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Jan-Philipp Pollmeier

Best Pokémon Team

Abstract

This bachelor’s thesis concerns itself with the finding of the best Pokémon Team under
several given assumptions. With the Pokémon franchise now encompassing over 1000
Pokémon and additional ~100 being released every generation, each with their own set of
stats and features, identifying the best team poses a very challenging question. This project
makes use of a dataset and uses different approaches to find the best Pokémon team. The
methodology includes simulation of battles between individual Pokémon and teams and also
several graph theory approaches to find the best team. We can show that the selection of
our algorithm is significantly better than a more common “naive” selection technique
employed by some players. Future research directions could include a less restricted
definition of the problem statement and including a more sophisticated battle simulation
between Pokémon.
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For many, unlike myself, Pokémon was their first portal into the realm of gaming. Pokémon is
set in a world where you and the name-giving creatures, Pokémon, are best friends. You can
catch Pokémon, battle them and conquer the rankings to become Pokémon master. The
only catch is, at any point in the game you may only be with a team of at most six Pokémon,
making the selection of the right Pokémon and ordering them even more important. Only
very few gaming franchises manage to keep such a large fanbase content over so many
years of creating new and unique Pokémon. What is their secret to this success? Could it be
that the game developers meticulously balanced every Pokémon in such a way that they
each can be viable in certain scenarios and team constellations? To test this hypothesis I
was tasked with finding a significantly better Pokémon team than a naively chosen baseline.
This is not only an interesting question for many enthusiasts all over the world but also
presents a rich field for computational analysis.

1.1 Motivation

The motivation for this particular problem stems from the personal fascination in optimizing
each component when gaming and the general interest for the Pokémon franchise while
also presenting interesting concepts in the fields of optimization problems, game theory and
probability. By tackling these fields this study aims to contribute to the broader
understanding of strategic game design and optimization problems with the possibility to
extend that knowledge to beyond the realm of Pokémon.

1.2 Problem Statement
Despite the many different approaches found online there remains no agreed upon standard
of finding the best Pokémon team. Even the strongest teams will get beaten by another
team which counters their strengths. This study defines “best” as the ability of the team to
adapt and succeed against a wide range of opposing teams and beat a naive team selection
process along the way.

1.3 Objectives

The primary objective of this study is to develop and apply algorithms to identify highly
effective Pokémon and constellations giving us ground to conclude whether a “best”
Pokémon team exists. Secondary objectives include measuring the effectiveness of the
mentioned algorithms, analyzing the results to determine deciding factors for a “strong”
team and visualizing/analyzing different data sets.

1.4 Methodology Overview

To achieve these goals, the study will make use of data analysis, algorithmic design and
simulations. Earlier stages will involve getting familiar and preprocessing the data while later
stages will involve the design and testing of various optimization algorithms. The criteria for
evaluating the performance of algorithmic approaches will be based on simulations against
a range of opponent teams and the comparison with a so-called threshold team.

1.5 Thesis Structure

The remainder of the thesis is structured as follows: Chapter 2 will outline the methodology
applied, Chapter 3 presents the implementation and testing phase of all algorithms used.
Chapter 4 will discuss the results and findings, and Chapter 5 will end the study with a
conclusion and discussion of possible future work.

2. Methodology

This Chapter will outline the methodology employed to identify the optimal Pokémon team
composition. Given the complexity and sheer amount of data caused by over 800 Pokémon
with all their stats and abilities this study makes use of several algorithmic approaches such
as graph theory, iterative algorithms and breaking down the problem into smaller problems.
The methodologies are designed to effectively and rigorously test and validate the best



The methodologies are designed to effectively and rigorously test and validate the best
Pokémon team against a wide range of opposing team constellations and a threshold team
selected during validation.

2.1 Research Design

The research follows a quantitative approach focused on measurable performance to
assess the strength of a team. An experimental research design was used where strong
teams found by the algorithm were tested against several thousand opponent teams and
then compared to the performance of a naively chosen “best team” which consists of the
top six individually best performing Pokémon. This design gave us ground to assess team
performance based on measurable performance metrics such as win-probability against
random teams and the baseline of the naively chosen “best team”.

2.2 Data Collection

The Data used for this Project was provided to me by my supervisor in form of a dataset on
Kaggle . The data contains over 800 Pokémon, all their learnable abilities, stats and most
relevant features to build a battle simulation. Although the data was far from perfectly
curated it gave me a base to quickly jump right into the data analysis and development of
my methodology.

2.3 Pokémon

This section is a little interjection but necessary to fully explain the workings of Pokémon. As
already mentioned Pokémon are what this project is mainly about. Pokémon derived from
the word pocket monsters, are little animal-like creatures the player is able to catch and
battle for sport against other players. Each Pokémon consists of a few main components
that make them unique:

Base Stats: Fundamental attributes that determine a Pokémon’s capabilities ranging from 1 -
255. These are species-specific and include:

HP (Hit Points): The health of the Pokémon.

Attack: The strength of the Pokémon’s physical attacks.

Defense: The Pokémon’s resistance to physical attacks.

Special Attack: The strength of the Pokémon’s special (non-physical) attacks.

Special Defense: The Pokémon’s resistance to special attacks.

Speed: Determines the order of moves in battle.

Effort Values (EVs): Points that enhance base stats which are gained after completed
battles. Intended to reward the player for sticking to the same Pokémon. The values range
from 1 - 255 but capped at a sum of 510 across all 6 EVs.

Individual Values (IVs): Inherent values that add to base stats meant to make each Pokémon
unique. These values are randomly assigned from 0 - 31.

Nature: Affects the growth of certain stats. For each nature one base stat will be increased

by 10% and one will be decreased by 10%.

Level: For each Level the Pokémon gains their stats will be increased by 1/50 the base stat
value, and 1/100 the combined individual value and effort value.

Type: Each Pokémon has at least one and at most two unique types out of possible 18
different types. This leaves us with 324 type combinations which each Pokémon is assigned
one of.

Moves: Based on its type and level each Pokémon can learn up to 4 moves which have a
specific type and are either normal or special attacks. Given the attack type of the move and
the attacking and attacked type of the Pokémon the damage will be calculated.
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Calculation of final HP: ${\displaystyle \mathrm {HP} =\left\lfloor {(2\times \mathrm {Base}
+\mathrm {IV} +\lfloor {\tfrac {\mathrm {EV} }{4}}\rfloor )\times \mathrm {Level} \over
100}\right\rfloor +\mathrm {Level} +10}$

Calculation of final remaining stats: ${\displaystyle \mathrm {OtherStat} ={\Biggl \lfloor }
{\biggl (}{\Bigl \lfloor }{(2\times \mathrm {Base} +\mathrm {IV} +\lfloor {\tfrac {\mathrm {EV} }
{4}}\rfloor )\times \mathrm {Level} \over 100}{\Bigr \rfloor }+5{\biggr )}\times \mathrm
{Nature} {\Biggr \rfloor }}$

2.4 Data Analysis

In an initial step the data set was carefully examined and corrected where necessary to
ensure proper behavior when used for the algorithms and especially the battle simulation.
Given the size of the dataset and complexity of all the connections, several inconsistencies
were identified, such as different naming conventions and missing IDs and other little things
which could break the battle simulation if unnoticed. All those little inconsistencies were
found and corrected progressively in the process of developing the algorithms.

For the analysis and everything else python emerged as the programming language of
choice due to its great support for data science through libraries such as pandas, numpy,
seaborn, matplotlib and network-x which enabled me to really get a feel for the data and the
behavior of it. The biggest chunk of the analysis was statistical with some venturing into
graph theory in between. It was needed to uncover statistical advantages in the Pokémons
attributes such as types, attacks and average stats which all could influence the outcome of
a battle. Visualization played a pivotal role firstly for the identification of mistakes in the
process and also the intuitive understanding of data trends and distributions. Graph theory
was mostly used to identify any connections between Pokémon and their peers to identify
individually strong Pokémon or more so-called “team-players” which only thrive in certain
team constellations.

The analytical approach highlights underlying patterns and relations in the underlying data.
The rigorous data cleaning, analysis and visualization paved the way for the development of
the algorithms and the subsequent battle simulation phase of the research.

2.4.1 Assumptions

Certain assumptions had to be made to facilitate the analysis process and manage
complexity. All Pokémon in the dataset are assumed to be at level 80, with effort values
(EVs) set to 85 and all individual values (IVs) set uniformly to 16 across all base stats.
Furthermore, the nature of all Pokémon is assumed to be hardy. All those values have been
chosen to be either the mean value or ensure even attribute distribution to have minimal
effect. This is contrary to the actual game where almost each attribute is chosen at random,
making every Pokémon unique and it being impossible to create reproducible results. These
simplifications allow for a more manageable analysis process and prevent unnecessary
complexity that could otherwise blow the project out of proportion. Experienced Pokémon
players may notice that some attributes of Pokémon like for example gender and abilities are
still missing. These are deliberately omitted, as they are deemed unnecessary for battling
and are therefore excluded from our research. As for the move selection I chose a relatively
naive approach by precomputing the strongest moves and assigning each Pokémon the top
4 “hardest hitting” moves without regard for the situation or opponent. This brings us to the
next section: The Battle Simulation.

2.4.2 Battle Simulation

This entire project would be impossible to carry out without the battle function. The
simulation serves as the foundation for all our assumptions and is crucial for verifying the
findings of our simulations. The battle simulation is mainly based on the detailed information
available on Bulbapedia. These articles outline the very details of how damage is calculated
and how battles are fought out in Pokémon games. Due to the scope limitations of this
project, I only focused on the most relevant factors that influence the overall outcome of a



battle, such as Pokémons move sets, basic stats and type advantages.

This reduces the formula A:

${\displaystyle {\text{Damage}}=\left({\frac {\left({\frac {2\times {\text{Level}}}
{5}}+2\right)\times {\text{Power}}\times {\frac {A}{D}}}{50}}+2\right)\times
{\text{Targets}}\times {\text{PB}}\times {\text{Weather}}\times {\text{GlaiveRush}}\times}$
$\displaystyle\times {\text{random}}\times {\text{STAB}}\times {\text{Type}}\times
{\text{Burn}}\times {\text{other}}\times {\text{ZMove}}\times {\text{TeraShield}}}$

to formula B:

${\displaystyle {\text{Damage}}=\left({\frac {\left({\frac {2\times {\text{Level}}}
{5}}+2\right)\times {\text{Power}}\times {\frac {A}{D}}}{50}}+2\right)\times
{\text{random}}\times {\text{STAB}}\times {\text{Type}}}$

To put this into perspective, I will reference Pokémon Showdown, the main competitive
platform Pokémon enthusiasts turn to. Its development started in 2012 as an open source
project and is still ongoing. This highlights the complexity and depth of accurately
simulating Pokémon battles taking into account all the niche cases like weather, held items,
status effects ecetera. By limiting the scope to the most critical elements, the battle
simulation aims to provide a realistic yet manageable representation of Pokémon battles and
serves as the basis for this project.

2.5 Algorithmic Approaches

In this Section I will go over all the different approaches I used to evaluate whether there is a
significantly better team than a naively selected team based on the simulation against a
generous number of randomly generated teams. The foundation of all my algorithmic
approaches is an initial simulation where each Pokémon battles against every other
Pokémon to determine which ones perform the best individually giving me a starting point
for all my approaches.

2.5.1 Graph Theory Algorithms

In the early stages I primarily concerned myself with graph theory and ranking algorithms to
get a feel for the individual Pokémon. Using the network library NetworkX I quickly was set
up for initial analysis of all Pokémon and their relations. Using this Network which has a
node for each Pokémon and an edge from Pokémon A to B if Pokémon A beats Pokémon B
with $\text{probability p} \geq \text{threshold}$ . Initially I was on the lookout for Kings and
Dominating Sets. Kings are defined as as vertices which can reach any vertex through a
path of length 1. A n-King is a vertex which does the same but using n Edges. Using this I
wanted to Rule out the exisence of clear must Pick Pokémon. Besides that I looked into the
existance of minimal Dominating Sets where the vertex count is $\leq 6$ . A dominating Set
D is a vertex subset of a graph G where each Node of G is either in D or gets dominated
(has an incoming node) from D. By attempting to find such a dominating set I investigated
the existance of good teams which “dominate” the whole list of remaining Pokémon forming
a good team.

2.5.2 Iterative Methods

After finishing up the Graph Theoretical approach of identifying a best Pokémon team I
mainly concerned myself with an iterative approach which starts out with a randomly
assembled team and tries to converge onto a best team by improving the randomly

assembled team iteratively. Due to very similar results in performance between the top
teams when improving over and over again I needed to look into reducing the overall noise
in the win probability. The noise in win probabilities was assumed to exist because of many
random teams battles outcomes being clear due to super weak Pokémon. To distinguish the
great teams from the good in this noise I either had to run many magnitudes more battles or
I needed a way to remove super weak Pokémon out of the random opponenets. Besides that



I needed a way to remove super weak Pokémon out of the random opponenets. Besides that
not every Pokémon had a realistic chance of being selected into the final 6 of the best team
possibly reducing the number of rounds the algorithm had to run. This is assumed to be due
to certain Pokémon being either consistently too weak or there existing a Pokémon which
outperforms the weaker Pokémon in every stat category.

Generally the algorithms used to tackle these problems can be divided into two groups.
Firstly Algorithms which have been used to shrink the number of Pokémon which might
belong into the best Pokémon team, lets call this candidate pool, and secondly reducing the
number of Pokémons which a team can face to give battles some meaning and reduce
overall noise, called opponent pool.

The candidate- and opponent pool are assumed to be equal in the beginning with every
Pokémon being in it. The main practices used to reduce the size of the pools is based upon
previous data analysis. The process of reducing the aforementioned pools revolved around
the question “can this Pokémon be replaced directly by one or more Pokémon which are
equally as good or better in all its relevant stats?”. For this I tried several strategies:

Top performing Pokémon by Type Stats and Battles

There are 324 ( $\binom{18}{2} + 18$ ) type combinations. I looked at every other same
typed Pokémon A and B and checked if Pokémon B has equal or better stats than Pokémon
A and beats all opposing Pokémon. If so B can replace A.

Top performing Pokémon by Stats and Batles

When looking at the data and finding two Pokémon who beat the same Pokémon we can
eliminate the “weaker one” if all of its stats are equal or worse than those of the stronger
one.

Top n performing Pokémon by type

Using the same approach we can reduce the number even further by just picking the top n
Pokémon for each type combination. This in the best case gives us at minimum 171
Pokémon, one for each type, since only 171 of the 324 type combinations are used.

2.5.3 Incremental Team Optimization Approach

This is the final approach I used to tackle the problem. It revolves around the idea of
breaking the problem down into smaller subproblems and figuring out any relations which
might be helpful in concluding something about the bigger problem. In this concrete case I
started with the top 20 individually performing Pokémon. Then I formed teams of two out of
those top 20 individual Pokémon and simulated battles against random opponent teams of
size 2. I followed this this up by forming teams of 3 of the teams of 2 and continued this
process until I reached teams of size 6.

2.6 Summary

My supervisor provided me with the flexibility to explore several approaches, as there is no
clear best way to tackle such a complex optimization problem. This allowed me to be
dynamic and adaptive with my research, enabling me to experiment with graph theoretical
methods, iterative techniques, and simulation-based evaluations, leading to a more
exploratory and on the go process.

3. Implementation

In this implementation section, I will over the key components behind the different
approaches. While I won’t cover every detail here, those interested in the full
implementation can have a look at the code, which is available in the GitHub repository .
One thing you will often see is the conversion from .csv files into dictionaries due to them
showing better lookup performance than pandas dataframes. Generally everything that can
be precomputed is precomputed and stored inside a dictionary.

2



be precomputed is precomputed and stored inside a dictionary.

3.1 Battle Simulation

The battle simulation consists of three main parts: the Pokémon class, Team class and the
Battle functions. Both of these classes will be touched upon in the following subsections.

3.1.1 Pokémon Class

The Pokémon class initializes each Pokémon with its base stats, top moves, and calculated
stats based on fixed EVs, IVs, and nature:

Initialization: Retrieves base stats, top moves, type and calculates the final stats for
each Pokémon.

Stat Calculation: Functions to calculate stats based on the Pokémon’s base stats, EVs,
IVs, and nature.

Reset HP: Resets the Pokémon’s battle HP to its base HP. This is done so I can quickly
reset a Pokémon in battle to its normal HP after it faints and not create a completely

new Pokémon every time.

Retrieve Moves: Retrieves the top moves for each Pokémon which are selected to be
the strongest moves by damage.

Print Stats: Prints the Pokémon’s stats for debugging purposes.

3.1.2 Team Class

The Team class initializes a team of Pokémon, ensuring unique Pokédex numbers and filling
the team to the required size if necessary:

Initialization:
Takes a variable number of Pokémon IDs and a team size. Which is especially
important for the Incremental Team Optimization Approach.

Ensures that the team consists of unique Pokémon based on their Pokédex
numbers as we will not allow for teams with non unique Pokémon.

Fills the rest of the team with random, unique Pokémon if the provided IDs are
insufficient to meet the team size.

Reset:
Resets the HP of all Pokémon in the team to their base HP.

String Representation:
Provides a string representation of the team, listing each Pokémon and their base
HP for debugging purposes.

3.1.3 Battle Function

The Battle class manages battles between two teams of Pokémon, handling individual
battles and determining the overall winner:

teamBattle:
Manages a full battle between two teams of Pokémon.

Determines the winner based on which team’s Pokémon faint first.

battle:
Conducts a battle between two individual Pokémon.

Determines the first attacker based on speed and alternates attacks until one
Pokémon faints.

attack:
Handles the logic for one Pokémon attacking another.

Chooses a random move of a precomputed list of 4 moves, calculates damage, and
updates the defending Pokémon’s HP.



3.2 Graph Theory Algorithms

This is a trivial section since most of the graph theory algorithms were implemented using
the NetworkX library and only little adjustements or loops have been introduced. Key
algorithms and methods used include:

3.2.1 Creating Directed Graph based on Simulation:

Created directed graphs G from Pokémon battle outcomes, adding edges between
Pokémon A and B if A beats B with a probability $\geq 0.9$.

3.2.2 Dominating Sets:

Utilized nx.dominating_set(G)  to find a random dominating set. The problem of finding
smallest dominating sets is computationally demanding and only bruteforcable for smaller
subsets of all Pokémon. The following codes do this in a naive brute force way and attemt to
find a dominating set using the nodes ranked descendingly by their out-degree:

3.2.3 Finding k-Kings:

Implemented a custom function to find k-kings in the directed graph, defined as Pokémon
from which every other Pokémon is reachable within k edges:

```python 
def brute_find_dominating_sets(G):
    nodes = list(G.nodes())
    dominating_sets = []
    found_size = None
    
    for i in range(1, len(nodes) + 1):
        if found_size is not None and i > found_size:
            break
        for subset in itertools.combinations(nodes, i):
            if nx.is_dominating_set(G, subset):
                if found_size is None:
                    found_size = i
                if i == found_size:
                    dominating_sets.append(set(subset))

    return dominating_sets
        
def out_degree_dominating_set(G):
    sorted_nodes = sorted(G.nodes(), key=lambda x: G.out_degree(x), reverse=True)
    
    S = set()

    for node in sorted_nodes:
        S.add(node)
        if nx.is_dominating_set(G, S):
            return S

    return None

```

```python
def is_king(graph, vertex):
    shortest_paths = nx.single_source_shortest_path_length(graph, vertex, cutoff=1)
    return len(shortest_paths) == len(graph.nodes)

def find_kings(graph):
    kings = []
    for vertex in graph.nodes:
        if is_king(graph, vertex):
            kings.append(vertex)
    return (kings, len(kings))

find_kings(G)



3.3 Iterative Algorithm

The following algorithm iteratively identifies top-performing Pokémon teams by simulating
battles and refining the selection of Pokémon IDs over multiple iterations.

1. Initialization:
Start with a random sample of Pokémon IDs ( subset_size ) which is usually set to
12.

Set parameters for the maximum number of iterations, the number of top teams to
consider for the recurring IDs, the number of battles to start with in the first
generation, and the number of battles to end with in the last generation.

2. Iterative Process:
For each iteration:

Generate Opponent Teams: Create a set of fixed opponent teams by
randomly sampling Pokémon IDs and adding any custom teams provided.

Simulate Battles: Use the run_battle_simulation  function to simulate
battles between the generated teams and record win counts for each team.

Identify Top Performers: Sort teams by their win counts to identify the top 10
teams and extract the 6 most frequently occurring Pokémon IDs.

Update Pokémon IDs: Replace some of the current set of Pokémon IDs with

the top-performing Pokémon IDs if they are not already in it and introduce 6
new IDs to maintain diversity and form the new 12 IDs.

Check Specific Team Performance: Calculate the win rate of the threshold
team and track better-performing teams.

3. Output:
The algorithm returns the top Pokémon IDs after the final iteration and prints
running win percentages of the top 10 teams along the way.

3.4 Incremental Team Optimization

Given the computational complexity of simulating battles for teams of size 6, we started
with smaller subproblems. The main idea is to:

1. Identify the top 20 individually performing Pokémon.

2. Create all possible pairs (combinations) from these 20 Pokémon.

3. Predict the outcomes of the battles against random teams based on their individual
performance.

4. Simulate battles between these pairs and random teams to evaluate their performance.

5. Compare the rankings between the prediction and simulation to gain insights about
whether predicting good performing teams is possible.

6. Incrementally build larger teams by fusing smaller teams, adding one Pokémon at a
time, based on shared members.

7. Repeat this process but starting with all teams of size 2.

4. Results

Let’s now look at the results of each attempted approach. We will go through each approach
one by one and revisit them in detail. Using graphs and figures I will try to highlight some of
the findings. The primary goal is to evaluate the effectiveness of each strategy and to
collect the insights gained from these analyses.

4.1 Results Battle Simulation

While the battle simulation results do not directly pinpoint the optimal Pokémon team, they
offer valuable insights into the performance characteristics and interactions of different

find_kings(G)
```



offer valuable insights into the performance characteristics and interactions of different
team configurations. These findings lay the groundwork for more targeted analyses and
highlight the complexity of the optimization problem. The visualizations included in this
section help convey the nuances of the data, offering a clear view of the underlying
dynamics at play and are a fun visualization for Pokémon fanatics.



The top 10 individual performing Pokémon for the 1. Generation are:

Rank Pokémon Win Probability

1. Mewtwo 0.9674788079470197

2. Snorlax 0.9408999999999995

3. Dragonite 0.9162225165562912

4. Moltres 0.8931192052980129

5. Arcanine 0.8722357615894036

6. Zapdos 0.865892715231788

7. Tauros 0.8606562913907281

8. Hypno 0.8387019867549668

9. Gengar 0.8267139072847685

10. Hitmonchan 0.8225529801324505

The top 10 individual performing Pokémon for the the whole Dataset are:

Rank Pokémon Win Probability

1. Giratina (Altered Forme) 0.9610472568578559

2. Lunala 0.9590593516209487

3. Arceus (Normal) 0.9504522443890281

4. Dialga 0.9480451371571083

5. Solgaleo 0.9387623441396511

6. Ho-Oh 0.9352665835411477

7. Lugia 0.9319522443890287

8. Mewtwo 0.925636034912718

9. Reshiram 0.9232175810473824

10. Magearna 0.9210951371571086

This gives us the following naively picked best team: Giratina (Altered Forme), Lunala,
Arceus, Dialga, Solgaleo, Ho-Oh

4.2 Results Graph Theory Algorithms



In this section, we delve into the application of graph theory to analyze the interconnections
and performance of Pokémon teams. We begin with a graphic that illustrates the different
interconnections within a graph, providing a visual representation of the relationships and
interactions between the first 10 Pokémon based on their battle outcomes:

4.2.1 Dominating Sets

Using our functions for dominating sets we find the following dominating sets in the first 151
Pokémon:

out_degree_dominating_set(G) : Snorlax, Mewtwo, Dragonite
brute_find_dominating_sets(G) : {Dragonite, Gengar, Snorlax}, {Dragonite, Mewtwo,

Snorlax}
nx.dominating_set(G) : Alakazam, Mew, Krabby, Zapdos, Tentacool, Poliwrath, Dugtrio,

Pinsir, Magneton, Golduck, Tentacruel, Starmie, Omastar, Mewtwo, Exeggutor, Dragonite,
Haunter

Using the existing function nx.dominating_set(G)  is not an option due to its randomness
when finding dominating sets as they are not minimal. The functions implemented by myself
are a lot quicker in the case of the out_degree_dominating_set(G)  function and find a

minimal subset in both of my implemented functions. For bigger subsets of the whole
dataset we cannot really find any minimal dominating sets as it turns out to be too
computationally demanding. Although not possible for bigger subsets I confirmed that all 4
Pokémon (Dragonite, Gengar, Snorlax, Mewtwo) found in the minimal dominating sets were
present in the top performing teams of size 6 in the incremental team optimization.



4.2.2 Finding k-Kings

No 1-kings k = 1 were identified in the analysis. For the first generation of Pokémon, Snorlax
was the only Pokémon identified as a 2-king. Across all 802 Pokémon, Lunala was identified
as a 2-king. If we further increase k, we find too many Pokémon, making meaningful analysis
difficult.

4.3 Iterative Approach

Using this approach, I was not able to identify any significantly better teams. It happened
that the naively selected threshold team was outperformed in certain iterations but the
threshold team always ended up back on top in the final iteration.

4.4 Incremental Team Optimization

The findings from the Incremental Team Optimization are the most interesting for this
project. I was unable to predict the outcomes based on the results of smaller teams
removing the option of shortcutting the simulation process by predicting the win
probabilities for bigger team sizes. When identifying the top 20 perfoming teams of size 6
we find that the threshold team consistently gets outperformed over a simulation of
1000000 battles. Despite the difference in win probabilities being only minimal (a few ~100
wins over a simulation of 1000000 battles) the results are statistically significant according
to Spearman’s rank correlation coefficient with a p-value of 0.0038529945186214815 .
Notably, Lunala, our only identified 2-king, is highly present (15/20 teams) in the top 20
performing teams. This suggests that our initial approach of looking for k-kings as essential
picks is indeed a valid strategy.

Example table afer 1000000 battles simulated: (Threshold team in bold at the bottom)

Pokémon
1

Pokémon
2

Pokémon
3

Pokémon
4

Pokémon
5

Pokémon
6

Win
Probability

Lugia
Giratina
(Altered
Forme)

Xerneas Yveltal Lunala Magearna 0.999913

Ho-Oh Arceus

(Normal)

Zekrom Xerneas Yveltal Lunala 0.999873

Ho-Oh
Giratina
(Altered
Forme)

Xerneas Yveltal Solgaleo Lunala 0.999872

Lugia Ho-Oh Dialga
Giratina
(Altered
Forme)

Yveltal Solgaleo 0.999863

Lugia Jirachi
Giratina
(Altered
Forme)

Yveltal Lunala
Necrozma
(Dusk
Mane)

0.999861

Lugia Dialga
Giratina
(Altered
Forme)

Arceus
(Normal)

Yveltal Lunala 0.999854

Ho-Oh
Giratina
(Altered
Forme)

Arceus
(Normal)

Haxorus Yveltal Lunala 0.999852

Lugia Ho-Oh Jirachi
Giratina
(Altered
Forme)

Yveltal Lunala 0.999851

Giratina



5. Conclusion

Over the course of my project, I identified a best-performing Pokémon team using the
incremental team optimization approach, although the threshold team only marginally got
outperformed by “better” teams. Using graph theory proved to be a helpful tool in
reasoning about Pokémon teams, offering insights into their strengths and interactions. This
approach can be particularly useful in identifying key Pokémon and understanding the
dynamics of team compositions. Despite the marginal improvement, the findings highlight
the potential of graph theory and iterative team improvements as a valuable framework for
analyzing and optimizing Pokémon teams.

Ho-Oh
Giratina
(Altered
Forme)

Arceus
(Normal)

Zekrom Yveltal Lunala 0.99985

Giratina
(Altered
Forme)

Arceus
(Normal)

Xerneas Yveltal Solgaleo Lunala 0.99985

Lugia Jirachi
Giratina
(Altered
Forme)

Yveltal Lunala Magearna 0.999842

Lugia Dialga
Giratina
(Altered
Forme)

Haxorus Zoroark Lunala 0.999819

Ho-Oh Jirachi
Giratina
(Altered
Forme)

Zoroark Yveltal Lunala 0.999808

Lugia Dialga Regigigas
Giratina
(Altered
Forme)

Yveltal Solgaleo 0.999807

Lugia Ho-Oh Dialga
Giratina
(Altered
Forme)

Haxorus Lunala 0.999796

Ho-Oh Dialga
Giratina
(Altered
Forme)

Arceus
(Normal)

Zoroark Xerneas 0.999786

Giratina
(Altered
Forme)

Zoroark Xerneas Yveltal Solgaleo Lunala 0.999783

Ho-Oh Jirachi
Giratina
(Altered
Forme)

Zekrom Yveltal Solgaleo 0.999758

Lugia Ho-Oh
Giratina
(Altered
Forme)

Haxorus Zoroark Lunala 0.999744

Lugia Ho-Oh Dialga
Giratina
(Altered
Forme)

Haxorus Solgaleo 0.99973

Giratina
(Altered
Forme)

Lunala
Arceus
(Normal)

Dialga Solgaleo Ho-Oh 0.999695



5.1 Future Research Directions

If I had more time to dedicate to the project, I would explore a more sophisticated move
selection process for the Pokémon, ensuring that each move set is optimized for various
battle scenarios. This would involve a detailed analysis of move effectiveness and synergy
with team strategies.

Additionally, I would concentrate on team constellations, identifying which Pokémon work
well together and how their combined strengths can be maximized. This aspect is crucial for
building balanced and synergistic teams that can handle diverse opponents effectively.

Moreover, I would aim to refine the iterative approach further. Although it showed some
potential, the results turned out to be quite ineffective at finding a significantly better team.
By enhancing the iterative method, I believe that improvements in team performance could
be achieved. This would involve fine-tuning the algorithms used, increasing the number of
iterations, and incorporating more sophisticated evaluation metrics to better capture the
dynamics of Pokémon battles.

In summary, these refinements and deeper analyses would likely yield more robust and
effective Pokémon team compositions, leveraging the full potential of the data and
methodologies applied in this research.
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