-simplex, a line
segment connecting two vertices is a 1-simplex, a triangle is a 2-simplex, and so on. Observe
that each p-simplex σ is made of lower dimensional simplices, i.e., k-simplices τ with k ≤ p.
Here, τ is called a face of σ, denoted τ ⊂ σ. A collection of simplices satisfying two regularity
properties forms a simplicial complex. The first property is that each face of every simplex in
a simplicial complex K is also in K. Second, each pair of simplices in K intersect in a face
of both, or not at all. Due to these properties, algorithms to study shape and topology run
much more efficiently on the simplicial complex than on the original point set.

To construct a simplicial complex on a given point set, one typically considers balls of a
given diameter ε (called ε-ball) centered at each point. The two widely studied complexes of
this form are the Čech and the Vietoris-Rips complexes. A k-simplex is included in the Čech



complex if there exists an ε-ball containing all its k + 1 vertices. Such a simplex is included
in the the Vietoris-Rips complex Rε if each pair of its vertices is within a distance ε. As
such, Vietoris-Rips complexes are somewhat easier to construct, since we only need to inspect
pairwise, and not higher order, distances.

However, both the Čech and the Vietoris-Rips complexes have as vertex set all of the points
in the data. Such complexes are computationally intensive for datasets of tens of thousands
of points. The feasible option is to work with an approximation of the topological space of
interest [14]. The key idea is to select only a small subset of points (landmarks), while the
rest of points serve as witnesses to the existence of simplices. Termed witness complexes, such
complexes have a number of advantages. They are easily computed, adaptable to arbitrary
metrics, and do not suffer from the curse of dimensionality. They also provide a less noisy
picture of the topological space. We use the lazy Witness complex, in which conditions for
inclusion are checked only for pairs and not for higher order groups of points [14], analogous
to the distinction between the constructions of Vietoris-Rips and Čech complexes.

We employ the heuristic landmark selection procedure called sequential maxmin to select
a representative set of landmark points [14, 29, 30]. The first landmark is selected randomly
from the point set S. Then the algorithm proceeds inductively. If Li−1 is the set of the first i−1

landmarks, then the i-th landmark is the point of S which maximizes the function d(x, Li−1),
the distance between the point x and the set Li−1. We vary the total number of landmarks,
exploring each of the resulting lazy witness complexes. The final number of landmarks is
chosen so that the resulting witness complex maximally exposes topological features.

2.2. Persistent homology

Homology is the concept from algebraic topology which captures how space is connected.
Thus, homology can be used to characterize interesting features of a simplicial complex such
as connected clusters, holes, enclosed voids, etc., which could reveal underlying relationships
and behavior of the data set. Homology of a space can be described by its Betti numbers.
The k-th Betti number βk of a simplicial complex is the rank of its k-th homology group.
For k = 0, 1, 2, the βk have intuitive interpretation. β0 represents a number of connected
components, β1 the number of holes, and β2 the number of enclosed voids. For example, a
sphere has β0 = 1, β1 = 0, β2 = 1, as it has one component, no holes, and one enclosed void.

Consider the formation of a simplicial complex using balls of diameter ε centered on points
in a set. For small ε, the simplicial complex is just a set of disjoint vertices. For sufficiently
large ε, the simplicial complex becomes one big cluster. What value of ε reveals the “correct”
structure? Persistent homology [7, 8] gives a rigorous response to this question. By increasing
ε, a sequence of nested simplicial complexes called a filtration is created, which is examined
for attributes of connectivity and their robustness. Topological features appear and disappear
as ε increases. The features which exist over a longer range of the parameter ε are considered
as signal, and short-lived features as noise [7, 31]. This formulation allows a visualization as
a collection of barcodes (one in each dimension), with each feature represented by a bar. The
longer the life span of a feature, the longer its bar. In the example barcodes in Figs. 1–7, the
x-axis represents the ε parameter, and the bars of persistent loops of interest are circled.



Research questions

Our approach could address several critical questions in the context of cancer data analysis.
First, could we select a small subset of relevant genes while simultaneously identifying robust
nontrivial structure, i.e., topology, of the data? Most previous approaches require the selection
of a subset of genes before exploring the resulting structure, and hence limiting the generality.
Second, could we elucidate higher order interactions (than clusters) between genes that could
have potential implications for cancer biogenesis? Higher order structures such as loops could
reveal critical subsets of genes with relevant nontrivial interactions, which together have im-
plications to the cancer. Third, could this method work even when data is available from only
a subset of patients?

3. Data

We analyzed five publicly available microarray datasets of gene expression from four different
types of cancer – breast, ovarian, brain, and acute myeloid leukemia (AML). Four of the
datasets have the same protocol, GPL570 (HG U133 Plus 2, Affymetrix Human Genome U133
Plus 2.0 Array). The fifth dataset has a different protocol, HG U95Av2, which has a fewer
number of genes (see Table 1). By including data sets from different protocols, we could verify
that the topological features identified are not just artifacts of a particular protocol.

Table 1. Datasets used in the study.

Dataset Series Protocol # Genes # Samples

Brain GSE36245 GPL570 46201 46
Breast GSE3744 GPL570 54613 47
Ovarian GSE51373 GPL570 54613 28
AML188 GSE10358 GPL570 54613 188
AML170 willm-00119 HG U95Av2 12558 170

The number of genes represents
the number of unique gene id tags
defined by a protocol excluding con-
trols. While the brain dataset is of
the same protocol as the breast and
ovarian datasets, the former one has
fewer genes – 46201 vs. 54613. This
variability, however, did not affect
our procedure to find topological
features.

All datasets, except for AML170,
were obtained from NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/

in October 2013. AML170 was retrieved at the same time from the National Cancer Institute
caArray Database at https://array.nci.nih.gov/caarray/project/willm-00119.

4. Methods

We work with the raw gene expression values. In particular, we do not log-transform them.

4.1. Dual space of data

Traditionally, gene expression data is viewed in its gene space, i.e., the expression profile of
patient i with m genes is a point in Rm, xi = [xi1 xi2 · · · xim ]. Each xij is an expression of gene
j in the patient i. For example, each patient in the Brain dataset is a point in R46201.

We analyze expression data in its dual space, i.e., in its sample space. Hence a gene j

is represented as a point in Rn, xj = [xj1 xj2 · · · xjn ], where n is the number of samples or
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patients. Each xji is the expression of the gene j in the patient i. For example, in the same
Brain dataset, the points now sit in R46 space. Hence we study gene expression across the
span of all patients.

The key motivation for this approach is to handle the high dimensionality in a meaningful
way for analyzing the shape of data. Given the small size of patients, one could efficiently
construct a Vietoris-Rips complex using the set of pairwise distances between patients in the
gene space (no need to choose landmarks). But such distances become less discriminatory
when the number of genes is large [32, 33]. Working in the dual space, we let our topological
method select a manageable number of genes as landmarks to construct the witness complexes,
which potentially capture interesting topology of the data. Hence we do not preselect a small
number of genes before the topological analysis, as is done by some previous studies [13, 24].

4.2. Choosing the number of landmarks

For construction of the witness complexes, the number of landmarks has to be defined a
priori (Sec. 2.1). Hence the question becomes how many landmarks do we select? We let
the data itself guide the selection of genes used as landmarks. If there is a significant loop

Table 2. Numbers of
landmarks selected in
each dataset.

Dataset # landmarks

Brain 120
Breast 110
Ovarian 200
AML188 150
AML170 130

feature in the data, it would persist through a range of land-
marks in H1 of the complexes. We reconstruct the topological
space incrementing the number of landmarks while observing
appearance and disappearance of the topological features. Ini-
tially, there would be very few small, noisy features because
of insufficient number of points. As the number of landmarks
increases, some features stabilize, i.e., do not change much
either in size or membership. Then they reach their maximal
size, and start to diminish once some critical number of land-
marks is exceeded (when the “holes” are all filled in). The
“optimal” number of landmarks is chosen when the length of
the bar representing the topological feature is maximal.

A typical example of such behavior is seen in the Breast dataset (see Fig. 1). A small loop
appears when the number of landmarks is L = 50. It stabilizes around L = 90, reaches its
maximum span at L = 110, and then decreases as L grows.

4.3. Composition of loops

One of the goals of our method is to determine the genes which participate in H1 features,
which could indicate potential implications for cancer biogenesis. Since the first landmark is
chosen randomly in the sequential maxmin procedure, the composition of the loops identified
may differ based on this first choice. To circumvent this effect, we do 20 different runs in each
case to collect possible variations in loop formation. Members of the loops are then pooled
together for further analysis. Due to the almost deterministic nature of sequential maxmin
selection (apart from the first landmark being selected randomly), we observed very little
variation over the 20 runs in most cases. The recovered members of loops are then queried in
scientific literature for cancer-related reports.



Fig. 1. Evolution of the loop of interest (circled) for varying number of landmarks from L=50 to L=130 in
the breast dataset. Here and in Figs. 2–7, the x-axis represents the ε parameter.

We implemented our computations using the package JavaPlex [34]. We explored the barcodes
for H0,H1, and H2, but interesting persistent features with members related to cancer biogenesis
were detected only for H1.

5. Results

Persistent topological features in the homology group H1 were observed in every cancer dataset
we analyzed. Representative examples are shown in Figs. 2–6. The AML datasets both had
two persistent loops, while the other datasets have one loop each. The Ovarian dataset had a
few medium length bars in the H1 barcode, but we investigated only the longest loop. Once
the persistent loops were identified, they were inspected with respect to their composition and
relation to cancer through search of scientific literature. Below is a brief description of results
for each of the datasets (the full list of all loop members is also available [35]).

Table 3. Selected representatives of loops in different datasets.

Gene Dataset Description References

CAV1 Brain tumor suppressor gene [36]
RPL36 Brain prognostic marker in hepatocellular carcinoma [37]
RPS11 Breast downregulation in breast carcinoma cells [38]
FTL Breast prognostic biomarkers in breast cancer [39]
LDHA Ovarian overexpressed in tumors, important for cell growth [40]
GNAS Ovarian biomarker for survival in ovarian cancer [41]
LAMP1 AML170 regulation of melanoma metastasis [42]
PABPC1 AML170 correlation with tumor progression [43]
HLF AML188 promotes resistance to cell death [44]
DTNA AML188 induces apoptosis in leukemia cells [45]

5.1. Brain dataset

The lifespan of the longest loop in this dataset was about 820 (bar between ≈ [480, 1300]).
The loop was consistent over different choices of the first landmark. We identified



Fig. 2. Representative loop in brain dataset.

13 loop members, out of which 9 were found
in cancer literature. Some cancer-related mem-
bers include EGR1 and CAV1, which have
genes been characterized as cancer suppressor
genes [36, 46], A2M, which has been identified
as a predictor for bone metastases [47], and
RPL36 which has been found to be a prognostic
marker in hepatocellular carcinoma [37].

5.2. Breast dataset

Fig. 3. Representative loop in breast dataset.

The lifespan of the longest loop in this dataset
is in the range [10080.0, 16684.2]. As with the
brain dataset, this loop is very consistent. How-
ever, there were only 10 members of this loop,
and 8 of which were found in cancer literature.
An interesting feature of this loop is that it
had five ribosomal proteins which are known
to play a critical role in tightly coordinating
p53 signaling with ribosomal biogenesis [48].

5.3. Ovarian dataset

Fig. 4. Representative loop in ovarian dataset.

The Ovarian dataset had the most variable
features in H1. However, we investigated the
loop corresponding to the most consistent and
longest bar, which ranged from about 4000 to
over 7000. This loop consisted of 17 members,
and 9 were mentioned in the cancer-related lit-
erature. Among cancer-related members were
GNAS, which was identified as “an indepen-
dent, qualitative, and reproducible biomarker
to predict progression-free survival in epithelial ovarian cancer” [41], and HNRNPA1, which
has been identified as a potential biomarker for colorectal cancer [49].

5.4. AML188 dataset

Fig. 5. Representative loops in AML188 dataset.

Acute myeloid leukemia 188 (AML188) had
two significant loops (as did AML170). The
first one occurred at [25200.0, 102200.0] and the
second one at [78400.0, 146219.24]. The first loop
has 27 members while the second one only
6. Altogether, only 14 of these 33 genes were
mentioned in cancer literature. Some cancer-
related representatives were hepatic leukemia



factor (HLF) which promotes resistance to cell death [44], RPL35A known for inhibition of
cell death [50], and GRK5 which regulates tumor growth [51]. A group of zinc finger pro-
teins were present in the first loop, some of which have been reported as novel biomarkers for
detection of squamous cell carcinoma [52, 53].

5.5. AML170 dataset

Fig. 6. Representative loops in AML170 dataset.

AML170 comes from caArray database and its
protocol HG U95Av2 has only 12558 genes.
Even though this protocol had a smaller
(about 1/4) number of genes compared to the
other data sets, we still detected two loops
in this dataset. They were relatively shorter
than the loops in AML188, and occurred at
[5800.0, 11400.0] and [11000.0, 17600.0]. The two
loops comprised of 19 members, of which 10 were found in cancer-related literature. These
relevant members included ubiquitin C (UBC), which was recently identified as a novel cancer-
related protein [54], PABPC1 whose positive expression is correlated with tumor progression
in esophageal cancer [43], and LAMP1 which facilitates lung metastasis [42].

6. Discussion

Fig. 7. Two persistent loops in the AML170
dataset detected using only 25 dimensions at the
number of landmarks L=130.

The Breast, Brain, and Ovarian datasets had
only one persistent loop, while AML170 and
AML188 had two. Also, the AML datasets had
a higher number of patients (samples) than
the other three sets (see Table 1). Is this fact
just a coincidence or, indeed, does the num-
ber of H1 features (loops) correlate with the
number of dimensions? To address this ques-
tion, we chose samples of random and progres-
sively larger (25–175) subsets of patients from
AML170 and AML188 while also increasing the number of landmarks, and studied the evo-
lution of H1 features. In other words, we repeated our method on smaller subsets of patients
from these datasets. Both the AML datasets contained two loops even with only 25 dimensions
(see Fig. 7 for AML170), and continued to do so for the progressively larger subsets. Thus, the
number of significant H1 features appears to depend on intrinsic qualities of the data rather
than the number of dimensions, demonstrating the robustness of our method to the number
of patients in the dataset.

An important property of a loop is its lifespan [55]. One may note that the life span of
loops for different datasets vary significantly. For example, the lifespan of a significant H1

feature in the brain dataset is only 820, while for AML188 the lifespan of the first loop is
77, 000. This difference is not only due to the increase in the actual size of a loop as indicated
by the number of points comprising the loop (13 vs. 27 in this case), but also in part because



of the different absolute values in microarray expression data. The maximum value for the
brain dataset is 24× 103, while for AML188 is 3× 106. Therefore, the absolute length of an H1

feature is not as important as its length relative to other H1 features.
The crucial step of our method is the choice of landmarks. The goal here is the efficient

inference of the topology of data, while selecting a small subset of potentially relevant genes.
Landmarks chosen using sequential maxmin tend to cover the dataset better and are spread
apart from each other, but the procedure is also known to pick outliers [14]. In our datasets,
outliers are typically identified by extreme expression values [56]. We examined the expression
values of the chosen landmarks, and found that very few of them had extreme values (Figs. 8
and 9). Similarly, the expressions of the genes implicated in cancer biogenesis (among the loop
members) did not have any extreme values, and in fact appear to follow normal distributions.
We infer that this observation results because sequential maxmin indeed picks points on
the outskirts of the topological features. Further, the distribution of expressions of the loop
members suggests that the group as a whole could have potential implications for the disease.
More interestingly, the “hole” structure means such groups could not potentially be identified
by traditional coexpression or even differential expression analyses [57].

Fig. 8. Histograms for AML170 dataset, x-axis represents gene expression level of scale 104. (a) distribution
of gene expressions for the whole set; (b) distribution of gene expressions for only the loop members; and (c)
distribution of gene expressions for cancer-related loop members.

Fig. 9. Histograms for Breast dataset, x-axis represents gene expression level of scale 105. (a) distribution
of gene expressions for the whole set, (b) distribution of gene expressions for the loop members only, (c)
distribution of gene expressions for cancer-related loop members.

The computational complexity of our method is based on the current implementation of
JavaPlex [34], where the two main steps are building and filtering simplicial complexes, and
computing homology. Up to dimension 2 (β2), homology could be computed in O(n3) time [28].
However, building simplicial complexes relies on clique enumeration, which is NP-complete,
and has a complexity of O(3n/3) [58, 59]. Further, JavaPlex requires explicit enumeration



of simplicial facets appearing at each filtration step, implying the need for large memory
resources [34].

The cancer-related loop members identified from the two AML datasets were distinct
apart from the prominent group of ribosomal proteins. This observation could be explained
by two main reasons. First, AML188 has four times the number of genes as AML170 (see
Table 1). Second, JavaPlex identifies only one representative of each homology class. That is,
if a significant topological feature (hole) exists, it will be identified, but only one loop will be
found around that hole. There could be other relevant points in proximity to the hole, but
are not guaranteed to be included in the loop. If we have prior knowledge of some genes being
relevant, we could try to identify loops around the holes that include these genes as members.
In this case, the other members of the identified loops could also have potential implications
for the cancer biogenesis. Methods to find a member of a homology class that includes specific
points could be of independent interest in the context of optimal homology problems [60, 61].

7. Conclusion

We have presented a method to look at cancer data from a different angle. Unlike previous
methods, we look at characteristics of the first homology group (H1). We identify the per-
sistent H1 features (which are loops, rather than connected components) and inspect their
membership. Importantly, our approach finds potentially interesting connections among genes
which cannot be found otherwise using traditional methods. This geometric connectedness
may imply functional connectedness, however, this is yet to be investigated by oncologists.
If such connections are indeed implied, then the genes in the loops could together form a
characteristic “signature” for the cancer in question.
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