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Genomic sequencing studies in the past several years have yielded a large number of cancer somatic mutations.  There 
remains a major challenge in delineating a small fraction of somatic mutations that are oncogenic drivers from a 
background of predominantly passenger mutations.  Although computational tools have been developed to predict the 
functional impact of mutations, their utility is limited.  In this study, we applied an alternative approach to identify 
potentially novel cancer drivers as those somatic mutations that overlap with known pathogenic mutations in 
Mendelian diseases.  We hypothesize that those shared mutations are more likely to be cancer drivers because they 
have the established molecular mechanisms to impact protein functions.  We first show that the overlap between 
somatic mutations in COSMIC and pathogenic genetic variants in HGMD is associated with high mutation frequency 
in cancers and is enriched for known cancer genes.  We then attempted to identify putative tumor suppressors based 
on the number of distinct HGMD/COSMIC overlapping mutations in a given gene, and our results suggest that ion 
channels, collagens and Marfan syndrome associated genes may represent new classes of tumor suppressors.  To 
elucidate potentially novel oncogenes, we identified those HGMD/COSMIC overlapping mutations that are not only 
highly recurrent but also mutually exclusive from previously characterized oncogenic mutations in each specific 
cancer type.  Taken together, our study represents a novel approach to discover new cancer genes from the vast 
amount of cancer genome sequencing data. 
 
1.  Introduction 

Significant efforts in the past several years in cancer genomic sequencing by individual 
investigators and large consortium such as The Cancer Genome Atlas (TCGA) and The 
International Cancer Genome Consortium (ICGC) have uncovered a large number of novel 
oncogenic drivers.  These studies not only advanced our understanding on the genetic basis of 
tumorigenesis and cancer progression, but also significantly enabled the development of 
personalized cancer therapeutics 1, 2.  Cancer genome or exome sequencing data have been 
generated from approximately 25,000 tumor samples covering more than 50 tumor types 3, 4, 
representing a comprehensive cancer genomic atlas.  While data generation has been greatly 
facilitated by rapid technology development, interpretation of cancer sequence information still 
remains a major challenge.  As most solid tumors harbor a median of 40-80 non-synonymous 
somatic mutations per tumor, only three to six of them are driver mutations 5.  The most 
commonly used approach to distinguish a small number of driver mutations from those 
background passenger mutations is to identify significantly mutated genes in a cohort study 6.  The 
underlying rationale is if a gene is mutated at significantly greater rate than the background 
mutation rate, it is more likely to be oncogenic, as the mutations conferring tumor growth 
advantage are evolutionarily selected during cancer development.  To complement this approach, 
various computational tools have been developed to assess the effects of missense mutations on 
protein functions 7.  While such an approach has further characterized numerous novel cancer 
drivers and oncogenic pathways from cancer genomic sequencing data, it requires a large number 
of samples to uncover those drivers mutated at low population frequency in a given tumor type.  
This is particularly problematic for those cancers with high background mutation rates such as 
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melanomas and lung cancers.  For example, it has been estimated that it would require 
approximately 4,000 melanoma patient samples to detect cancer genes mutated at 2% frequency, 
and more than 20,000 samples for genes mutated at 1% with 90% power for 90% of genes 8.  

Many human genetic diseases are Mendelian disorders caused by one or more aberrations in 
the genome.  These diseases are often heritable as the disease causing, pathogenic variants are 
passed on from parents’ genome. To date, approximately 180,000 genetic variants in more than 
7,000 genes have been identified as pathogenic for more than 4,000 Mendelian diseases 9.  Some 
of the first established cancer genes with frequent somatic mutations were originally identified 
from their associations with familial cancer syndromes.  The first tumor suppressor RB1 was 
discovered by studying the familial form of retinoblastoma 10.  The most frequently mutated gene 
in cancers, p53, was also identified as a tumor suppressor inactivated in Li–Fraumeni syndrome, a 
rare cancer predisposition hereditary disorder.  Other well-known cancer genes harboring high 
frequency somatic mutations and that are associated with Mendelian diseases include VHL in Von 
Hippel-Lindau syndrome, MLH1, MSH2, MSH6 in Lynch syndrome, TSC1, TSC2 in Tuberous 
sclerosis, and ATM in ataxia-telangiectasia 11.  Notably, a recent study has revealed potentially 
novel cancer-associated genes through analysis of comorbidity between cancers and Mendelian 
diseases 12. 

By definition, germline pathogenic variants impact the functions of key proteins involved in 
the developmental process and consequently cause heritable diseases.  If the same germline 
pathogenic variants occur as somatic mutations in cancers, these mutations would also alter 
protein functions and may play a role in tumor initiation and progression, even though the same 
proteins can have very different functions during development than in adult tissues.  Indeed in a 
recent report, several genes sharing identical mutations in Mendelian diseases and cancers were 
proposed as novel cancer genes 13.  Based on this underlying hypothesis, we carried out a 
systematic comparative analysis of the reported pathogenic variants in Mendelian diseases and 
cancer somatic mutations.  There are several repositories for pathogenic variants.  A comparison 
of four of the most comprehensive databases showed that HGMD is currently the largest 
collection of human disease variants, although each database has its own advantages in terms of 
the information collected as well as database infrastructure 9.  For cancer somatic mutations, 
COSMIC is recognized as the most comprehensive resource for somatic mutations in human 
cancers 14, with more than 1.4 million confirmed somatic mutations identified from 1.1 million 
tumor samples including genome-wide sequencing data from more than 20,000 tumors.  In this 
study, we first identified overlapping mutations between pathogenic variants in HGMD 15 and 
cancer somatic mutations from the COSMIC database 14.  Further characterization of these 
mutations show that the mutation-harboring genes are significantly enriched for known cancer 
genes, supporting the above described hypothesis.  We then examined those genes harboring the 
shared pathogenic variants and somatic mutations in cancers by applying additional filters such as 
the number of overlapping HGMD/COSMIC mutations in a given gene or the frequency of 
overlapping mutations in each tumor type.  Moreover, those overlapping mutations with high 
recurrence in cancers were subjected to mutual exclusivity analysis with known oncogenes in each 
tumor type in order to identify novel oncogenic drivers.  Taken together, our study represents a 
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novel approach to discover new cancer genes from the vast amount of cancer genome sequencing 
data. 

2.  Methods 

COSMIC V73 was downloaded from sftp-cancer.sanger.ac.uk using GUI client WinSCP under 
protocol sftp and port 22.  HGMD Professional can be accessed from 
https://www.qiagenbioinformatics.com/products/human-gene-mutation-database/ with an 
authorized license.  1000 Genome Phase3 was downloaded from 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.  ExAC database was downloaded 
from ftp://ftp.broadinstitute.org/pub/ExAC_release/. All RefSeq Exons were downloaded from 
UCSC table refGene through UCSC Table Browser (clade: Mammal, genome: Human, assembly: 
Feb.2009 (GRCH37/hg19), group: Genes and Gene Predictions, track: RefSeq Genes, Table: 
refGene).  Cancer Gene Census dataset was downloaded from http://cancer.sanger.ac.uk/census/.  

All the analyses were performed using shell scripts, mysql scripts and R scripts.  The mutual 
exclusivity heat map was generated using gitools (http://www.gitools.org/).  The survival analysis 
was done through cBioPortal (http://www.cbioportal.org/).  Several major scripts for database 
query and statistical analyses are available on github 
(https://github.com/CosmicHGMD/CancerMendelian).   

3.  Results 

3.1.   Identification of overlapping pathogenic variants in HGMD and somatic mutations in 
COSMIC 
 

HGMD includes six classes of variants, and we only included disease-causing mutations (DM 
and DM?) in our analysis.  The DM class variants have been demonstrated in literature to confer 
the associated clinical phenotype of the affected individuals.  The DM? class variants have some 
degree of uncertainty, but nevertheless have strong evidence supporting their pathogenicity.  At 
the time of this writing, there are a total of 153,593 DM/DM? class variants in HGMD database.  
11,523 of these variants are present in the COSMIC database, representing 0.54% of the total 
mutations in COSMIC (Table 1).  When we only include the confirmed somatic mutations in 
COSMIC, there are 8,582 mutations (0.6%) that overlap with HGMD DM/DM? variants.  As the 
majority of the somatic mutation data in COSMIC are from cancer genomic sequencing studies, 
some of these mutations are likely false positives, particularly those from early whole 
genome/exome sequencing when computational methods for calling somatic mutation were less 
reliable or if the identified somatic mutations were not validated by a different sequencing 
platform.  Therefore, we further restrict COSMIC data to include only those somatic mutations 
occurred in more than one tumor samples. Although the total number of overlapping mutations 
with HGMD DM/DM? variants is reduced to 3,470, using this limited but more reliable somatic 
mutation list, the percentage with respect to the total number of these recurrent mutations (215, 
436) in COSMIC increases to 1.6% (Table 1), suggesting Mendelian disease pathogenic variants 
are over-represented in recurrent somatic mutations in cancers.   
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Then we randomly selected the same number of genetic variants (153,593) from 1000 genome 
(exonic region) or the ExAC database as control variant datasets, and performed the same analysis.  
The analysis of randomly selected, mostly non-pathogenic common genetic variants was repeated 
1000 times, and the results indicated that percentages of common non-pathogenic variants 
overlapping with COSMIC mutations are lower than the HGMD pathogenic variants (Table 1).  
The statistical significance was assessed based on the distribution of results from 1000 
simulations.  This finding supports our initial hypothesis that overlapping pathogenic variants in 
HGMD with cancer somatic mutations could enable identification of novel cancer genes.  
 
Table 1. Enrichment of HGMD pathogenic variants in cancer somatic mutations. 
 

Variant dataset 
(total number of 
variants) 

Randomly 
selected 
variants 

Overlap with COSMIC mutations (percentage) 
All mutations in 
COSMIC 
(2,132,117) 

Somatic mutations in 
COSMIC (1,425,978) 

Recurrent somatic 
mutations in 
COSMIC (215,436) 

HGMD 
DM/DM? 
(153,593) 

- 11,523 (0.54%) 8,582 (0.60%) 3,470 (1.6%) 

1000 Genome 
exonic region 
(2,156,973) 

153,593 8,092 (0.38%); 
p<0.001 

5,983 (0.42%); 
p<0.001 

1,975 (0.92%); 
p<0.001 

ExAc 
(10,450,722) 

153,593 6,919 (0.32%); 
p<0.001 

4,841 (0.34%); 
p<0.001 

1,325 (0.62%); 
p<0.001 

 
Next, we tested if HGMD/COSMIC overlapping mutations are more likely to occur at high 

frequency in cancers than those somatic mutations non-overlapping with HGMD.  We first 
divided the confirmed COSMIC somatic mutations into two groups.  The first group includes 
those mutations overlapped with HGMD DM/DM? variants and the second group includes the rest 
of somatic mutations that are only present in the COSMIC database.  Then, for a given recurrence 
frequency cutoff c, we computed the percentage of somatic mutations with recurrence frequency 
(f) greater than c in group 1 (denoted as %𝐺1𝑓>𝑐) and those in group 2 (denoted as %𝐺2𝑓>𝑐).  This is 
followed by computing the ratio of %𝐺1𝑓>𝑐 over %𝐺2𝑓>𝑐 at various mutation frequencies.  As 
illustrated in Figure 1A, as the recurrence frequency (x-axis) increases, this ratio (y-axis) also 
increases.  For example, the ratio is approximately 25 for recurrence frequency 20, indicating that 
COSMIC mutations overlapping with HGMD pathogenic variants are 25 fold more likely to occur 
in more than 20 tumor samples than those not overlapping with HGMD variants.  We also directly 
plotted %𝐺1𝑓>𝑐 and %𝐺2𝑓>𝑐 (Figure 1B), and it clearly shows the HGMD/COSMIC overlapping 
mutations have higher mutation frequencies than those mutations only in the COSMIC database 
with mean recurrence in 8.0 and 1.3 tumors respectively (p = 1.5E-5, one-sided t-test).  Because 
the likelihood that a somatic mutation is a cancer driver increases with its mutation frequency in 
cancers, this result is consistent with the hypothesis that cancer mutations overlapping with 
germline disease pathogenic variants in HGMD are more likely to be oncogenic.  We further 
examined the presence of known cancer genes in the two groups using cancer gene census 
annotation 16.  While only 4.3% of the COSMIC somatic mutations do not overlap with HGMD 
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are in the cancer gene census list, there are approximately 10% of the somatic mutations 
overlapping with HGMD occur in cancer census genes. 

To determine if the combination of somatic mutation frequency and the presence of overlap 
with HGMD pathogenic mutations would facilitate cancer gene discovery, we computed the 
percentage of somatic mutations mapped to cancer census genes in all COSMIC confirmed 
somatic mutations or only in those overlapped with HGMD DM/DM? variants. This procedure 
was then repeated for mutations with increasing frequencies (Figure 2).  Two observations were 
notable from the results.  First, a somatic mutation is more likely to be in a cancer gene as its 
frequency increases, evidenced by increasing percentage of cancer census genes.  Second, the 
probability that the mutation-harboring genes are cancer-related increases if there are overlapping 
with HGMD variants  (Figure 2, red bars vs. blue bars). 

 

 
Figure 1.  Overlap of HGMD variants with cancer somatic mutations is correlated with high mutation recurrence in 
cancers. 
 

 
Figure 2. Novel cancer gene discovery through overlapping with HGMD and high mutation recurrence.  X-axis 
represents mutation recurrence in COSMIC. 
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3.2.   Identification of potential tumor suppressors 

 
We examined whether the number of distinct overlapping HGMD/COSMIC mutations in a 

given gene is associated with the probability that the gene is a cancer gene.  Figure 3 shows that as 
the number of distinct overlapping HGMD/COSMIC mutations in a given gene increases, the 
percentage of genes that belong to cancer gene census increases as well.  Of those genes with more 

than six distinct overlapping mutations, 
approximately 25% are present in cancer gene 
census.  It is generally recognized that while 
oncogenes are often mutated recurrently at certain 
positions (referred as hotspots), tumor suppressors 
tend to lack such mutational hotspots and are 
mutated at many positions across the gene 
sequences.  Therefore, we reason that identifying 
genes with high number of distinct overlapping 
HGMD/COSMIC mutations would allow us to 
discover potentially novel tumor suppressors.   
 

Accordingly, we ranked all the genes in 
COSMIC based on the number of distinct somatic 
mutations that overlap with HGMD DM/DM? 

variants and provided both cancer gene census annotations as well as oncogene/tumor suppressor 
classifications according to Vogelstein et al. 5 in Table 2.  Almost half (23/48) of the genes with at 
least 20 overlapping HGMD/COSMIC mutations are in the cancer gene census list and/or 
annotated as an oncogene or a tumor suppressor, furthering the notion that HGMD pathogenic 
variant annotation may help distinguish driver oncogenic mutations from the passenger mutations 
in tumors.  As expected, most of those genes with oncogene/tumor suppressor annotations are 
classified as tumor suppressors (19/21, 90%; Table 2).  A literature search has provided support 
that some of the remaining genes are likely novel tumor suppressors. There are several genes that 
encode ion channels with many HGMD/COSMIC overlapping mutations, including SCN5A (67 
overlapping mutations), SCN1A (52), CFTR (48), RYR1 (36) and RYR2 (30) (Table 2).  While 
ion channels have not been recognized as a major class of cancer related genes, emerging evidence 
suggest at least some ion channels are involved in promoting malignancy.  For example, CFTR, 
the cystic fibrosis (CF) gene, has been postulated to be a tumor suppressor because loss of CFTR 
enhanced tumor cell proliferation and epithelial-to-mesenchymal transition, and is associated with 
poor prognosis in several cancer types 17, 18, 19.  We also observed multiple collagen family genes 
with significant overlap between HGMD and COSMIC mutations, such as COL3A1 (29 
overlapping mutations), COL7A1 (22) (Table 2), COL1A2 (19), COL4A5 (18), COL2A1 (14), 
COL6A3 (13), COL1A1 (13), and COL4A4 (11) (data not shown).  Although collagens are 
considered as a barrier to suppress angiogenesis since they are key components of extracellular 
matrix in tumor microenvironment, only recent functional studies have shown a causal 

Figure 3.  Identification of novel tumor suppressors 
based on the number of distinct HGMD/COSMIC 
overlapping mutations. 
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relationship between loss of collagens and tumor progression 20.  Our results suggest that collagens 
may represent another new class of tumor suppressors.  Notably, two genes FBN1 and TGFBR2, 
associated with a genetic disorder of connective tissue known as Marfan syndrome 21, 22, had 43 
and 22 HGMD/COSMIC overlapping mutations respectively.  Upon further investigation, we 
found that the two genes are mutated frequently in lung squamous cell carcinomas (SCCs) with a 
combined mutation frequency 10% in the TCGA cohort 23.  Moreover, FBN1 and TGFBR2 
mutations are associated with poor survival.  As shown in Figure 4, FBN1 mutation-harboring 
lung SCCs had poor disease progression free survival (DFS) (Figure 4A), and those patients with 
TGFBR2 mutations had both poor DFS and overall survival (OS) (Figure 4B, 4E).  The combined 
FBN1 and TFGBR2 mutations are associated with both poor DFS and OS (Figure 4C, 4F). 
 
Table 2. Genes ranked by the number of distinct overlapping HGMD-COSMIC mutations.  Only genes with at least 
20 overlapping mutations are shown. CGC: cancer gene census. TSG: tumor suppressor gene. 
 
Gene Mutations CGC Oncogene/TSG Gene Mutations CGC Oncogene/TSG 
TP53 198 Yes TSG F9 33   
APC 192 Yes TSG DMD 33   
VHL 173 Yes TSG PKHD1 31   
NF1 148 Yes TSG SMAD4 31 Yes TSG 
PTEN 145 Yes TSG PTPN11 31 Yes Oncogene 
RB1 91 Yes TSG RYR2 30   
SCN5A 67   COL3A1 29   
CDKN2A 66 Yes TSG MLH1 29 Yes TSG 
NF2 65 Yes TSG BRCA1 29 Yes TSG 
KMT2D 56 Yes  MSH2 28 Yes TSG 
F8 56   VWF 27   
MYH7 54   TSC2 27 Yes  
SCN1A 52   STK11 27 Yes TSG 
USH2A 50   PTCH1 27 Yes TSG 
ATM 50 Yes TSG ATP7B 25   
MEN1 49 Yes TSG WT1 24 Yes TSG 
CFTR 48   TGFBR2 22   
FBN1 43   PAH 22   
HNF1A 39 Yes TSG IRF6 22   
RET 39 Yes Oncogene COL7A1 22   
ABCA4 37   CASR 22   
RYR1 36   APOB 22   
BRCA2 36 Yes TSG GCK 21   
LDLR 35   MYBPC3 20   
 

3.3.   Identification of potential oncogenes 
 

To identify putative oncogenes from the overlapping HGMD/COSMIC mutations, we applied 
two criteria.  First, as most well-known oncogenic, activating mutations are highly recurrent in a 
specific tumor type, we ranked HGMD/COSMIC overlapping mutations by their mutation 
frequency.  This was done separately for each tumor type in COSMIC.  Second, because different 
oncogenic mutations in a given tumor type are often mutually exclusive, we performed mutual 
exclusivity analysis to identify those HGMD/COSMIC overlapping mutations that are not only 
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highly recurrent but also mutually exclusive from mutations in known oncogenes based on 
oncogene classification by Vogelstein et al 5.  

To achieve sufficient statistical power in mutual exclusivity analysis, we only analyzed 19 
tumor types with at least 200 samples that had whole genome or exome sequencing data in 
COSMIC and focused on those HGMD/COSMIC overlapping mutations in non-cancer genes 
(oncogene or tumor suppressor according to Vogelstein et al.) that are mutated in at least 1% of 
the total samples in a specific tumor type.  Interestingly, of the 19 tumor types we analyzed, only 
endometrium, large intestine, and upper aero-digestive tract (UADT) cancers had such mutations, 
indicating that while only a very small percentage of COSMIC somatic mutations overlap with 
HGMD pathogenic variants (Table 1), even fewer are mutated in cancers with high recurrence.  
Notably, the ACVR1 R206H mutation occurred in 3 endometrium cancer samples, and an 
additional endometrium tumor harbors the ACVR1 G356D mutation.  Mutual exclusivity analysis 
revealed that 3 of these 4 samples are mutually exclusive from the most frequently mutated 
oncogene PIK3CA, CTNNB1 and KRAS in this tumor type (p-value = 0.078; Figure 5).  
 

 
Figure 4. FBN1 and TGFBR2 mutations are associated with poor survival in lung squamous cell carcinomas. Disease 
free survival (DFS) are shown in panel A-C, and overall survival (OS) are shown in panel D-F. Red curves represent 
patients harboring somatic mutations for the indicated gene and blue curves represent patients with wild type gene. 
Sample size in red and blue curves, and logrank p-values in survival analysis are shown in each panel. 
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Figure 5. Mutual exclusivity of HGMD/COSMIC overlapping ACVR1 mutations from most frequently mutated 
oncogenes in endometrium cancers. Each column represents a tumor sample. The presence of a mutation in each gene 
in a given tumor sample is indicated by the blue color. 

 
Since the above approach combining high mutation frequency and mutual exclusivity from 

known oncogenic drivers in each specific tumor type led to very few candidates as putative 
oncogenic mutations, we ranked somatic mutations only based on frequency across all cancer 
types in COSMIC without taking mutual exclusivity into consideration (Table 3).  Many 
oncogenes have multiple mutational hotspots, and therefore for each gene we only show the 
mutation (at amino acid level) with the highest recurrence.  Of genes with the most recurrent 
amino acid change occurring in at least 15 tumors, 18 had oncogene/tumor suppressor annotations 
(Table 3).  While 50% (9/18) are classified as oncogenes, the presence of many tumor suppressors 
is not surprising because mutational hotspots (typically dominant negative mutations) are also 
observed in some tumor suppressors such TP53 24.  The remaining genes without oncogene/tumor 
suppressor annotations provide possible candidate oncogenes due to the presence of mutational 
hotspots.  It is noteworthy that there are 3 protein kinases that had a recurrent somatic mutation 
detected in more than 10 but less than 15 tumor samples: RAF1, p.S257L, 13 tumors; FGFR4, 
p.G388R, 12 tumors; TYK2, p.V362F, 12 tumors.  Although the 3 kinases are not recognized as 
oncogenes, there are strong evidences that these recurrent mutations are activating and/or 
oncogenic 25, 26, 27, suggesting RAF1, FGFR4 and TYK2 are likely novel oncogenes. 

4.  Discussion 

Owing to technological advancement and cost reduction, genomic sequencing is a new 
paradigm in cancer research and personalized cancer therapeutics.  A large number of cancer 
somatic mutations have been described from whole genome/exome sequencing studies.  As only a 
small percentage of somatic mutations are cancer drivers, it is of paramount importance to 
distinguish those driver mutations from a background of predominantly passenger mutations.  
Although many computational methods have been developed to predict the functional 
consequences of mutations 7, it has been indicated that their utility is limited 28.  In this study, we 
applied an alternative approach to discover cancer drivers from genomic sequencing data.  By 
overlapping cancer somatic mutations and well-defined pathogenic disease-causing germline 
variants in Mendelian diseases, we identified putative tumor suppressors and oncogenes, which 
warrant follow-up functional studies.  Our analyses suggested that ion channels, collagens and 
Marfan syndrome-related genes may represent new classes of tumor suppressors.  More 
significantly, mutations in two Marfan syndrome-related genes FBN1 and TGFBR2 are associated 
with poor prognosis in lung squamous cell carcinomas, providing novel biomarkers with potential 
clinical relevance in areas of prevention, diagnosis and treatment 29.  Although the previous report 
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by Zhao and Pritchard 13 also interrogated overlapping pathogenic mutations in inherited diseases 
and cancer somatic mutations, we applied a novel approach to identify candidate tumor 
suppressors and oncogenes separately based on different criteria.  Our approach is particularly 
useful in identifying the above highlighted putative tumor suppressors.  
 
Table 3. Genes ranked by mutation frequency of the most recurrent HGMD-COSMIC overlapping mutation (at amino 
acid level) for each gene.  Tumor samples with genome-wide sequencing data were used in the analysis. Only genes 
with the most recurrent amino acid change in at least 15 tumors are shown. TSG: tumor suppressor gene. 
 
Gene Mutation Tumors Oncogene/TSG Gene Mutation Tumors Oncogene/TSG 
KRAS p.G12D 524 Oncogene TMEM106B p.T185S 19  
IDH1 p.R132H 293 Oncogene TAS2R43 p.H212R 19  
PIK3CA p.H1047R 274 Oncogene ROCK2 p.T431N 18  
TP53 p.R175H 226 TSG PRNP p.M129V 18  
APC p.R1450* 66 TSG GZMB p.P94A 18  
PTEN p.R130Q 42 TSG PON2 p.S311C 17  
CDKN2A p.R80* 40 TSG KRT14 p.A94T 17  
CHEK2 p.Y390C 37  HNF1A p.I27L 17 TSG 
SMAD4 p.R361H 31 TSG FGFR2 p.S252W 17 Oncogene 
ABCD1 p.S606P 29  NRAS p.G13D 16 Oncogene 
KMT2C p.T316S 26  IL1A p.A114S 16  
OPRD1 p.C27F 25  HLA-DPB1 p.M105V 16  
PRDM9 p.T681S 24  EME1 p.I350T 16  
IDH2 p.R140Q 24 Oncogene ALK p.R1275Q 16 Oncogene 
ARID1A p.R1989* 24 TSG ABCA1 p.R219K 16  
AR p.Q58L 24 Oncogene POU5F1B p.E238Q 15  
UGT2A1 p.R75K 23  LTF p.K47R 15  
PRSS1 p.K170E 23  IFIH1 p.A946T 15  
UGT1A7 p.N129K 22  HLA-A p.L180* 15  
USH2A p.C3416G 21  GRIN3B p.T577M 15  
TGFB1 p.P10L 20  FGFR3 p.Y373C 15 Oncogene 
RAD21L1 p.C90R 20  BRCA2 p.N372H 15 TSG 
HRG p.P204S 20  ATM p.R337C 15 TSG 

 
From our analyses, we rediscovered genes with cancer predisposing mutations, including 

TP53, APC, VHL, RB1 and many others (Table 2), which enhanced our confidence in the 
approach.  However, as these genes have been well studied with respect to both germline 
mutations in familial cancer syndromes and somatic mutations in cancers, our focus lies on those 
genes with unknown connections between Mendelian diseases and specific cancers associated 
with the identical mutations.  As genes often function differently in development versus in adult 
tissues, it is critical to further investigate the molecular pathways modulated by those genes in 
order to understand the mechanisms by which the same mutations can cause Mendelian diseases 
during development and drive tumor growth in adult tissues.  This is best illustrated by an example 
in our oncogene discovery that revealed 5 HGMD/COSMIC overlapping mutations in ACVR1 
gene cumulatively occurred in 19 central nervous system (CNS) cancers (data not shown).  While 
the 5 ACVR1 mutations in germline cause fibrodysplasia ossificans progressiva (FOP), an 
autosomal dominant disorder of skeletal malformation and disabling heterotopic ossification 30, 
the same mutations are somatic oncogenic drivers in a subtype of CNS cancers, specifically 
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diffuse intrinsic pontine glioma (DIPG) 31.  Functional studies have demonstrated the ACVR1 
mutations in germline activate the canonical bone morphogenic protein (BMP) pathway to 
promote osteogenic differentiation and endochondral bone formation resulting in FOP, and the 
same BMP pathway activated by these mutations in astrocyte cells in the brain accelerates cell 
proliferation ultimately leading to malignancy 32.  Therefore, these seemingly unrelated two 
diseases involving different tissue and cell types might be connected by the same molecular 
pathway activated by identical mutations in germline or in somatic cells.  As described in the 
results section, two of these five mutations are also present in endometrium cancers, and they are 
largely mutual exclusive from the most frequently mutated oncogenes (Figure 5), suggesting that 
deregulated activation of the BMP pathway in uterus epithelial cells is likely a key oncogenic 
mechanism in at least some cases of endometrium cancers.  Interestingly, the ACVR1 mutations 
and their potential oncogenic roles in endometrium cancers were also discussed in a recent study 
13. 

We recognize the limitations in our study.  Since the percentage of cancer somatic mutations 
overlapping with germline pathogenic variants is small (0.6% of somatic mutations, 1.6% of 
recurrent somatic mutations in COSMIC; Table 1), our approach will not be applicable to the 
majority of the somatic mutation data from cancer genomic sequencing.  Furthermore, 
identification of putative oncogenes based on high recurrence and mutual exclusivity from known 
oncogenes yielded few candidates.  This is partly due to the fact that very few HGMD/COSMIC 
overlapping mutations have high recurrence in cancers.  In addition, lack of mutual exclusivity 
with known oncogenes does not necessarily preclude the mutations as cancer drivers.  Our goal 
was only to identify potentially novel cancer genes with high confidence.  As more cancer 
genomic sequencing data become available in COSMIC, our approach will likely lead to the 
identification of additional putative oncogenes. Another limitation is that most of the candidate 
cancer genes from our analysis lack apparent functional connection to cancer development.  This 
is somewhat expected due the inherent nature of our approach using Mendelian diseases 
pathogenic variants to aid novel cancer gene discovery.  Accordingly, our study demonstrates a 
powerful technique for hypothesis generation to identify associations that warrant further 
experimental validation. 
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