
Distributed

 Computing

Scaling MARL with Graph Neural
Networks
Master’s Thesis

Pius Kriemler

kpius@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Benjamin Estermann, Florian Grötschla

Prof. Dr. Roger Wattenhofer

March 17, 2024

Abstract

This thesis explores the application of Multi-Agent Reinforcement Learning (MARL)
techniques to solve complex problems, drawing inspiration from natural swarms.
Swarms, with their decentralised, autonomous agents operating on local infor-
mation, exhibit remarkable collective behaviour that is scalable and resilient to
perturbations. The use of MARL, especially in conjunction with Graph Neural
Networks (GNNs), offers a promising approach to address modern computational
challenges characterised by large data sets, distributed computing environments,
and dynamic problem domains.

Our framework abstracts multi-agent environments as graphs and uses GNNs
to facilitate communication and coordination between agents. Through locally
sensed information and decentralised execution, scalability and resilience are
achieved without constraints on the number or arrangement of agents. Using
tools such as Ray and PyTorch Geometric, we demonstrate efficient policy learn-
ing for MARL scenarios. Experimental results highlight the adaptability and
scalability of our approach, with promising performance on tasks such as trans-
mission and moving.

Further investigation highlights challenges and opportunities for improve-
ment. Sparse reward feedback in certain scenarios requires careful reward design,
while attention mechanisms and the inclusion of absolute positions improve pol-
icy adaptability and information propagation. Future research directions include
refining convolutional methods to better exploit edge attributes and quantifying
the benefits of additional rounds of message passing.

Overall, this work contributes to the advancement of MARL techniques by
providing scalable and robust solutions to complex computational challenges in-
spired by natural swarm behaviour.

i

Acknowledgment

I am profoundly grateful to Benjamin Estermann and Florian Grötschla for their
invaluable guidance, patience, and unwavering support throughout the duration
of this research. Their expertise and insightful critiques have not only shaped
this thesis but have also profoundly influenced my growth as a scholar. I extend
my deepest thanks for their mentorship.

To my family, words cannot express the gratitude I owe for your endless
love, understanding, and encouragement. Your unyielding faith in my abilities
has been a constant source of strength and motivation. This thesis stands as a
testament to the sacrifices you have made for my education, and I am forever
grateful for your support.

I also want to express my gratitude to the developers of ChatGPT and DeepL
for their invaluable assistance in overcoming language barriers during the prepa-
ration of this work. Their powerful language models contributed to the clarity
and effectiveness of my communication.

Lastly, I would like to extend my gratitude to everyone who directly or indi-
rectly contributed to this research. Your wisdom, encouragement, and sometimes,
even your challenges, have been crucial in completing this journey.

Thank you all for being part of this incredible journey.

ii

Contents

Abstract i

1 Introduction 1

2 Related Work 3

3 Background 6

3.1 Reinforcement Learning . 6

3.1.1 Multi-Agent Scenario . 6

3.1.2 Single-Agent Scenario . 7

3.1.3 Objective . 7

3.2 Proximal Policy Optimization . 8

3.2.1 Policy Gradient Methods 8

3.2.2 Actor-Critic . 8

3.2.3 Clipped Surrogate Objective 9

3.3 Graph Neural Networks . 10

3.3.1 Convolutions . 11

3.4 Ray . 12

3.5 MESA . 12

4 Method 13

4.1 Graph Abstraction . 13

4.2 Structured Observation Space . 14

4.3 Actor-Critic Networks . 15

4.4 Tasks . 17

4.4.1 Lever Pulling . 17

4.4.2 Transmission . 17

4.4.3 Transmission Extended 17

iii

Contents iv

4.4.4 Moving . 17

4.4.5 Moving History . 18

4.4.6 MPE Spread . 18

4.4.7 MPE Spread Memory . 18

4.5 Reward Functions . 18

4.6 Curriculum Training . 20

4.7 Visualisation . 22

5 Experiments 23

5.1 Hyperparameters . 23

5.2 Lever Pulling . 24

5.3 Transmission . 24

5.4 Moving . 29

5.5 MPE Spread . 35

6 Conclusion 38

Bibliography 40

Chapter 1

Introduction

Nature has long served as a source of inspiration for solving complex problems,
particularly evident in the remarkable abilities of swarms. Consisting of large
numbers of agents, swarms exhibit a remarkable ability to collectively solve chal-
lenging tasks without centralised control. From carefully building nests to effi-
ciently gathering food or fighting off enemies, swarms demonstrate the power of
collective action to overcome obstacles.

Each member of the swarm operates autonomously, relying solely on local
information to guide its actions. The patterns and dynamics that ultimately
lead to the successful completion of tasks emerge from the individual interac-
tions within the collective. This approach is fully decentralized, without a global
control center.

The swarm’s scalability is significantly enhanced by the lack of global coordi-
nation efforts. Additionally, the swarm is not reliant on any specific individual,
ensuring its resilience. Members can be added or removed dynamically, facili-
tating redundancy within the system. This redundancy, in turn, strengthens the
swarm’s resilience against failures or disruptions.

In computer science, it is essential to have scalable and robust algorithms to
address the challenges posed by large and complex datasets, distributed comput-
ing environments, and dynamic problem domains. For instance, in the field of big
data analytics, scalable algorithms are necessary to process and analyze massive
volumes of data efficiently, enabling insights and discoveries that would otherwise
be impractical or impossible to obtain. Similarly, in distributed systems and net-
working, robust algorithms are crucial for ensuring reliable communication, fault
tolerance, and load balancing across multiple nodes or devices. These algorithms
must handle varying workloads, network conditions, and failure scenarios while
maintaining system performance and integrity. Having efficient, scalable, and
resilient solutions is necessary to effectively meet the demands of modern appli-
cations and technologies.

1

1. Introduction 2

Reinforcement Learning has been shown to be effective in deriving a strat-
egy, called policy, from environmental feedback to solve problems that lack clear
optimal approaches. Its effectiveness has been demonstrated in tackling complex
challenges such as Chess [1] and Go [2]. Multi-Agent Reinforcement Learning
extends this approach to scenarios where multiple agents collaborate to solve a
problem collectively. Performing on super-human level in complex multi-agent
games like Starcraft II [3] and Dota 2 [4] showcased its power, while the discovery
of remarkable strategies within a task like Hide and Seek [5] made it accessible
and engaging to the public through captivating visual representations.

In this thesis, we abstract multi-agent environments as graphs and employ
Graph Neural Networks (GNN) [6, 7] to learn communication and coordination
between agents. Our approach relies on locally sensed information within an
agent’s neighborhood to derive its actions, allowing for fully decentralised exe-
cution. Additionally, there are no limitations on the number of agents or their
arrangement within the neighborhood. Scalability in terms of agents is ensured
by relying on the efficient computation of actions through graph convolutions.
The resulting framework builds on Ray [8, 9] and PyTorch Geometric [10] to
facilitate an efficient and flexible implementation of policies, as well as to scale
hyperparameter tuning of models to large-scale compute clusters. It offers policy
learning for both Single-Agent Reinforcement Learning (SARL) and Multi-Agent
Reinforcement Learning (MARL) scenarios. Our focus will mainly be on the lat-
ter.

The remainder of the thesis is organized as follows: Chapter 2 provides an
introduction to the topic and related work. Chapter 3 offers background infor-
mation on the work. Chapter 4 introduces the training setup, while Chapter
5 presents the conducted experiments and their results. Chapter 6 provides a
conclusion and outlook on future work.

Chapter 2

Related Work

Learning effectively in MARL scenarios requires an understanding not only of
the environment’s dynamics but also of other participants intentions. The non-
stationary nature of an agent’s environment, influenced by other agents’ evolving
policies, renders the learning process unpredictable and unstable.

Modeling all agents as a single entity with a joint action space offers coor-
dinated behaviors but presents scalability issues due to exponentially expanding
action spaces with the number of agents [11]. Moreover, this approach heavily
relies on extensive communication for execution, i.e. broadcasting all agents state
on each step, posing challenges in real-world scenarios.

Facilitating active communication among agents fosters a mutual understand-
ing of each other’s policies, allowing agents to interpret each other’s actions,
thereby reducing unpredictability. Different approaches vary in terms of what,
when, and to whom agents communicate, all of which contribute to the learning
process. Sukhbaatar et al. [12] introduced the ’CommNet’ architecture, which
includes a central controller that enables communication among agents via con-
tinuous vectors. The iterative communication process aggregates communication
vectors from neighboring agents in each iteration to facilitate the exchange of
information. In their proposed model ’VAIN’, Hoshen [13] enhanced CommNet
by incorporating Interaction Networks [14]. They replaced the mean aggrega-
tion of neighborhood communication with an attentional interaction mechanism
that scales the importance of communication between agents. Both approaches
use a single neural network as the central controller, resulting in fully connected
communication. This presents scalability challenges as the number of agents
increases.

Another effective strategy to mitigate the nonstationarity is to enhance the
critic in actor-critic methods during training. This approach, known as ’cen-
tral critic,’ provides the critic with access to all states during training while
constraining the actor to local observations. This framework is often referred
to as centralised training decentralised execution [11], which equips agents with
sufficient information to tackle nonstationarity without requiring awareness of
the global state during execution. Iqbal et al. [15] propose the Multi-Actor-

3

2. Related Work 4

Attention-Critic, ’MAAC’, algorithm. Each agent has its own centralized critic,
which incorporates information from other agents through an attention mecha-
nism. The specificity of this attention mechanism is that the agents query each
other for information. From the critic, they derive the actor for the agent. As
with previous models, its scalability is limited due to the independent critic for
each agent.

Scalability is a key requirement, as a swarm extends the principles of MARL
to a large scale. Jiang and Lu [16] propose ’ATOC’, a communication model
enabling an agent to establish temporary communication groups using an atten-
tion mechanism. These groups can only be formed among neighbours, which
makes the communication approach effective for also large number of agents.
Within a group, communication takes place through a bi-directional LSTM unit.
This enables selective information sharing between agents. Agents who belong to
multiple groups can enable inter-group communication by passing on information
from one group to another in subsequent rounds of communication.

While this local communication approach effectively addresses scalability chal-
lenges, it introduces new complexities. In a swarm, an agent’s neighborhood is
highly dynamic, unlike traditional neural networks that rely on fixed-size consis-
tently structured input data. Scarselli et al. [6, 7] pioneered the use of traditional
neural networks to compute graph convolutions, leading to the development of
Graph Neural Networks (GNN). By abstracting agents and their neighborhood
relations as a graph, it becomes possible to compute embeddings for each graph
node. These embeddings can then be utilized by regressors for predictions on
a node level. GNNs are naturally permutation invariant to the graph topology.
Moreover, GNNs leverage the principles of convolutional operations, such as local
connectivity and parameter sharing, to efficiently handle large and potentially
sparse graphs. Recent advancements demonstrate their efficacy in abstracting
complex systems across various domains, including fraud detection [17], traffic
prediction [18], cancer prediction [19], and various others [20, 21, 22].

Ryu et al. [23] and Sheng et al. [24] have both proposed hierarchical commu-
nication structures to facilitate more efficient communication patterns. They use
GNNs to effectively implement actors and central critics over large graphs. In Ryu
et al.’s ’HAMA’ algorithm, agents are first clustered based on predefined groups.
Each agent then computes multiple node embeddings, one for each group, using
Graph Attention Networks. To produce the final output embedding, the agent
combines these embeddings using another layer of attention. This mechanism
accommodates both cooperative and competitive settings, allowing actions to be
weighted in favour of or against different groups. Sheng et al.’s framework, ’LSC’,
builds on this concept by enabling adaptive group formation. After group forma-
tion, the proposed intra-group communication separates agents within a group
into high-level and low-level agents. High-level agents first aggregate information
within their group, then exchange it with other high-level agents, and finally

2. Related Work 5

distribute the embedded information to low-level agents within their group.

Our approach utilizes graph abstraction and employs GNNs for both the ac-
tor and a central critic. The neighbourhood of agents is encoded as a graph,
with the relative distance between them used as an edge attribute. We compared
the performance of using only relative distances to knowing their absolute posi-
tions. Furthermore, our research investigates communication and coordination
strategies in various grid world environments and a continuous physics-based en-
vironment. A notable feature is our focus on, but is not limited to, using only
one message passing round for our actor networks, meaning that agents can only
incorporate information from their immediate neighbours.

We investigated the performance on tasks inspired by the work of Hütten-
rauch et al. [25] on "building a communication network" and "communication
link". In their work, agents aim to cover as much area as possible while maintain-
ing connectivity in one scenario, and to establish a communication link between
two points in another. Their focus was primarily on building the communication
structure rather than the communication process itself, whereas we tried learning
both aspects simultaneously. Additionally, we conducted benchmarking of our
model’s performance on one of Mordatch’s Multi-Agent Particle Environment
(MPE) tasks [26, 27]. The MPE consists of a set of tasks featuring a simplified
physics engine where successful communication is essential for solving the chal-
lenges. This environment has been widely adopted by various authors, including
Jiang et al. [16], Iqbal et al. [15], Ryu et al. [23], and Sheng et al. [24], to
evaluate their architectures.

Chapter 3

Background

3.1 Reinforcement Learning

In reinforcement learning, agents interact with an environment in a self-learning
way. They sample their actions from a policy based on their observations, itera-
tively generating sample trajectories. For each action, they are rewarded, where
the reward function defines the notion of ’good’ by mapping state-action pairs
to a numerical value. These trajectories are then used to improve the policy.
Exploring an environment in search of good states, and exploiting such states,
are the two equally important parts of finding the optimal policy.

3.1.1 Multi-Agent Scenario

The multi-agent (MARL) scenario is defined as a Decentralized Partial Observ-
able Markov Decision Process (Dec-POMDP) [28]. It is defined by the tu-
ple ⟨N,S,A,O,R, T, γ⟩, where N is the number of agents, S the state space,
A = {Ai}Ni=1 the joint action space, O = {Oi}Ni=1 the joint local observation
space, R = {Ri : S×Ai×S → R}Ni=1 the reward functions, T : S×A×S → [0, 1]
the state transition function, and γ ≤ 1 the discount factor. We define all agents
to be homogeneous with shared parameters, using identical local observation
spaces, action spaces, and policies. For readability, we omit the superscripts in
Ai, Oi, and Ri, and simply refer to these spaces as A, O, and R, respectively.

At timestep t, all agents synchronously sample ait ∈ A, under their local
observation oit ∈ O, from the policy πθ : O × A → [0, 1]. The policies in this
work are neural networks, the subscript θ denotes the weights and biases of the
networks. Applying all actions to the environment results in a state transition
st → st+1. Each state-action pair receives feedback rit = R(st, a

i
t, st+1) on how

favourable the new state is. Iterating this process over a finite horizon of size
T ∈ Z produces a trajectory τ = (s0, a0, s1, a1, .., aT−1, sT−1), also called an
episode or rollout.

6

3. Background 7

3.1.2 Single-Agent Scenario

The single-agent (SARL) scenario is defined as a Markov Decision Process (MDP).
It is described by the tuple ⟨S,A,O, R, T, γ⟩, whereas S defines the state space, A
the concatenation of action spaces {Ai}Ni=1, O the concatenation of local observa-
tion spaces {Oi}Ni=1, R : S×A×S → R the reward function, T : S×A×S → [0, 1]
the state transition function, and γ ≤ 1 the discount factor.

In our use case, the SARL scenario can be interpreted as an abstraction from
a node-based view to a graph-based view. Whereas in MARL agents work for
their own sake and are judged for their own actions, in the SARL scenario agents
still act for their own sake, but are judged as a whole. The action at ∈ A is
sampled from Πθ : O×A → [0, 1], while under the hood Πθ uses πθ several times
to sample the actions for the agents. The feedback is given for the state of the
whole graph by rt = R(st, at, st+1).

3.1.3 Objective

Let R(τ) =
∑T−1

t=0 γt
∑N

i=1 r
i
t for the MARL scenario and R(τ) =

∑T−1
t=0 γtrt for

the SARL scenario by abusing the notation. The goal in both scenarios is to find
a policy that maximises the expected return of the sampled actions,

π∗ = argmax
π

E
τ∼π

[R(τ)]. (3.1)

3. Background 8

3.2 Proximal Policy Optimization

Proximal Policy Optimisation (PPO) is a policy gradient method [29]. The
idea behind PPO, and it’s close predecessor Trust Region Policy Optimization
(TRPO) [30], is to use importance sampling to increase sampling efficiency over
Natural Gradient methods [31, 32]. Small policy updates are necessary for im-
portance sampling to work properly; large updates lead to inaccurate gradient
estimation, causing training instability and degraded performance. While TRPO
enforces similarity through a KL divergence constraint and requires the com-
putation of a Hessian for the gradient, PPO achieves the same by clipping the
objective function, avoiding the need for expensive second-order terms. Although
less precise, PPO has been empirically shown to perform reasonably well, even
in MARL settings [33].

3.2.1 Policy Gradient Methods

Policy gradient methods tune a policy by directly adjusting its parameters θ,
often the weights and biases of the underlying neural network that implements
the policy. Given the objective function, the gradients are efficiently computed
by autograd [34], PyTorch’s auto-differentiation software. The listing 3.1 shows
the general procedure in pseudocode:

1 while objective L not satisfied:
2 collect trajectories τ ∼ πθ

3 compute policy gradient ∇θL(θ)
4 update policy parameters θnew = θ + α∇θL(θ)

Listing 3.1: Policy Gradient Algorithm Pseudocode

A fundamental policy gradient can be derived directly from the objective in
equation 3.1. Rewritten in terms of its parameters θ, the objective is

LPG(θ) = Ê
τ∼πθ

[log πθ(at|st)R(τ)] , (3.2)

where at, st ∈ τ and Ê is the empirical mean over τ .

3.2.2 Actor-Critic

Estimating the expected return using Monte Carlo sampling introduces high vari-
ance due to the stochastic nature of policy and the environment. Parameterised
baselines, called critics, are subtracted from this expected return to reduce vari-
ance and improve convergence [35].

3. Background 9

A common baseline is the value function V : S → R:

V π(s) = E
τ∼π

[R(τ) | s0 = s] . (3.3)

Using the advantage function A : S × A → R as a baseline has been empirically
shown to further improve training performance [36].

Qπ (st, at) = E [R(st, at) | st = s, at = a] (3.4)
Aπ (st, at) = Qπ (st, at)− V π (st) (3.5)

= R(st, at) + γV π (st+1)− V π (st) (3.6)

The objective in the equation 3.2 using Advantage Actor-Critic is

LA2C(θ) = Ê
τ∼πθ

[log πθ(at|st)Aπ (st, at)] . (3.7)

Advantages in this work are computed using Generalized Advantage Estimates
[37].

3.2.3 Clipped Surrogate Objective

The PPO actor uses the following Clipped Surrogate Objective:

LCLIP (θ, at, st) = min (wtA
πθ (st, at) , clip (wt, ϵ)A

πθ (st, at)) (3.8)

where wt = πθ(at | st)/πθold(at | st) is the importance sampling weight, clip(w, ϵ) ∈
[1− ϵ, 1 + ϵ] clips w to fall in the range of 1± ϵ, and ϵ is the clip parameter.

The importance sampling weight is used as a measure of divergence between
the old and new policies. This is natural as it is, in theory [38], a correction factor
that tells how representative the samples of πθold are when judged against πθ. The
complete PPO objective incorporates in addition the mean squared error value
loss LV F of the critic, alongside an entropy bonus Sπθ

to incentivise exploration:

LPPO(θ) = Ê
τ∼πθold

[
LCLIP (θ, st, at)− c1L

V F (θ, st, at) + c2S
πθ (st)

]
, (3.9)

whereas c1, c2 ∈ R [29].

3. Background 10

3.3 Graph Neural Networks

A graph G = (V,E) is defined by a set of nodes V and a set of edges E. We
define the state of a node v ∈ V to be the feature vector xv ∈ Rc, and the state of
the edge (v, w) ∈ E for v, w ∈ V to be the edge attribute xvw ∈ Rc′ . Let N(v) ⊆
V × E be the neighbourhood function describing the set of all nodes and edges
connected to v. GNNs compute the node embedding hv ∈ Rm using node and
edge states in N(v) with Message Passing Neural Networks [39]. By aggregating
the node embeddings with a permutation invariant aggregation function, it is
also possible to compute an embedding hG for the whole graph. The embeddings
can be used for regression or classification of nodes or the whole graph.

Node embeddings are computed iteratively, with subscripts used to denote
the message passing round. Edge embeddings are encoded only once. Initial
embeddings are computed by encoding the states as follows:

hvw = ENCODERedge(x
vw) ∀(v, w) ∈ E (3.10)

hv0 = ENCODERnode(x
v) ∀v ∈ V. (3.11)

In each round, neighbours compute a message with their edge and node states
using f1 : Rm×Rm×Rm → Rm. The messages are aggregated by a permutation
invariant aggregation function

⊕
, and combined with the current embedding by

some function f2 : Rm × Rm → Rm. A round of message passing looks like this:

msgvt+1 =
⊕

w∈N(v)

f1
t (h

v
t , h

w
t , h

vw) (3.12)

hvt+1 = f2
t

(
hvt ,msgvt+1

)
. (3.13)

Let K be the total number of rounds of message passing. The final output is
computed by decoding hvK , or the aggregation of all hvK in the case of the whole
graph, as such:

yv = DECODER(hvK) (3.14)

yG = DECODER(
⊗

({hvK |∀v ∈ V }), (3.15)

where
⊗

is a permutation invariant aggregation function. Note that the final
output of K-round GNNs can contain information from up to K hop neighbour-
hoods of v. We also denote the edge attribute xvw as the relative distance between
nodes v and w.

3. Background 11

3.3.1 Convolutions

We experimented with the convolutions GINE [40], GATv2 [41] and Transformer
[42] from the PyG library. GINE was chosen as the baseline, as it includes all
neighbours equally. GATv2 was chosen to allow a more selective inclusion of
neighbours through the attention weights. As attention proved to be beneficial,
we also considered Transformer, as it places more emphasis on the edge attributes
in the embedding computation, rather than just using it for the attention weight
computation.

GINE

hvt+1 = ΘMLP

(1 + ϵ) · hvt +
∑

w∈N (v)

ReLU (hwt + hwv)

 , (3.16)

whereas ΘMLP is a muli-layered perceptron and ϵ a trainable parameter.

GATv2

hvt+1 = αv,vΘsh
v
t +

∑
w∈N (v)

αv,wΘth
w
t , (3.17)

αv,w = softmax
(
a⊤ LeakyReLU (Θsh

v
t +Θth

w
t +Θeh

vw)
)
, (3.18)

whereas Θs,Θt,Θe are trainable linear transformations.

Transformer

hvt+1 = Θ1h
v
t +

∑
w∈N (v)

αv,w (Θ2h
w
t +Θ6h

vw) , (3.19)

αv,w = softmax

(
(Θ3h

v
t)

⊤ (Θ4h
w
t +Θ6h

vw)√
|N(v)|

)
, (3.20)

whereas Θ1..6 are trainable linear transformations.

3. Background 12

3.4 Ray

Our implementation is built using the Ray ecosystem, mainly Ray Tune [9] and
RLlib [8]. Ray Tune autonomously creates trials and allocates cluster resources
to them to scale hyperparameter tuning. Each trial is given a parameter set with
which it instantiates PPO, a torch module with the actor and critic networks, and
an RLlib environment. Parameter sampling and trial generation is controlled by
an ASHA scheduler [43] that uses early stopping to first efficiently find promising
parameter sets and then tries to exploit them.

RLlib is a large and flexible open-source framework for Reinforcement Learn-
ing that supports SARL and MARL scenarios, and natively works with Ray Tune.
More lightweight frameworks like rlpyt [44] and the on OpenAI’s Baselines [45]
based StableBaselines [46] offer little to no support for MARL applications. While
being lightweight and providing MARL support, (e)pymarl [47, 48] provides no
distributed training setup.

3.5 MESA

To implement the environmental dynamics, we used the agent-based modelling
framework MESA [49]. It provides the functionality to create, manipulate and
visualise agents in grid-based and continuous environments.

Ray Tune

Torch ModuleRLlib Environment

MESA

Task Model Agent
PPO

at

rt, ot+1 (s0, a0, r0, s1, a1, r1, ...)

updated weights

Figure 3.1: Reinforcement learning cycle. In blue, the three main components,
the agent that interacts with the environment, while PPO improves the policy
based on the sampled trajectories.

Chapter 4

Method

4.1 Graph Abstraction

For the tasks presented, there are two types of agents: active and passive. The
active agents are referred to as ’workers’, who walk around, communicate, and
try to coordinate. On the other hand, the passive agents are static objects in
the environment. These objects could be oracles that provide information to the
workers, meeting points, or walls.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x

y

(a) Example state: The red circle repre-
sents a passive agent, blue circles repre-
sent workers, and opaque blue squares
represent the visible neighbourhood of
workers.

x

y

(b) Graph representation: Agents that
are in each other’s neighbourhood are
connected by an edge.

Figure 4.1: Abstracting a grid-world state to a graph.

Each agent is represented as a node in the graph, with edges connecting agents
that are visible to each other. Visibility depends on the task at hand. The graph
abstraction can be made in both discrete and continuous space. Unless otherwise

13

4. Method 14

stated, we assume that the environment is a grid-world, and we define agents to be
visible to each other if they have a Chebyshev distance less than 3, e.g. they are
at most 2 squares apart in either direction. By integrating static objects as nodes
in the graph, we increase our flexibility in designing environments. This approach
eliminates the need to encode static objects in the node state of workers, as they
are inherently encoded in the structure of the graph. The process of constructing
the graph using a grid-world environment and the default neighborhood function
is illustrated in Figure 4.1.

4.2 Structured Observation Space

Ray Tune uses the interface implemented by RLlib environments to automate
experiment generation, i.e. the creation and setup of parameterised environ-
ments and Torch modules. The definition of action and observation spaces in
the environment specifies the allowed actions and observations, as well as their
corresponding shapes. This definition also allows for the automatic instantia-
tion of correctly sized networks and sampling spaces within the Torch module.
It should be noted that Ray Tune restricts changes to the dimensions of these
spaces throughout a trial.

Environment

observation

Torch Module

...

action

Figure 4.2: Communication between the environment and the Torch module in
the Ray Tune workflow.

During training, the state of the environment at each time step must match
the dimensions of the observation space when it is passed to the Torch module.
To be able to reconstruct any observed topology, we encode the environment
state using a specially structured observation space. This design distinguishes
between graph topology and node state spaces. It also allows experimentation

4. Method 15

with node/edge state spaces without interrupting the basic functionality of graph
construction. As can be seen in Figure 4.3, each observation consists of a hash and
lists of subspaces for each node and possible edge. The boolean flag within an
edge entry allows to indicate the existence of the corresponding edge. Connections
between nodes can thus be detected in the environment and passed to the Torch
module without breaking the modularisation of the whole Ray Tune workflow.
The hash and node flag are only used for optimisation purposes in the MARL
scenario.

observation

hash

for n nodes:

flag state

for n2 edges:

flag state

Figure 4.3: General structure of an observation.

4.3 Actor-Critic Networks

The actor network computes the actions of the agents based on the states of the
agents in their neighbourhood. The critic network computes the values to calcu-
late the advantage for the clipped surrogate objective in equation 3.8. Referring
to section 3.3, yv computed by the actor describes agent v’s next action, while
computed by the critic it defines the value (or the value yG of the whole graph)
with which it’s advantage is calculated.

There is a difference in the granularity of a trajectory sample between the
MARL and SARL scenarios. In the MARL scenario, the samples are from the
perspective of the agent, i.e. each agent samples its own action. Meanwhile,
the critic computes the value estimate for each worker individually. This setup
ensures that each agent receives direct feedback tailored to its own state and
actions. Conversely, in the SARL scenario, the samples are viewed from the
graph perspective. Although the computation under the hood remains largely
the same, a sample consists of the actions of all agents. Consequently, the critic
computes only one value estimate, rather than individual values for each worker,
providing a coarser feedback on the overall state and topology of the graph.

The actor and the critic have their own encoder, convolution and decoder
networks. The encoder and decoder networks are fully connected linear layers,
while the encoding size m is a tuned hyperparameter. Hyperparameter tuning is
described in more detail in the 5.1 section.

We restrict the actor to perform only one round of message passing, as we want
the actions to be computed only based on information from its actual neighbours.

4. Method 16

The critic is free to perform up to 8 rounds of communication, where K is a
tuned hyperparameter. Furthermore, the critic is centralised and computes it’s
output on the fully connected graph. This simulates the sharing of the global
state, allowing each agent to consider the information of all other agents when
estimating its advantage.

convolution

encoder

decoder

(a) Actor: Computes an agent’s action
from information from its neighbours in the
graph in a message-passing round.

convolution

encoder

decoder

(b) Critic: Computes the value output of
a node (or of the whole graph) from the
fully connected graph in multiple message
passing rounds.

Figure 4.4: Illustration of actor and critic networks, and computation of actions
and values from the observed graph state.

4. Method 17

4.4 Tasks

4.4.1 Lever Pulling

The lever-pulling task, originally introduced by Sukhbaatar et al. [12], serves
to validate agents’ communication skills. We recreated the task within our en-
vironment, maintaining its essential setup. 5 out of 500 workers are selected to
be placed in the grid-world on the same square. This setup results in a fully
connected graph where all edge features, representing the distance between any
two workers, is zero. The workers’ goal is to synchronously select five distinct
levers.

4.4.2 Transmission

The transmission task investigates the fundamental information propagation ca-
pabilities among agents. A group of stationary workers is positioned around an
oracle, which chooses a number for the workers to replicate. This number is
referred to as the output, denoted as out, whereas out ∈ {0, 1, 2, 3, 4}. Workers
are positioned in such a way that each has a communication link to the oracle,
either through an edge to the oracle or through intermediate workers that act
as transmitters. This arrangement necessitates that agents actively relay infor-
mation to one another to solve the task. Each agent’s state is equipped with
its type, current output, and a hidden vector, while the oracle’s hidden vector is
always 0. The type allows workers to differentiate between other workers and the
oracle.

4.4.3 Transmission Extended

The worker’s state is augmented by including its relative position pos with re-
spect to the oracle. This adjustment enables investigation into the influence of
knowing absolute positions in the agent state versus solely having knowledge of
local relative positions through the edge attributes.

4.4.4 Moving

Expanding on the concept of Transmission, movement is incorporated into the
system. In addition to replicating and sharing the oracles output, workers are
required to navigate the environment. Workers were given the capability to move
one square horizontally and one square vertically in any direction per time step.
At the start of each episode, workers were positioned to form a communica-
tion line, but tended to disconnect during early training, quickly resulting in a
fragmented graph. To prevent excessive movement during the initial stages of

4. Method 18

learning, we employed this discretization techniques, making it more probable
for agents to stay idle when dx and dy are sampled randomly. To discretize the
movement to dmov, the actual movement the worker is going to perform, we
follow the procedure outlined for the horizontal movement, and similarly for the
vertical movement.

movement on x-axis =

− 1 if dx < −0.6

1 if dx > 0.6

0 otherwise
(4.1)

4.4.5 Moving History

Drawing a parallel to the Transmission Extended task, we augmented the worker
state by adding a global reference point. This reference point is determined by
taking into account not only the worker’s current relative location to the oracle
but also their past three locations and movements. This enhancement is justified
by drawing an analogy to natural agents. Natural agents often rely on a central
base, such as a hive or den.

4.4.6 MPE Spread

We replicated the ’spread’ task from the Multi-Agent Particle Environment,
where n workers aim to approach n landmarks without colliding with each other.
The neighbourhood function is fixed to always include the three closest workers
and landmarks, regardless of spatial distance. The landmarks remain stationary
while the workers move in a continuous space. The state of the workers consists
of their absolute position and velocity. Their action is a force vector that affects
their velocity through a simple physics engine. Most of the implementation was
copied from the official PettingZoo implementation [50], while only changes were
made to make the task compatible with our structured observation space.

4.4.7 MPE Spread Memory

The worker’s state is supplemented by a hidden vector, as seen in previous tasks.
This allows the worker to retain information from previous interactions.

4.5 Reward Functions

Will from now on refer to all networks as a model, e.g. the networks of actor and
critic, encoder, decoder, etc., which together can solve a task.

4. Method 19

Task name Node state space Action space
Lever Pulling idagent idlever
Transmission type, outt, hvect outt+1, hvect+1

Transmission Extended + post outt+1, hvect+1

Moving type, outt, hvect outt+1, hvect+1, cmov

Moving History + {posi}t−3
i=t , {dmovi}t−3

i=t−1 outt+1, hvect+1, cmov
MPE Spread type, post, velt forcet+1

MPE Spread Memory + hvect forcet+1, hvect+1

Table 4.1: Node state spaces and action spaces of the different tasks

Subspace Domain
id Z+

type Z+

out Z+

hvec [0, 1]m

pos Z2

cmov [−1, 1]2

dmov {−1, 0, 1}2
vel [−1, 1]2

force [−1, 1]2

Table 4.2: Subspace domains

4. Method 20

The models for Lever Pulling were trained using a shared reward, calculated
as the number of different levers pulled divided by the total number of levers.
The same reward was used to evaluate the trials.

The models for MPE Spread were trained using the reward function replicated
from [23]. Namely, each worker was rewarded with the distance to the nearest
landmark with an additional collision penalty of −1 for each collision. The same
reward was used to evaluate the trials.

The models for Transmission, Transmission Extended, Moving, and Moving
History were trained using the reward functions outlined in tables 4.3 and 4.4. We
define the output of the worker v as outv and the output of the oracle as outo. The
correctness of the worker’s output is determined by comparing it to the oracle’s
output, i.e., whether outv = outo. The number of workers with correct outputs is
represented by outscorrect, while the number of workers with incorrect outputs is
represented by outswrong = n−outscorrect. The distance measure, distv, is defined
as the Chebyshev distance, i.e. if the positions of the worker and the oracle
are (xv, yv) and (xo, yo) respectively, distv = max(abs(xo − xv), abs(yo − yv)).
The boolean variable connectedv indicates the existence of a communication line
between the worker and the oracle, represented by a path in the graph from the
oracle to the worker. For the evaluation, we used the fraction of correct outputs
as a metric, as replicating the oracles output is the main objective.

Name Reward
random no training
shared binary if outscorrect = n: r = 1

otherwise: r = −1

shared sum if outscorrect = n: r = n
otherwise: r = −outswrong

Table 4.3: Description of the reward functions used in SARL scenarios

4.6 Curriculum Training

The models for Transmission, Transmission Extended, Moving and Moving His-
tory were trained using curriculum learning.

The main variable that changed was the placement of the workers at the be-
ginning of each episode. Let us first define the different placement strategies. The
’unidirectional’ placement always placed the workers in a straight line to the right
of the oracle. The ’multidirectional’ strategy places workers in a straight line ex-
tending from the oracle in any direction - up, down, left or right. The ’randomised
multidirectional’ strategy also randomly displaced workers perpendicular to the
main placement direction. In all these strategies, the workers always formed a

4. Method 21

Name Reward
random no training
shared binary if outscorrect = n: rv = 1

otherwise: rv = −1

shared sum if outscorrect = n: rv = n
otherwise: rv = −outswrong

individual if outv = outo: rv = 1
otherwise: rv = −1

spread if outv = outo: rv = distv
otherwise: rv = −1

spread if outv = outo and connectedv: rv = distv
(connected) elif outv = outo: rv = 0.25 · distv

elif connectedv: rv = −0.5
otherwise: rv = −1

neighbours if outv = outo and 0 < |N(v)| < 3: rv = 1
elif outv = outo and |N(v)| ≥ 3: rv = 0.5
elif outv = outo and |N(v)| = 0: rv = 0.1
elif 0 < |N(v)| < 3: rv = −0.2
elif |N(v)| ≥ 3: rv = −0.5
otherwise: rv = −1

Table 4.4: Description of the reward functions used in MARL scenarios

connected graph. In the case of Transmission, this was necessary to solve the
task, while in Moving it helped to learn the communication part, as communi-
cation only happens when the agents are connected in the graph. The ’random’
placement strategy randomly positions the workers in the environment, possibly
forming disconnected graphs from the start. Both the direction of the initial
placement and the subsequent shifts were randomly determined at the beginning
of each episode. Examples placements are shown in Figure 4.5.

The first stage of the curriculum used multidirectional placement. Unidirec-
tional placement led to overfitting of the models to transmit information only
from left to right and was therefore excluded from the curriculum. After solving
this level, the placement strategy changed to random multidirectional. The ran-
dom shifts introduced new graph topologies into the learning process, while the
model had already learned to transmit information in all directions.

In the last curriculum level, episodes got longer and the output of the oracle
changed with a probability of 10% after a cooldown period, we call this ’oracle
switching’. The cooldown period after each oracle switch gives the agents enough
time to, at least theoretically, propagate the new oracle output to everyone.

For the moving tasks, we also increased the size of the grid as the curricula
progressed. We started small to make the agents reach connected states more

4. Method 22

(a) Example of a multidirectional
placement.

(b) Example of a randomised mul-
tidirectional placement.

Figure 4.5: Examples of placements to the right; dotted arrows indicate potential
placement directions, dotted circles indicate potential worker locations.

often at the beginning of the learning process, when movement is random. How-
ever, it turned out that it wasn’t necessary to gradually increase the grid size,
as the policies learned on small grids were almost identical to the ones on large
ones.

We considered a stage solved if the minimum achieved reward out of 30
episodes was higher than half of the maximum achievable reward.

All levels except the last, where oracle switching occurs, were trained with
short episodes of length T = 16. The purpose of the fast reset is to avoid
wasting training time if the agents diverge into bad states at the beginning of
the learning process. This is especially true when movement is involved and
the agents disconnect quickly due to random movements. For the last level we
increased the episode length to T = 64 to allow multiple oracle switches.

4.7 Visualisation

When referring to the output of the agents in the Transmission, Transmission
Extended, Moving and Moving History tasks, we will use colours to describe the
numerical output. This makes it easier to visualise the results.

Chapter 5

Experiments

5.1 Hyperparameters

For each task, we tuned the hyperparameters by training 200-300 different trials.
The algorithm parameters were sampled from the ranges described in table 5.1,
while the model parameters were sampled from the ranges described in table
5.2. The results reported were generated by the best performing model across all
trials. Note that the ’Message passing rounds’ parameter is only sampled for the
critic network, unless otherwise stated, the actor has K = 1.

Parameter Sample range
Batch size 500
Learning rate [0.00003, 0.003]
Discount factor γ 0.99
PPO clip parameter ϵ {0.1, 0.2}
PPO value loss coefficient c1 [0.5, 1]
PPO entropy coefficient c2 {0, 0.1, 0.01}
GAE λ [0.9, 1]
KL initial coefficient {0.9, 1}
KL target value [0.003, 0.03]
Global gradient norm clipping 1

Table 5.1: Algorithm hyperparameter sampling ranges.

Parameter Sample range
Encoding size m {8, 16, 32}
Message passing rounds K {1, .., 8}
MLP number hidden layers {0, 1, 2}
MLP hidden layer size {8, 16, 32, 64}

Table 5.2: Network hyperparameter sampling ranges. MLP parameters only
apply for the GINE convolution network ΘMLP .

23

5. Experiments 24

5.2 Lever Pulling

We conducted experiments with all three convolutions. As a baseline, we use
random pulling, which gives a theoretical average reward of 0.67. The results are
in the table 5.3.

Model Convolution Rounds Result
Random - - 0.67
CommNet - 2 0.94
Ours Transformer 2 0.84 ± 0.12
Ours Transformer 1 0.82 ± 0.13
Ours GATv2 1 0.67 ± 0.15
Ours GINE 1 0.66 ± 0.14

Table 5.3: MARL Lever Pulling results: Shows mean and standard deviation of
the number of distinct levers pulled divided by the total levers (’Result’), along
with convolution type (’Convolution’) and message passing rounds (’Rounds’).
Results were obtained from 250 independent episodes, each lasting T = 1.

Only the Transformer convolution was able to successfully complete the task
better than random pulling. To have a comparable setup to CommNet, we addi-
tionally trained a model with the Transformer convolution that used two rounds
of message passing. While showing that communication with our setup is possi-
ble, CommNet still outperformed our best model by a wide margin.

5.3 Transmission

n Grid size T

4 15x15 100
20 41x41 200
40 83x83 250

Table 5.4: Grid size and episode
length (’T’) in relation to the
number of workers (’n’) in the
evaluation setup.

We conducted experiments for both the Trans-
mission and Transmission Extended tasks, us-
ing all three convolutions and three differ-
ent reward functions. In addition, we stud-
ied the performance in both the SARL and
MARL scenarios. Workers were placed accord-
ing to the randomised multidirectional place-
ment strategy, coupled with oracle switches
set to a probability of 10% after the cooldown
period. To maintain consistency, the episode
length was adjusted to maintain an average of 8 oracle switches per episode, tak-
ing into account the extension of the cooldown period with longer communication
lines as the number of workers increases.

Table 5.5 shows that when trained with the shared binary reward, none of
the convolutions perform better than random. We observerd the behaviour of
the GATv2 policy to always output the colour blue. This results in a maximum

5. Experiments 25

Reward Convolution Result
random - 0.2 ± 0.05
shared binary GINE 0.2 ± 0.24

GATv2 0.25 ± 0.23
Transformer 0.18 ± 0.19

shared sum GINE 0.23 ± 0.13
GATv2 0.48 ± 0.29
Transformer 0.2 ± 0.09

Table 5.5: SARL Transmission results. Shows mean and standard deviation for
the percentage of correct outputs (’Result’) for models trained with the reward
function (’Reward’) and convolution type (’Convolution’). Both training and
evaluation were conducted with n = 4 workers. Results were obtained from 50
independent episodes, for grid size and episode length refer to table 5.4.

reward only if the oracle also outputs blue, but deteriorates to 0 if any other
colour is the output. Figure 5.1 visualizes this policy.

(a) t=0 (b) t=1 (c) t=0 (d) t=1

Figure 5.1: Visualization of the GATv2 policy trained with a shared binary re-
ward, showing two sample trajectories labeled as (a), (b) and (c), (d) at time t.
In both trajectories, all workers consistently converge to outputting blue, regard-
less of the oracle’s output.

Training with the shared sum reward gives a slightly more fine grained feed-
back, not only signaling solution correctness but also quantifying the degree of
deviation from correctness. The GATv2 policy overcame it’s local optimum, but
it has not yet found an optimal policy. It shows proficiency in propagating the
oracles output from left to right, but struggles doing so in the opposite direction,
which explains the average reward of 0.5. When the communication line is ori-
ented vertically, it may lead to either outcome. Figure 5.2 illustrates an example
of this behaviour.

Training the same task in the MARL scenario improved the performance of
all convolutions. However, only with the Transformer convolution a close-to-
optimal policy was learned. We will therefore focus our discussion on the results
achieved by the transformer convolution. Table 5.6 displays the results. The

5. Experiments 26

(a) t=0 (b) t=1 (c) t=2

(d) t=0 (e) t=1 (f) t=2

Figure 5.2: Visualization of the GATv2 policy trained with a shared sum reward,
showing two sample trajectories labeled as (a), (b), (c) and (d), (e), (f) at time
t. The workers in the first trajectory converge towards the colour black, which
corresponds to the leftmost worker at t=0. In the second trajectory, successful
convergence to the colour green is achieved, while the oracle represents the left-
most agent in this configuration.

policy trained in the MARL scenario with Transformer convolution using shared
binary reward shows an increase in performance compared to the SARL GATv2
policy result. Upon inspection of the behaviour, the policy successfully converges
in all directions if the oracle outputs yellow or blue, but not for the other colors.
This finding explains the average performance of 0.4 = 2/5.

The performance of the policy trained with shared sum is comparable to that
of the SARL GATv2 model. Upon inspection of the behaviour, it was found
that it successfully converges if the output of the oracle is yellow, black or blue.
However, the transmission speed is not optimal. For instance, in the case of n=4,
the optimal time to convergence is 2, which explains the slightly lower average
performance of 0.5, which is less than 3/5.

Giving individual rewards to workers based on their output enabled the task
to be solved consistently when evaluated with n = 4 workers. The same policy
was used to evaluate performance as the communication line grew, as seen in the

5. Experiments 27

results of n = 20 and n = 40. It was observed that workers closer to the oracle
converged to the correct colour, while those farther away were likely to output
green at some point. Around t = 8, a two colour pattern usually established.
Afterward, the boundary between the two colours is alternately pushed back and
forth, sometimes resulting in one colour completely overtaking the other. This
pattern is visualised in Figure 5.3.

(a) t=0 (b) t=4 (c) t=8

(d) t=0 (e) t=8 (f) t=12

Figure 5.3: Visualization of the Transformer policy trained with individual re-
ward, showing two sample trajectories labeled as (a), (b), (c) and (d), (e), (f) at
time t with n = 20. The workers converge to a two-colour pattern, with those
close to the oracle converging to the correct colour, while those farther away were
more likely to output green at some point. Subfigures (e) and (f) illustrate the
movement of the boundary between the colours.

Adjacent workers consistently propagate the output of the oracle in all di-
rections. However, middle workers can only determine the origin of the oracle’s
output based on the messages received from neighbouring workers. Therefore,
they must establish a certain level of confidence to decide from which direction to
integrate information. To investigate whether knowledge of their position in rela-
tion to the oracle assists in determining the direction of integration, we expanded
the worker’s state in the Transmission Extended task.

The performance became more stable with longer communication lines, look-

5. Experiments 28

ing at the results for n = 20 and n = 40. After some time, the same two-color
pattern typically emerges. One significant difference in behaviour, compared to
the policy trained without considering the oracle’s relative position, is that work-
ers far from the oracle still converge to the same colour. However, this colour
no longer defaults to green or any single colour. We evaluated both tasks with
identical setups but without oracle switching for T = 30, focusing solely on con-
vergence behaviour. The results are shown in Figure 5.4.

Reward # Agents
n = 4 n = 20 n = 40

shared binary 0.39 ± 0.26 0.24 ± 0.18 -
shared sum 0.5 ± 0.22 0.26 ± 0.13 -
shared sum (SARL GATv2) 0.48 ± 0.29 0.26 ± 0.19 0.24 ± 0.16
individual 0.91 ± 0.05 0.35 ± 0.13 0.25 ± 0.14
individual+ 0.89 ± 0.08 0.4 ± 0.17 0.38 ± 0.19

Table 5.6: MARL Transmission results of the Transformer policy. Shows mean
and standard deviation for the percentage of correct outputs for models trained
with the reward function (’Reward’), evaluated with n workers. Results for re-
ward ’individual+’ were generated with the Transmission Extended task setup.
All models were trained with n = 4 workers. Results were obtained from 50
independent episodes in cases n ∈ {4, 20} and 25 independent episodes in the
case n = 40. For grid size and episode length refer to table 5.4.

Figure 5.4: Histogram illustrating the fraction of correct outputs at t=30 from
100 independent trials for both the Transmission and Transmission Extended
tasks.

5. Experiments 29

5.4 Moving

Experiments were conducted for both the Moving and Moving History tasks us-
ing three distinct reward functions. The experiments were conducted exclusively
within the MARL scenario utilizing the Transformer convolution due to the sat-
isfactory performance observed in prior tasks. Workers were positioned using a
randomized multidirectional placement strategy, and oracle switches were set to
occur at a 10% probability after the cooldown period. We additionally evaluated
the random placement strategy, to compare the dependence on the initial graph
structure. To ensure consistency, we again adjusted the length of the episode
according to the values specified in Table 5.4.

The objective of the spread reward function is to incentivise workers to create
a communication graph that covers a lot of area. However, none of the trained
models were able to surpass the local optimum of converging to a single colour
and distancing themselves as far as possible from the oracle. This situation results
in a maximum score only if the oracle also outputs this colour, but deteriorates
to 0 if any other number is chosen. Figure 5.5 illustrates this phenomenon.

To counteract this strategy, we adjusted the reward to incentivise workers
to maintain communication with the oracle. This reward promotes connectivity.
Despite this adjustment, workers still tend to gravitate towards the edges of the
environment, where they can potentially maximise the reward. Although the
learned policy succeeds in increasing the reward by remaining near the oracle for
a longer period, workers struggle to sustain this proximity. The connection to
the oracle is eventually lost, causing the workers to drift away from it once again,
as shown in Figure 5.6.

Once the connection between the last worker and the oracle was lost, the
workers were unable to reconnect to the graph. The graph deteriorated, which
affected the information the workers’ could use to compute actions, as illustrated
in Figure 5.7. A potential improvement was to include a history of the relative
distances of an edge in the edge state. However, a drawback of this approach is
that if an edge disappears, meaning two agents become disconnected, the history
is lost. We decided on another approach, which was to enhance the state by
including the worker’s position relative to the oracle. This resulted in the task
Moving History.

The presented heatmap in Figure 5.9 shows that access to absolute positions
improves resilience against graph deterioration. Workers remain close to the or-
acle and maintain connectivity. With random initial placements, the workers
show a slight drift towards the oracle. However, there are still some workers that
remain lost at the borders. As connectivity increases, there is a slight improve-
ment in performance, as shown in Table 5.8. Additionally, increasing the size of
the workers’ hidden state to 64 results in further performance enhancement. The
heatmap in Figure 5.10 shows a movement pattern with an even more pronounced

5. Experiments 30

drift towards the center, even when workers are randomly placed.

For the final experiment, we used the neighbours reward function to train the
policies. Unlike the spread connected reward, the neighbours reward is based on
the agent’s local neighborhood topology rather than its distance to the oracle.
This encourages agents to cover a larger area based on the number of neighbors
rather than their proximity to the oracle. The main policy that emerged was
for all agents to move as close to the oracle as possible, as shown in Figures
5.11 and 5.12. They then replicate the oracle’s output consistently from their
direct edge to it. However, in the Moving task, this policy encounters the same
issue of disconnectivity, which is mitigated by incorporating historical positional
information.

Reward Placement # Agents
n = 4 n = 20

spread multi directional 0.21 ± 0.22 0.21 ± 0.18
random 0.16 ± 0.2 -

spread (connected) multi directional 0.4 ± 0.23 0.25 ± 0.17
random 0.2 ± 0.15 -

neighbours multi directional 0.71 ± 0.19 0.32 ± 0.18
random 0.34 ± 0.18 0.26 ± 0.11

Table 5.7: MARL Moving Task Results. Shows mean and standard deviation for
the percentage of correct outputs for models trained with the reward function
(’Reward’), evaluated with n workers with initial placement strategy (’Place-
ment’). All models were trained with n = 4 workers and the Transformer convo-
lution. Results were obtained from 50 independent episodes in cases n ∈ {4, 20}
and 25 independent episodes in the case n = 40. For grid size and episode length
refer to table 5.4.

(a) t=0 (b) t=6

Figure 5.5: Visualization of the Transformer policy trained with the spread re-
ward, showing a sample trajectory at two points in time. The workers consistently
converge to blue and moves as far away from the oracle as possible.

5. Experiments 31

(a) t=0 (b) t=4 (c) t=6

(d) t=8 (e) t=12 (f) t=16

Figure 5.6: Visualization of the Transformer policy trained with the spread con-
nected reward, showing a sample trajectory at six points in time. The workers
successfully copy the output of the oracle by remaining connected to it. Once the
connection is lost, the workers revert to trying to maximise the reward by being
as far away from the oracle as possible.

(a) t=0 (b) t=6 (c) t=8 and
t=12

(d) t=16

Figure 5.7: Visualization of the detoriation of the computation graph from Figure
5.6. After t ≥ 8, the agents are unable to determine the location of the oracle
unless it was encoded in their hidden vector.

5. Experiments 32

Reward Placement # Agents
n = 4 n = 20 n = 40

spread multi directional 0.19 ± 0.17 0.23 ± 0.19 -
random 0.22 ± 0.14 0.21 ± 0.09 -

spread (connected) multi directional 0.47 ± 0.17 0.39 ± 0.15 0.38 ± 0.18
random 0.42 ± 0.16 0.37 ± 0.1 0.38 ± 0.21

spread (connected) multi directional 0.66 ± 0.08 0.55 ± 0.15 0.42 ± 0.18
large random 0.54 ± 0.15 0.55 ± 0.12 0.45 ± 0.13
neighbours multi directional 0.91 ± 0.11 0.82 ± 0.18 0.8 ± 0.16

random 0.80 ± 0.18 0.78 ± 0.19 0.78 ± 0.20

Table 5.8: MARL Moving History results. Shows mean and standard deviation
for the percentage of correct outputs for models trained with the reward function
(’Reward’), evaluated with n workers with initial placement strategy (’Place-
ment’). All models were trained with n = 4 workers and the Transformer convo-
lution. Results were obtained from 50 independent episodes in cases n ∈ {4, 20}
and 25 independent episodes in the case n = 40. For grid size and episode length
refer to table 5.4.

(a) t=1 (b) t=2 (c) t=3

(d) t=4 (e) t=5 (f) t=6

Figure 5.8: Visualization of the Transformer policy trained with the spread con-
nected reward on the Moving History task, showing a sample trajectory at six
points in time. The workers successfully reconnect to the oracle after being com-
pletely disconnected at t = 3 and t = 4.

5. Experiments 33

Figure 5.9: Heatmap of the workers locations on a logarithmic scale with the
oracle position as red square. The heatmap was generated over 100 independend
trajectories produced by the policy trained with the spread connected reward
function, with n = 4, and placement strategy multi directional (left) and random
(right), respectively.

Figure 5.10: Heatmap of the workers locations on a logarithmic scale with the
oracle position as red square. The heatmap was generated over 100 independend
trajectories produced by the policy trained with the spread connected reward
function, with n = 4, m = 64, and placement strategy multi directional (left)
and random (right), respectively.

5. Experiments 34

Figure 5.11: Heatmap of the workers locations on a logarithmic scale with the
oracle position as red square. The heatmap was generated over 100 independend
trajectories produced by the policy trained with the neighbourhood reward func-
tion on the Moving task, with n = 4, and placement strategy multi directional
(left) and random (right), respectively.

Figure 5.12: Heatmap of the workers locations on a logarithmic scale with the
oracle position as red square. The heatmap was generated over 100 indepen-
dend trajectories produced by the policy trained with the neighbourhood reward
function on the Moving History task, with n = 4, and placement strategy multi
directional (left) and random (right), respectively.

5. Experiments 35

5.5 MPE Spread

Experiments were conducted with models using the Transformer convolution. We
replicated the training setup presented in [23] to make our results comparable.
This includes time discretisation of dt = 0.1 with a total episode length of T = 25.
Also, for the experiments with n = 50, the size of workers were scaled down
by a factor of 25. It is to note that this makes collisions more unlikely. The
parameterisation of the MPE environment was not included in their paper, we
assumed that they used the default parameters of the official implementation.

Model Rounds # Agents
n = 3 n = 50

Random - 0.75 ± 0.24 0.18 ± 0.03
MAADPG - 0.22 ± 0.010 -
MAAC - 0.19 ± 0.012 -
ATOC - 0.17 ± 0.007 0.09
HAMA - 0.15 ± 0.008 0.07
Ours 1 0.46 ± 0.34 0.16 ± 0.04
Ours 8 0.25 ± 0.22 0.23 ± 0.11
Ours+ 8 0.27 ± 0.22 0.16 ± 0.03

Table 5.9: MARL MPE Spread result. Shows mean and standard deviation for
the mean negative reward, whereas evaluated with n workers. All models were
trained with n = 3 workers, while our model utilized the Transformer convolution.
The results were obtained from 50 independent episodes.

The models successfully learn a policy to occupy all landmarks, as illustrated
in Figure 5.13. When landmarks are spread apart, each one is occupied by a
single agent. However, when the landmarks are close together, agents may com-
pete for the same landmark, resulting in collisions, as depicted in Figure 5.14.
These collisions have a significant negative impact on performance. We observed
that increasing the number of message passing rounds for the actor improves
performance. Furthermore, introducing a hidden vector alongside the increased
message passing rounds alters the workers’ strategy to be less aggressive, result-
ing in fewer collisions but greater distance from the landmarks. This strategy
proves to be more effective as the number of agents increases. Despite these
improvements, the reference models still outperform our models by a significant
margin.

5. Experiments 36

Figure 5.13: Visualization of the MPE Spread task successfully solved by the
Transformer policy if landmarks are far appart.

5. Experiments 37

(a) t=3 (b) t=11

(c) t=20 (d) t=22

Figure 5.14: Visualisation of the MPE Spread task successfully solved by the
Transformer policy when landmarks are close together. Agents spread close to
each other, as shown in figure (a). One agent manages to grab the unoccupied
landmark, while the other two fight for one.

Chapter 6

Conclusion

In this work, we have developed an architecture suitable for handling multi-agent
environments with a large number of agents. Through the utilization of graph
convolutions, policies can be trained efficiently to navigate complex scenarios.
Leveraging tools such as Ray Tune and structured observation spaces, we have
demonstrated the flexibility to adapt graph convolutions used for actor and critic
networks, as well as the graph and edge states of the graphs. This adaptabil-
ity enables trained policies to be seamlessly applied to scenarios with varying
numbers of agents, showcasing the versatility and scalability of our approach.

The results of the Transmission task compare learning policies with the SARL
scenario against policies learned with the MARL scenario. Based on the results
of tables 5.6 and 5.5, we conclude that for the tasks we have chosen, the feedback
given by shared rewards is too sparse to learn effectively. In the case of shared
binary rewards, the probability that all agents output the same colour at the
beginning of the learning process is very low. Reducing the granularity of the
reward feedback by using shared sum or individual rewards proved to be beneficial
for the learning process.

The comparison between different convolutional methods for policy imple-
mentation highlighted the effectiveness of incorporating attention mechanisms.
In particular, attention to agents along the communication axis proved crucial
for solving the Transmission task, as evidenced by the performance of the Trans-
former policies. However, results from the Moving task, particularly when com-
paring policies trained with the spread connected reward to those trained with the
neighbourhood reward, indicate the challenge agents face in deciding which infor-
mation to prioritise. The performance of the neighbourhood reward trained pol-
icy suggests a greater reliance on information from the oracle compared to other
sources. In scenarios with long communication lines or widely dispersed com-
munication graphs resulting from spread connected reward, agents face greater
difficulty in selecting the correct information and generating the correct output.

Including the absolute position in the worker states proved beneficial for in-
formation propagation, as shown by the results in Table 5.6, which compares
rewards on an individual basis. However, as shown in the histogram in Figure

38

6. Conclusion 39

5.8, the policy trained with absolute positions did not converge on agent states
as effectively as the policy trained without them. Nevertheless, the lack of con-
vergence to a default colour for agents far from the oracle, coupled with the
improved performance over longer communication links, suggests that knowledge
of the absolute state contributed to the development of a more adaptive policy.
In addition, the inclusion of absolute position showed that workers learned to
maintain connectivity, while a history of position allowed brief deviations from
connected parts, as observed in the heatmaps in Figures 5.9, 5.12, 5.11 and 5.10.
We conclude that the convolutions we used are not strong enough to encode
enough positional information in the hidden vector to solve the tasks with a
similar performance but without absolute position.

The performance results of the MPE spread task, as displayed in Table 5.9,
underscore the potential of our approach to address more complex challenges
beyond grid world abstractions. However, the findings also highlight the necessity
for further research and development to fully capitalize on this potential.

Our most pressing improvement recommendation is to incorporate convolu-
tions that can more effectively leverage edge attributes. In addition, further
research is needed to quantify the potential improvement that additional rounds
of message passing can bring. While we have observed some evidence of its effec-
tiveness and potential, empirical evidence is needed to numerically validate these
findings.

Bibliography

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and
shogi by self-play with a general reinforcement learning algorithm,” arXiv
preprint arXiv:1712.01815, 2017.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
“Mastering the game of go with deep neural networks and tree search,” na-
ture, vol. 529, no. 7587, pp. 484–489, 2016.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmas-
ter level in starcraft ii using multi-agent reinforcement learning,” Nature,
vol. 575, no. 7782, pp. 350–354, 2019.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale
deep reinforcement learning,” arXiv preprint arXiv:1912.06680, 2019.

[5] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,” arXiv
preprint arXiv:1909.07528, 2019.

[6] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proceedings. 2005 IEEE international joint conference
on neural networks, 2005., vol. 2, pp. 729–734, IEEE, 2005.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE transactions on neural networks,
vol. 20, no. 1, pp. 61–80, 2008.

[8] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez,
M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed reinforcement
learning,” in International conference on machine learning, pp. 3053–3062,
PMLR, 2018.

[9] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
2018.

40

Bibliography 41

[10] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch
geometric,” 2019.

[11] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a
survey,” Artificial Intelligence Review, vol. 55, no. 2, pp. 895–943, 2022.

[12] S. Sukhbaatar, R. Fergus, et al., “Learning multiagent communication
with backpropagation,” Advances in neural information processing systems,
vol. 29, 2016.

[13] Y. Hoshen, “Vain: Attentional multi-agent predictive modeling,” Advances
in neural information processing systems, vol. 30, 2017.

[14] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al., “Interaction
networks for learning about objects, relations and physics,” Advances in
neural information processing systems, vol. 29, 2016.

[15] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International conference on machine learning, pp. 2961–2970,
PMLR, 2019.

[16] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent
cooperation,” Advances in neural information processing systems, vol. 31,
2018.

[17] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang,
and Y. Qi, “A semi-supervised graph attentive network for financial fraud
detection,” in 2019 IEEE International Conference on Data Mining (ICDM),
pp. 598–607, IEEE, 2019.

[18] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” arXiv preprint
arXiv:1709.04875, 2017.

[19] H. Chereda, A. Bleckmann, K. Menck, J. Perera-Bel, P. Stegmaier, F. Auer,
F. Kramer, A. Leha, and T. Beißbarth, “Explaining decisions of graph convo-
lutional neural networks: patient-specific molecular subnetworks responsible
for metastasis prediction in breast cancer,” Genome medicine, vol. 13, pp. 1–
16, 2021.

[20] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[21] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A com-
prehensive survey on graph neural networks,” IEEE transactions on neural
networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

Bibliography 42

[22] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 249–
270, 2020.

[23] H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with hierarchical
graph attention network,” in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 34, pp. 7236–7243, 2020.

[24] J. Sheng, X. Wang, B. Jin, J. Yan, W. Li, T.-H. Chang, J. Wang, and
H. Zha, “Learning structured communication for multi-agent reinforcement
learning,” Autonomous Agents and Multi-Agent Systems, vol. 36, no. 2, p. 50,
2022.

[25] M. Hüttenrauch, A. Šošić, and G. Neumann, “Local communication proto-
cols for learning complex swarm behaviors with deep reinforcement learning,”
in Swarm Intelligence: 11th International Conference, ANTS 2018, Rome,
Italy, October 29–31, 2018, Proceedings 11, pp. 71–83, Springer, 2018.

[26] I. Mordatch and P. Abbeel, “Emergence of grounded compositional language
in multi-agent populations,” in Proceedings of the AAAI conference on arti-
ficial intelligence, vol. 32, 2018.

[27] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environments,”
Advances in neural information processing systems, vol. 30, 2017.

[28] F. A. Oliehoek, “Decentralized pomdps,” in Reinforcement learning: state-
of-the-art, pp. 471–503, Springer, 2012.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[30] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International conference on machine learning,
pp. 1889–1897, PMLR, 2015.

[31] S. M. Kakade, “A natural policy gradient,” Advances in neural information
processing systems, vol. 14, 2001.

[32] S. Levine, “Policy gradients,” 2007. Available at http://rail.eecs.
berkeley.edu/deeprlcourse-fa17/index.html, Accessed: 2024-02-02.

[33] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative multi-agent games,” Advances
in Neural Information Processing Systems, vol. 35, pp. 24611–24624, 2022.

[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in py-
torch,” 2017.

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html

Bibliography 43

[35] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in International conference on machine learning, pp. 1928–1937,
PMLR, 2016.

[37] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[38] V. Elvira and L. Martino, “Advances in importance sampling,” arXiv preprint
arXiv:2102.05407, 2021.

[39] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neu-
ral message passing for quantum chemistry,” in International conference on
machine learning, pp. 1263–1272, PMLR, 2017.

[40] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec, “Strategies for pre-training graph neural networks,” arXiv
preprint arXiv:1905.12265, 2019.

[41] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention net-
works?,” arXiv preprint arXiv:2105.14491, 2021.

[42] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked label
prediction: Unified message passing model for semi-supervised classifica-
tion,” arXiv preprint arXiv:2009.03509, 2020.

[43] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, and
A. Talwalkar, “Massively parallel hyperparameter tuning,” 2018.

[44] A. Stooke and P. Abbeel, “rlpyt: A research code base for deep reinforcement
learning in pytorch,” arXiv preprint arXiv:1909.01500, 2019.

[45] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” 2017.

[46] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, et al., “Stable baselines,” 2018.

[47] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G.
Rudner, C.-M. Hung, P. H. Torr, J. Foerster, and S. Whiteson, “The starcraft
multi-agent challenge,” arXiv preprint arXiv:1902.04043, 2019.

[48] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks,”
arXiv preprint arXiv:2006.07869, 2020.

Bibliography 44

[49] D. Masad, J. L. Kazil, et al., “Mesa: An agent-based modeling framework.,”
in SciPy, pp. 51–58, Citeseer, 2015.

[50] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S.
Santos, C. Dieffendahl, C. Horsch, R. Perez-Vicente, et al., “Pettingzoo:
Gym for multi-agent reinforcement learning,” Advances in Neural Informa-
tion Processing Systems, vol. 34, pp. 15032–15043, 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.1.1 Multi-Agent Scenario
	3.1.2 Single-Agent Scenario
	3.1.3 Objective

	3.2 Proximal Policy Optimization
	3.2.1 Policy Gradient Methods
	3.2.2 Actor-Critic
	3.2.3 Clipped Surrogate Objective

	3.3 Graph Neural Networks
	3.3.1 Convolutions

	3.4 Ray
	3.5 MESA

	4 Method
	4.1 Graph Abstraction
	4.2 Structured Observation Space
	4.3 Actor-Critic Networks
	4.4 Tasks
	4.4.1 Lever Pulling
	4.4.2 Transmission
	4.4.3 Transmission Extended
	4.4.4 Moving
	4.4.5 Moving History
	4.4.6 MPE Spread
	4.4.7 MPE Spread Memory

	4.5 Reward Functions
	4.6 Curriculum Training
	4.7 Visualisation

	5 Experiments
	5.1 Hyperparameters
	5.2 Lever Pulling
	5.3 Transmission
	5.4 Moving
	5.5 MPE Spread

	6 Conclusion
	Bibliography

