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Utilization of single modality data to build predictive models in cancer results in a rather narrow
view of most patient profiles. Some clinical facets relate strongly to histology image features, e.g.
tumor stages, whereas others are associated with genomic and proteomic variations (e.g. cancer
subtypes and disease aggression biomarkers). We hypothesize that there are coherent “trans-omics”
features that characterize varied clinical cohorts across multiple sources of data leading to more
descriptive and robust disease characterization. In this work, for 105 breast cancer patients from the
TCGA (The Cancer Genome Atlas), we consider four clinical attributes (AJCC Stage, Tumor
Stage, ER-Status and PAM50 mRNA Subtypes), and build predictive models using three different
modalities of data (histopathological images, transcriptomics and proteomics). Following which,
we identify critical multi-level features that drive successful classification of patients for the
various different cohorts. To build predictors for each data type, we employ widely used “best
practice” techniques including CNN-based (convolutional neural network) classifiers for
histopathological images and regression models for proteogenomic data. While, as expected,
histology images outperformed molecular features while predicting cancer stages, and
transcriptomics held superior discriminatory power for ER-Status and PAMS50 subtypes, there exist
a few cases where all data modalities exhibited comparable performance. Further, we also
identified sets of key genes and proteins whose expression and abundance correlate across each
clinical cohort including (i) tumor severity and progression (incl. GABARAP), (ii) ER-status (incl.
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ESR1) and (iii) disease subtypes (incl. FOXC1). Thus, we quantitatively assess the efficacy of
different data types to predict critical breast cancer patient attributes and improve disease
characterization.

1. Introduction

Recent advances in whole slide imaging TR
digitization and compilation in the form | =~~~ IndirectEvidence
of the TCGA compendium', alongside Genomics
matching high throughput profiling data L

Histopathology
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modeling different facets of an | EEEHEE i

experiment. Histopathological images 1 /' Immunohistochemistry
have been very successful in predicting | & -- S ?"'&? "? ,;
clinical outcomes in the context of : — ) » .‘“‘_ 5
various TCGA cancers’. Similarly, ' ‘ S
transcriptomics and proteomics profiling | 588 €===== 2

has showcased distinct discriminatory
power when modeling cancer subtypes
for the purpose of targeted drug therapies
and biomarker excavation’. The purpose
of this work is to comprehensively compare the characterizing abilities of these three modalities of
data across varying types of clinical cohorts, when traditionally, each are analyzed in the context
of specific attributes only (Figure 1). The overarching goal is to (a) qualitatively compare the
predictive power of each type of data modality while modeling different patient attributes and (b)
find coherent biological signatures and features (e.g. driver genes and subtype-specific protein
biomarkers) that provide a framework for evidence based depiction of each attribute cohort.

To achieve the above goals, we utilize 105 patients from the TCGA-BRCA (Breast Cancer)
dataset, which contain a clinically diverse set of patients and multiple levels of data. Namely,
histopathological (H-hematoxylin and E-ecosin stained) tissue images of the tumor region,
transcriptomics (RNA-Seq) data and proteomics (Isobaric tag for relative and absolute quantitation
—~iTRAQ) data are available for all the patients categorized in this study. The data modalities were
used to model prediction for the four (4) clinical attributes, namely, AJCC (American Joint
Committee on Cancer) staging, tumor staging, ER-status and lastly PAMS0 panel breast cancer
subtypes.

Data modalities and biological models

Histology Images - There has been a recent upsurge in publications describing the utilization of
H/E whole slide images (WSIs) to predict clinical outcomes. Many of these present the use of a
deep learning approach on tiles of histology images, as opposed to semantic image features, to
build classification models” (supplementary material). There are many commonalities between
the inferences that can be drawn from morphological features identified by CNNs (atypical shape
of cells, disintegration of tissue architecture and visible stromal invasiveness) and the hallmarks of
cancer (cells resisting apoptosis, metastatic tendencies and limitless replicative potential). We

Figure 1. Various patient attributes and the data
modalities that present validation or evidence for them.
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chose GoogLeNet* inspired CNNs with histology data to classify the dataset into clinical cohorts
as listed above.

Transcriptomics - From the four (4) patient stratifications that we aimed to assess, the molecular
subtypes (ER-Status and PAMS50 subtypes) are natively associated with transcript level variations
across patients. Histology images remain the preferred and proven method for largely predicting
clinical status, while a few analyses using transcriptomics, modeling staging and similar attributes
have been performed with some success’. Transcript level expression has been primarily utilized
to subtype patients, extract biomarkers and understand signaling and regulation using data from
microarrays and RNA-Seq® using traditional methods of analysis that are well understood and
widely implemented’.

Proteomics - High throughput proteomics experiments have recently gained popularity as they
enable the study of regulatory mechanisms in cancer. Combining proteomics and transcriptomics,
models disease more effectively than using these datasets independently and thus proteogenomics
analysis has been utilized for gauging better subtypes of disease, associating genomic variations

with signaling and isolating disease driver genes and proteins™®.

Our aim was to T 3 By
5 ” nscrip atient Cohorts
build models with
« T AJCC 'Tumor |ER PAMS0
best practice Staging |Stage [Status |Subtype
methods for each data " AJCC Stage Transcriptomics Regression based models | =
i e Tumor Stage | gy a
mOdahty’ and for the ey + ER Status | Proteomics Re onb &
. e gression based models
same set of patients, roars PAMS0 o
. £ subtype "
train, test and predict Tissue Images : :::E;isue CNN based models

the different clinical
attributes. The goal |[i\l——"
was to compare utility  Figure 2. Showcases the construction of the multiple models across

of data types, using different data modalities. Comparing the performance of these models

traditional, widely used quantifies each data level’s utility for identification of characteristic
features for each of the four clinical attributes.

ez

o

methods for each data
type. For the best performing models for each data modality, we compare the corresponding
results for all four clinical cohorts (Figure 2). As expected, histology based models are ideal for
predicting clinical outcomes and genomic data outperforms all other data types when predicting
molecular subtypes. However, we also observe comparable performance metrics amongst non-
traditional data models in some cases, which allow us to reinforce the characterization of cohorts
across the scales. For instance, our results show that there exist salient genes and proteins that are
able to distinguish between AJCC stages and tumor stages relatively successfully. These included
genes that are verifiably associated with disease severity and tumor progression — e.g. GABARAP,
CKS2 and CDHI. A more comprehensive list of molecular markers is included in subsequent
sections. While image-based classifiers outperform them, they can still help build trans-omic
evidence and reinforce disease profiles. In summary, this work explores the likelihood of finding
evidence in data types that include trans-omic indicators. Additionally it forms a critical
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foundational layer for future integrative imaging genomics models by highlighting utility of data
types and extracting meaningful features.

2. Methods and Materials

Below we describe, a workflow for (a) building data driven predictive models (Section 2.2), (b)
evaluating performance of all the models for comparison (Section 2.3) and (c) extracting key
driving features from successful models (Section 2.4). Scripts used to build and evaluate models as
well as find key features are included in the supplementary material.

2.1. TCGA Breast Cancer multi-level dataset

The TCGA breast cancer study’ is a well-characterized and thoroughly comprehensive
experimental study of breast invasive carcinoma™'’. A total of 105 patients, for whom all three (3)
types of data were available were utilized in this work. The three data modalities include RNA-Seq
mRNA expression, selected parts of H/E stained whole slide tissue images and proteomic
abundance from mass spectrometry (LC-MS/MS —Liquid Chromatography-Mass Spectrometry)
analysis. Further, each of these 105 patients have associated clinical profiles that detail their AJCC
Stage (Stage I, II, III and IV), Tumor Stage (T1, T2, T3 and T4), ER status (+/-) and finally
PAMS50 mRNA subtypes of the cancer (Luminal A, Luminal B, HER2 enriched and Basal like).

2.2. Different data modalities and subsequent model construction

2.2.1. Histology images and CNN based classification models

As mentioned previously, we utilized the GoogLeNet (2014) Convolutional Neural Network to
construct a classifier using the tiles of histology images that were acquired from the Genomic Data
Commons (GDC)''. As is typical with neural networks, multiple parameters (structure of input,
number of network layers, pre-training data, etc.) are instrumental to the eventual performance. To
this end, we constructed classifiers using five (5) different versions of the standard GoogLeNet
(with and without pre-training data, larger input tile sizes, spatially invariant input tiles and only
epithelial regions as training data) and evaluated the performance for each across all clinical
cohorts. See supplementary material for more details including key transformative features of
the different CNN models.

2.2.2. Transcriptomics data and modeling

Transcript expression RNA-Seq data (percentile-normalized version) was accessed from the
UCSC Xena (http://xena.ucsc.edu/)"
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Project. Superfluous gene names or transcript measurements (tagged as NA) were removed and Z-

transform 4 Gene sets relevant to breast cancer ™
normalization ] _
of the Differential || Differential
idsa d Correlated | expression || expression ::?;:::tilx
resulting data PAMS50 Sorlie500 | with tumor | between || between TCGA
was grade DCISand figradellland) o . A'
performed. \ j _ IDC grade | ;
The fmal data irareral Patient Cohorts
matrix iptomi AICC [Tumor[ER  |PAMSO
i [Patient X | staging|Stage [Status |Subtype
contained the ‘
normalized |
transcript __Alccstage 24 =
| Tu Sta i -
measures for OR — + f:.éﬁgsriaﬁ.;e' ] ‘ Muiltinomial °
. PAMS50 subtype log-linear o
20501 unique BmEass regression 7
‘ models
£Enes across B i
105 patients, N v ‘
and the prn 3
corresponding
four (4) Figure 3. Workflow detailing the construction of regression models from
dimensional transcriptomics and proteomics data. 6 different models are constructed for each
o clinical cohort (AJCC Staging, Tumor Staging, ER Status and PAMS50 Subtypes).
01111.1c31 These 6 different models are constructed by extracting subsets of the proteogenomic
attribute data for gene sets relevant to various different attributes of breast cancer. Using these
vectors. To data subsets, and clinical cohort labels, we construct multinomial log-linear
build regression predictive models.
predictive

models for multi-class labels, we employed multinomial log-linear regression (using function
“mutinom” from R-package “nner”") on different subsets of the transcriptomics data. To build
these regression models from the transcriptomics dataset, we find subsets of the genome wide
dataset that potentially represented a variety of cohorts (histology and molecular profiling based).
Table 1 presents the gene lists'"'*""7 which helped extract those data subsets and a summation of
what patient profiles they help characterize (Figure 3).

Table 1. Gene lists proven to be relevant to different breast cancer patient attributes

Gene Lists Patient Attribute Characterization
PAMS0 50 genes, defining expression based intrinsic subtypes of breast cancer
Sorlie500 500 intrinsic unique genes, defining refined subtypes of breast cancer

Top 200 genes related to tumor grade | 200 genes, highly and significantly correlated with tumor grade

Most frequently mutated in TCGA- Top 20 most frequently mutated genes in the TCGA-BRCA project

BRCA patients, as reported by data analysis performed by the GDC portal

Differentially expressed between 305 genes classifying tumor invasion, presenting significant differential

DCIS-S and IDC-S expression between stroma of ductal carcinoma in situ and invasive ductal
carcinoma

Differentially expressed between 620 genes, found differentially expressed between stroma of tumor grade

grade IIT and grade I I1I and tumor grade I patients, classifying the extent of abnormality of the
tumor
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2.2.3. Proteomics data and modeling

Normalized proteomics abundance (iTRAQ - Isobaric tag for relative and absolute quantitation)
for the 105 patients considered for this work were extracted from supplementary data provided in
the work of Mertins Et al.® (Supplementary Table 03 — Global Proteome G1). The details of data
normalization and pre-processing are described in the supplementary information of the
publication cited above. Redundant profiles or samples were removed from the normalized dataset
mimicking the technique utilized previously for transcriptomics data. The final data matrix of
normalized protein abundances contained 6386 unique proteins across the relevant 105 patients.
Similar to the analysis technique engaged for the transcriptomics dataset (regression modeling
with biologically driven subsets of data), we built models (Figure 3) with subsets of the proteomic
dataset in the context of the four (4) selected clinical attributes.

2.3. Metrics of performance for each model

Standard performance metrics of precision, recall and F-score for all versions of the models
constructed from each data type are used. As described above, multiple variations of models from
each data modality were constructed, and the ones that performed best, within a single data level,
were chosen for performance comparison across data levels. For proteogenomics datasets, we
calculated the performance measures using cross-validation and partitioning 70% of the data for
training, using function “prediction” from the R-package “ROCR”'®. For the CNN based models,
suitable programmatic metrics'® were utilized for the same. Specifics of model evaluation,
including the details regarding division of data to training and testing sets, are further detailed in
the supplementary material.

2.4. Isolating the key biological signature features characterizing each cohort

We aim to identify key features from all data modalities, which project the highest discriminatory
power for each clinical attribute.

Transcriptomics and Proteomics - We select the model that predominantly outperforms all other
proteogenomic models and extract genes and proteins that contain high predictive power for each
of the patient attributes. We utilize the RFE (Recursive Feature Elimination)?**' workflow (see
supplementary material) to find subsets of features for each model that are critical for guiding
the classification (using function “rfe” provided by the R-package “caret’™®). Due to selection
bias, we execute the algorithm multiple times, and extract the features that are consistently deemed
important for the model.

Histology Images —While CNNs produce weighted feature maps used to drive classification, it is
challenging to map them to verifiable histology image features. For the purposes of this work, we
assess genomic features only, but propose to expand this study in the future to utilize CNN
saliency maps in an effort to extract relevant feature images from CNNs.
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3. Results and Discussion

In this section we report performance metrics for models generated from all data types, and the
key genes and proteins that drive successful classification. All other relevant information (gene
lists, modeling parameters, R data frames) is detailed in the supplementary material.

3.1. Classification of patient attributes using histopathological tissue images using CNNs

We compared the performance metrics of precision, recall and F-score across all the different
versions of the image classification CNNs. We observed that the best predictive model for
classifying patients to AJCC stages was borne from the “Inception (v3 2015) with pre-training
version of the CNN” (0.52 F-score), whereas for tumor stages the “Inception (v3 2015) with pre-
training and boosted data” (0.50 F-score) outperformed the other models. For clinical cohorts
(ER-Status and PAMS50 subtypes) traditionally related to genomic data, the best predictive models
compared to all other CNN based models were again the “Inception (v3 2015) with pre-training
and boosted data” (0.64 F-score) and “Inception (v3 2015) with no pre-training” (0.35 F-score)
respectively. To summarize, it is not surprising that tissue images predict the AJCC and tumor
staging as well as ER-status drastically better than PAMS0 subtypes. Additionally, the varying
parameters and boosting data techniques had little to no discernible effect to the quality of the
models produced.

3.2. Modeling and classification using proteogenomics
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Figure 4. (a) Boxplots presenting gene expression (percentile normalized) of
example top ranking critical features (genes) derived from “best” models for each
clinical cohort using transcriptomics data. (b) Boxplots presenting protein
abundance (mixture model-based normalization) of example top ranking critical
features (proteins) derived from “best” models for each clinical cohort using

proteomics data.
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4, and examples with corresponding literature evidence are listed below. Performance metrics for
all the models and literature evidence for key genes and proteins as identified by RFE analysis is
listed in supplementary material.

3.2.1. Transcriptomics model results

AJCC and Tumor Stage-The performance metric indicates that the transcriptomics model
generated with Top 200 genes related to tumor grade outperform all other models when predicting
both AJCC Stage and Tumor Stage (0.43 and 0.4 F-score respectively). The RFE approach isolates
11 genes that are critical to the model predicting AJCC Stage and 10 genes for the tumor stage
model. All 21 of the extracted key genes from the above two models are part of a verified breast
cancer grading signature™. A large number of these genes are shown to be significantly associated
with clinical outcome, a result that can be easily extended to stage and tumor size association
(analyzed using the PRECOG database® (https://precog.stanford.edu), which associates gene
expression to clinical outcome, tabulated in supplementary materials). These genes include
CKS2, overexpression of which is known to be involved in tumor development by blocking cell
cycle S-phase signaling which causes cells to abnormally proliferate in stress conditions™ and
ARPCI1A, associated with poor prognosis in many cancers™.

ER-Status-The classification between patients with differing ER-Status is performed perfectly by
the PAMS50 set of intrinsic genes (0.925 F-score). Gene expression of ESR1 and other co-
expressed genes, included within the PAMS50 set are widely known as having high discrimination
for ER-positive status®®. The RFE guided list of driver genes for this model lists 7 key genes
including ESR1. Investigating these critical genes using Gene Set Enrichment Analysis (GSEA)ET,
we observe that 6 out of the 7 identified genes are known to be up regulated specifically in ESR1
positive breast cancer tumors (false discovery rate of 2.2 ¢"'')*®. This gene set includes driver
genes such as FOXAI1, which is involved with ESRI for regulationzg, NATI, known to be
commonly overexpressed in ER-alpha (+) tumors™’, and MDM2, which regulates ER-alpha and
estrogen responsiveness in breast cancer cells®’.

PAMS50 mRNA Subtype-While one would expect the data subset from PAMS50 gene set to perform
ideally when predicting the PAMS0 subtype status, Sorlie500 transcriptomics subset in fact
presents a superior classifier when performing classification to PAM50 mRNA subtypes (0.65 F-
score versus 0.59 for the PAMS50 transcriptomics subset). A total of 13 genes from the PAM50
gene set are included in the Sorlie500 gene set, along with other intrinsic subtyping genes.
Acquisition, normalization, pre-processing and composition of data all are known to fluctuate the
results of PAM50 mRNA based subtyping®>. We hypothesize that while highly relevant (known
biomarkers) genes like ESR1, ERBB2, FOXAI, FOXC1* ete. (included in both PAMS50 and
Sorlie500 gene sets, and identified as highly important for this model) drive the subtype
classification, additional intrinsic genes encompassed in the Sor/ie500 set further help
stratification. The hypothesis is confirmed by the RFE analysis, which selected 23 highly
important genes to the model, 7 of which also belonged to the PAMS50 gene set and included
known discriminants such as ESR1 and ERBB2*.
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3.2.2. Proteomics model results

AJCC, Tumor Stage and ER-Status-All three of these cohorts are best predicted by proteomics
data subset of the Most frequently mutated genes. The proteomics data subsets presented F-score
measures of 0.43, 0.45 and 0.80 for the AJCC stage, tumor stage and ER-status classification
respectively, compared to 0.43, 0.39 and 0.92 F-score observed for the best models from the
transcriptomics dataset. The RFE analysis further isolates a list of two (2) (e.g. DST, found to be
breast cancer tumor progression suppressor35 ), three (3) (e.g. disease severity biomarker CDH1°%)
and four (4) (e.g. GATA3, strongly associated with ER-Status’’) proteins respectively that are the
main drivers of these models.

PAMS50 mRNA Subtype - The subset of PAM50 proteins and their corresponding normalized
abundances outperform all other models when attempting to classify the PAM50 mRNA subtype
of the patients using the proteomics data. All performance measures showcase that this model is
still lacking in predictive power as compared to the best Sor/ie500 model derived from the
transcriptomics data (0.65 F-score for the transcriptomics Sor/ie500 model versus 0.54 for
proteomics PAMS50 model). This may be caused, potentially due to a disconnect between various
transcripts and corresponding proteins due to post-transcriptional regulation. The RFE analysis
outlines 10 proteins that drive the classification for this model and they include well known breast
cancer relevant proteins such as ESR1, ERBB2 and RRM2 (associated with basal proliferative
tumors°?). Four (4) of the key genes from the corresponding list derived from the transcriptomics
model (ESR1, FOXA1, ERBB2 and NAT1) are included in the key proteins list as well.

3.3. Comparison of all data modalities

As previously

Precision I ) : ! e
mentioned, the Best Imaging Model 0.513149 0.497086 0.639785 0.365476
. Best Transcriptomics Model 0.472848164 0.467049688| 0.92923747 0.704195609
best performing Best Proteomics Model 0.463979274] _ 0.462117632| 0.81571361 0.582639235
models, for each
data modality, Recall AJCC Stage [Tumor Stage |[ER S e |
3 Best Imaging Model 0.596441 0.555039 0.645003 0.356984
were ultimately Best Transcriptomics Model 0.4175 0.381875] _0.9246875 0.6553125
compared across Best Proteomics Model 0.518125 0.49] _ 0.804375 0.5409375
all three data
F-score
levels for each Best Imaging Model ; Z ;
. Best Transcriptomics Model | 0.431051241] __ 0.399065605| 0.92426716 0.653987855
cohort (Figure 5). 5o proteomics Model 0.438910713] __0.453932236] 080132172 0.541250002
Histology image . . .
Figure 5. Precision, recall and F-score across all clinical cohorts for the best
based models : - . e
d th performing models for each data modality respectively. Standard deviations
outdid ; 0 ) for measures calculated using cross-validation are included in supplementary
transcriptomics materials.
and proteomics

models while predicting the AJCC and tumor stage. Both ER-Status and PAMS50 subtypes were
ideally characterized by transcriptomics data, with proteomics data models performing second
best. While this was in accordance with our expectations, there were a few points of interest within
these comparative results. For instance, while imaging models were the most precise in classifying

385



Pacific Symposium on Biocomputing 2018

patient staging, it is important to note that both transcriptomics and proteomics models were not
drastically less precise (0.51 vs ~0.47). This indicates that there exist features within genomic
variations, which have the discriminatory power to effectively characterize histology-based
staging. These comparisons not only quantified the utility of each data type in modeling various
clinical subtypes, they also identified previously unexplored associations between data types and
patient profiles.

4, Conclusions and Future Work

In this study we showcased the different data modalities and how they are utilized for modeling
different facets of cancer. We employed “best practice” modeling techniques for three different
data modalities to predict four (4) varied attributes of breast cancer patients in the TCGA
compendium. We quantified the predictive power of data modalities for different aspects of patient
profiles. Finally, key genomic features critical to all different clinical attributes were identified and
validated using existing literature. We wish to expand this work by exploring the various pathways
(e.g. FOXA1/ESR1/GATA3 interacting pathway) that include the identified key genes and
proteins, in the context of various different cohorts. Additionally, we wish to perform analysis to
explain what causes the differences between predictive powers across data modalities (e.g.
transcriptomics and proteomics models). Further, we wish to utilize more sophisticated methods,
including more robust regression to account for the structure of data, for each data modality to
perform better stratification of patient subtypes and construct robust patient similarity frameworks
using these trans-omic evidences.

Supplementary Materials - https://github.com/arunima2/PSB_2018
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