
Distributed

 Computing

Text Compression for Efficient
Language Generation

Master’s Thesis

David Gu

david.gu@inf.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Peter Belcák

Prof. Dr. Roger Wattenhofer

July 18, 2024

Acknowledgements

I would like to express my gratitude to Dr. Peter Belcák for introducing me to
this fascinating area of research and for providing high-level guidance throughout
the project with his expertise.

Moreover, I would like to thank my colleague Philippe for valuable discussions
on this topic.

I am grateful to my friends Nathan and Giorgio for their invaluable discussions,
proof-reading os this thesis, and non-stop support throughout the duration of
this thesis.

Lastly, I thank the DISCO group led by Prof. Roger Wattenhofer for giving me
the opportunity to do this project in their lab and for providing access to the
TIK Arton cluster.

i

Abstract

We challenge the prevailing assumption that large language models must op-
erate on sub-word tokens by introducing Thoughtformer (THF), a hierarchical
transformer-based language model that efficiently operates on compressed sen-
tence representations. Our main focus is on training a generative Thoughtformer
model (GPTHF). We show that GPTHF can be trained with no architectural
changes to GPT by instead employing sparse, dynamically computed triangular
attention masks instead of full ones. Our experiments show that GPTHF models
achieve an up to an order of magnitude improvement in FLOPs efficiency and a
threefold increase in runtime efficiency compared to similarly sized GPT models
in the low-size regime. This is achieved through an innovative generation method
that caches and reuses sentence embeddings, allowing significant portions of the
input to bypass large parts of the network. For completeness, we discuss also
how THF can be applied also to bidirectional models.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 4

2.1 Hierarchical Transformers . 4

2.2 Sentence Embeddings . 5

3 Method 6

3.1 Data Preprocessing . 6

3.2 Architecture . 6

3.3 Optimization 1: Efficient Sentence Packing 7

3.4 Optimization 2: Training in Low-Compute Setting 9

4 Bidirectional Model 11

4.1 Data . 11

4.2 Architecture . 11

4.3 Pre-training. 13

5 Generative Model 14

5.1 Data . 14

5.2 Architecture . 14

5.3 Pre-training . 16

5.4 Fast Generation . 18

6 Experiments 20

6.1 Experiment Setup . 20

6.2 Perplexity. 21

iii

Contents iv

6.3 Experiments on Generation Speed 22

6.3.1 FLOPs . 22

6.3.2 Inference Time . 25

6.4 Discussion . 27

7 Limitations and Future Work 29

8 Conclusion 31

A Experiments on Bidirectional Model A-1

A.1 Bidirectional Model . A-1

A.1.1 Fine-Tuning on GLUE. A-1

Chapter 1

Introduction

In recent years, the development of large language models (LLMs) has garnered
substantial interest from academic and business-related communities due to their
far-reaching implications. The architecture underpinning the rise of LLMs is the
Transformer model [Vaswani et al., 2017]. The dominant paradigm that has
prevailed over the years has been to enhance these models by scaling. Early
models like BERT [Devlin et al., 2018] and GPT-1 [Radford et al., 2018] had 110
million and 117 million parameters, respectively. This scaling trend continued
with GPT-3 [Brown et al., 2020] with 175 billion parameters, PaLM with 540
billion [Chowdhery et al., 2023], and the Switch Transformer reaching 1.6 trillion
parameters [Fedus et al., 2022], all within a span of just four years.

While these models have become remarkably capable in a variety of NLP tasks
[Naveed et al., 2023], their massive scales come with substantial costs in hard-
ware, energy and time to both train and deploy these models [Strubell et al., 2019,
Patterson et al., 2021]. The high computational demands require the exploration
of more efficient methodologies. Recent studies have focused on strategies such as
pruning [Augasta and Kathirvalavakumar, 2013, Molchanov et al., 2016], quan-
tization [Hubara et al., 2018], and knowledge distillation [Gou et al., 2021, Kim
and Rush, 2016] to decrease model size without compromising performance. Ad-
ditionally, advancement in architecture such as the mixture of experts models
[Shazeer et al., 2017, Fedus et al., 2022] have been introduced to reduce effec-
tive model size during inference while maintaining overall model capacity. These
advances show a growing trend towards making powerful language models more
accessible and sustainable.

However, an area with great potential for improvement might have been over-
looked: LLMs nowadays still operate on sub-word tokens. Each of these is rep-
resented by an embedding with a size of several kilo-bytes (3KB for BERT up
to 37KB for PaLM). In contrast, an average English word can be represented by
roughly 5 ASCII bytes. A question naturally arises of whether it is feasible for
transformers to operate on more condensed text representations than sub-word
token embeddings. Recent work such as the Funnel-Transformer [Dai et al.,
2020] and hierarchical text transformers [Nawrot et al., 2021] have hinted that

1

1. Introduction 2

this might be possible: By compressing (and subsequently expanding) sequences
of hidden states by small constant factors throughout the transformer, a signifi-
cant saving in computational demands can be gained coming at little performance
cost.

In this work, we go a step further. Instead of compressing fixed-size groups of
sub-word tokens, we go beyond sub-word tokens and instead compress entire sen-
tences into fixed-size embeddings. Specifically, we investigate a) whether trans-
former models can compress information-rich sentence representations such that
operating on these representations alone can generate high-quality text, and b)
whether a resulting performance-efficiency trade-off from applying this approach
is worthwhile.

To answer these questions, we introduce Thoughtformer (THF), a hierarchical
transformer model that uses transformer layers to individually compress sen-
tences into fixed-size embeddings (later referred to as sentence embeddings). In
a second step, these sentence embeddings are collected passed through a second
set of transformer layers to pass the information between sentences. While we
introduce a bidirectional model for completeness, our primary focus is on training
a generative THF model (GPTHF).

We evaluate the perplexities of GPTHF and compare it with established baselines.
Our results show that GPTHF follows scaling laws in the low-parameter regime, a
promising sign that transformers can effectively perform sentence-level attention.
Furthermore, we observe significant improvements in efficiency during generation,
as evidenced by our experiments in both measuring floating-point operations
(FLOPs) and runtime.

While computational efficiency is the immediate and measurable advantage of
our approach, conceptually there is more to be gained from the idea of think-
ing hierarchically at different levels of abstraction. It mirrors human language
understanding, where we comprehend and respond to information given by our
peers at high levels of abstraction before articulating it into concrete words. If
successful, our work could imply that such hierarchical thinking and generation is
possible in AI. Though our focus is on language, this concept could be applicable
to other domains such as vision, or further levels of abstraction (e.g., paragraphs,
documents instead of sentences).

Our main contributions can be summarized as follows:

1. We propose a generative language model capable of generating text us-
ing only one fixed-size embedding per sentence. We demonstrate that this
model can be trained with minimal modifications to the existing GPT train-
ing procedures.

2. We introduce a new generation method that caches and reuses embeddings
of previous sentences. This approach achieves efficiency and speedups that

1. Introduction 3

grow linearly with context size, resulting in up to an order of magnitude
improvement in FLOPs and a threefold increase in runtime efficiency given
sufficient context.

To the best of our knowledge, these contributions are novel and have not been
explored previously.

Chapter 2

Related Work

2.1 Hierarchical Transformers

Traditionally, transformer models operate on a fixed size embedding across all
layers [Vaswani et al., 2017, Devlin et al., 2018, Radford et al., 2018]. A line of
research started exploring “hierarchical transformers”, a transformer model that
operates on variable-size embeddings representing meaning at various levels of
abstraction within different layers of the network.

Early examples include the Hierarchical Attention Network for Document Clas-
sification [Yang et al., 2016]. An other example is “Sentence Bottleneck Autoen-
coders developed from Transformer Language Models” [Montero et al., 2021],
where they propose AutoBot. This model takes the final embeddings from a pre-
trained RoBERTa framework [Liu et al., 2019] and learns an attention pooling
mechanism and a decoder. Fine-tuning on downstream tasks such as sentence
similarity shows that their sentence embeddings outperform naive mean or first-
token pooling methods. However, their approach focuses on downstream Natural
Language Understanding (NLU) tasks and uses a pre-trained model as a back-
bone, which is frozen during fine-tuning due to computational constraints. In
contrast, our work proposes a generative language model, where all parts of our
model are trained jointly.

Dai et al. [2020] introduced the Funnel Transformer, a model that incrementally
compresses tokens by pooling (mean pooling with filter size 2 and stride 2, ef-
fectively halving the context size at each pooling step) across multiple stages,
for instance through a “8-8-8” layer configuration. Inter-layer skip connections
are used in order for later layers to still be able to have access to information
present at earlier layers. When re-investing the FLOPs that were saved due to
the shorter context size, the Funnel Transformer achieves superior performance
metrics compared to larger models such as ROBERTA-large or XLNet-Large with
comparable computational resources.

Building on these foundations, Nawrot et al. [2021] extended these principles
to autoregressive transformers with their “Hourglass” model. They compress a

4

2. Related Work 5

fixed number of tokens and then decompress them. To address the potential for
information leakage, they shift the input by k tokens instead of the usual one-
token shift, enhancing language modeling efficiency as demonstrated through
improved perplexity scores on a Wikipedia dataset.

The landscape of hierarchical transformers also encompasses models like Sentence-
BERT [Reimers and Gurevych, 2019] and Sentence-GPT [Muennighoff, 2022],
which are tailored to generate sentence embeddings suitable to various down-
stream tasks. However, these models typically focus on sentence-level embed-
dings and do not fully explore the broader potential of text compression within
transformer architectures.

Our work differs from all of the above in several ways. First, instead of com-
pressing a fixed-size group of tokens, we compress a sentence – which represents
a unit of higher semantic value in language – into one embedding. Moreover,
our research does not prioritize the sentence embeddings themselves. Instead, it
leverages compression techniques to enhance overall NLP efficiency. Lastly, our
work proposes a generative model which can use compression to generate text 3
times faster than similar sized GPT models.

2.2 Sentence Embeddings

Several work leverage sentences embeddings, vector representations of sentences
to improve performance on downstream task such as semantic sentence similarity
scoring and semantic search. A first example of this is Sentence-BERT by Reimers
and Gurevych [2019], which introduce a siamese networks and a triplet loss to
explicitly encode semantic similarity into distances within the embedding space.

Wang et al. [2021] proposed TSDAE, a BERT-sized transformer autoencoder
trained using the masked language modeling task, whose encoder can be fine-
tuned using a contrastive loss to achieve strong downstream performance.

However, none of these works explores the possibility of contextualizing sentence
embeddings using additional attention layers. Instead, they focus solely on ap-
plying the sentence embeddings to the specific downstream tasks. As such, their
relevance to our work is rather limited.

Chapter 3

Method

We outline the general ideas and pipeline underlying the Thoughtformer (THF)
model, focusing on preprocessing and optimization methods. In total, we present
two variants: a bidirectional, BERT-like model tailored for natural language
understanding (NLU) tasks, which we include for completeness and describe in
detail in Chapter 4, and a GPT-like model designed for natural language gen-
eration (NLG) tasks, described further in Chapter 5, which constitutes the core
part of this work.

3.1 Data Preprocessing

Given a corpus D consisting of documents (X1, X2, · · · , X|D|), each document
is first split into sentences s1, · · · , sm using the NLTK Punkt sentence tokenizer
[Bird et al., 2023]. The sentences are tokenized using a pre-trained tokenizer
(DistilBert [Sanh et al., 2019] for bidirectional, GPT2 tokenizer [Radford et al.,
2019] for generative). Documents are then divided into training samples such that
the context size of the model and sentence boundaries are respected. Sentences
that cannot be finished in the current context are carried over to the next sample.
The samples then are considered independent, i.e. any information between them
(e.g. if they belonged to the same document) is lost.

3.2 Architecture

The THF model has a modular architecture comprising a word-level encoder
(wlt_encoder), a sentence-level transformer (slt_body), and an optional world-
level decoder (wlt_decoder) in case the training objective requires the output to
be a full sequence of hidden states. All modules consist of consecutive transformer
layers. Implicitly, the encoder’s objective is to compress the content of a sentence
into a single embedding (also called sentence embedding) with as little informa-
tion loss as possible. The idea is that if the sentence embeddings retain sufficient
information for the body to effectively process them via attention mechanisms,

6

3. Method 7

𝑋𝑖

𝑥1

𝑥2

𝑥𝑛

wlt_encoder

…

wlt_encoder

wlt_encoder

𝑒1

𝑒2

𝑒𝑚

…
slt_body

ෞ𝑒1

ෞ𝑒2

ෞ𝑒𝑚

…

wlt_decoder

wlt_decoder

wlt_decoder

…

𝑜𝑛

𝑜1

𝑜2

optional

𝑠1

𝑠1

𝑠1

Figure 3.1: High-level overview of the THF Architecture.

a reasonable performance can be maintained. Due to the body’s considerably
shorter context size, this configuration will have a significant speedup in process-
ing times compared to traditional equivalent models like BERT or GPT.

During the forward pass of a document Xi, the tokenized text x1, · · · , xn is first
pre-processed into sentences s1, · · · , sm according to Section 3.1. After apply-
ing positional embeddings, the tokens of each sentence are first processed by
the wlt_encoder to generate contextualized sub-word embeddings. A pooling
method produces for each sentence si, i ∈ [m], an embedding ei.

The sentence embeddings e1, · · · , em are fed directly, instead of using cross-
attention, into the slt_body, where they are further contextualized by the sur-
rounding sentence embeddings to form ê1, · · · , êm.

To recover a complete sequence of hidden states, the wlt_decoder restores the
original length of the input sequence and produces o1, · · · , on, which can then be
processed by a language modeling head.

More details on the training and inference of the model, including optimizations,
are provided in Chapters 4 and 5.

3.3 Optimization 1: Efficient Sentence Packing

Challenge. In our initial model formulation, a naive implementation would
handle input with the shape

(B = batch size, S = number of sentences, T = number of tokens per sentence),

3. Method 8

instead of the usual (B, T). This results from splitting documents into sentences
and then into tokens in order to compress sentences individually without al-
lowing cross-sentence token attention.

This approach, however, proves to be prohibitively expensive in terms of memory.
The added dimension S requires dynamic padding to the maximum number of
sentences (besides the usual padding to the maximum sentence length), leading
to excessively large tensor dimensions. To see this, consider a batch containing
two samples: One divided into 20 short sentences and one consisting of a single
sentence spanning the whole context, 128 tokens (512 for the generative model).
The resulting input is of shape (B, 20, 128, 768), of which roughly 95% is occupied
by padding tokens.

Key Idea. The key insight is that the extra dimension S is not really necessary.
Instead, we can prevent cross-sentence token attention within the original input
structure by employing a localized attention mechanism. The key is to track
“sentence index” vector at tokenization time. This vector tracks which sentence
each token belongs to and is crucial in applying the necessary adjustments in
order to ensure that tokens from different sentences do not influence each other.
All ideas presented in this section are also outlined in [Krell et al., 2021].

Adjust Attention Masking. The key to prevent cross-sentence token atten-
tion within the original input structure is to employ a localized attention mech-
anism. The mask is configured such that only tokens within the same sentence
(as indicated by the sentence index vector) are allowed to attend to each other.
Given the sentence index vector, we can modify the attention mask into a block
diagonal matrix, where each block corresponds to a single sequence. For simplic-
ity, let’s assume the sentence index vector for a sample text “Hello there. How are
you? I’m fine.” to be [0, 0, 1, 1, 1, 2, 2], the corresponding attention mask would
be a matrix where interactions are allowed within the blocks of [0, 0], [1, 1, 1], and
[2, 2] (see Figure 3.2 for an illustration). This creates a slightly unusual situation,
where the attention matrix is dependent on the content and hence dynamically
computed for each input.

At this point, we would like to note that the localized attention matrix already
offers a theoretical potential for computational speed-ups over a full attention
matrix due to its increased sparsity. Consider a context of size T divided into k
sentences of approximately equal length, the attention matrix would then com-
prise k blocks of size T/k each. This results in only T 2/k non-zero entries,
compared to T 2 in a fully dense matrix. Moreover, these T 2/k nonzero entries
are organized in a structured, block-wise way. A clever implementation could po-
tentially bypass some operations on the zeroed entries, resulting in an efficiency
gain. However, current practical implementations may not be able to take full
advantage of this sparsity. Therefore, we acknowledge this only as an observation

3. Method 9

and will not further go into this point.



1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1


(a) Block matrix



1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 1


(b) Block lower triangular matrix

Figure 3.2: Visualization of adjusted attention masks for a text with sentence in-
dex vector [0, 0, 1, 1, 1, 2, 2]. (a) Standard block matrix allowing attention within
sentences in a bidirectional model. (b) Block lower triangular matrix allowing
attention to previous tokens within sentences in an autoregressive model.

Adjust Positional Embeddings (Optional). In order to align our model
mathematically with the original THF formulation, it would be necessary to reset
the positional embeddings at the beginning of each sentence. For instance, in the
BERT model, each token at index i within a sequence is assigned a corresponding
sinusoidal positional embedding that is added to the input. However, when pack-
ing sentences, the position index must be reset at the start of each new sentence.
Following our earlier example with the sentence index vector [0, 0, 1, 1, 1, 2, 2],
the required positional embedding indices would be [0, 1, 0, 1, 2, 0, 1] as opposed
to the conventional sequence [0, 1, 2, 3, 4, 5, 6]. However, we observe no perfor-
mance degradation without this adjustment, and dynamically adjusting posi-
tional embeddings slightly slows down training. Therefore, we decide against
this adjustment in our final implementation.

3.4 Optimization 2: Training in Low-Compute Setting

In our pursuit to train language models despite being constrained on a limited
computational budget, we adopt several modifications outlined in “Cramming:
Training a Language Model on a GPU in One Day” [Geiping and Goldstein,
2023]. Here, we outline some key changes which allow us to efficiently train the
THF architecture within a restricted timeframe and computational budget. More
detailed optimizations specific to the bidirectional or generative models, as well
as adjustments to their training procedures, are outlined in Chapters 4 and 5,
respectively.

3. Method 10

No Biases in Hidden Layers. For both models, we disable all QKV biases in
the transformer attention layers, as well as biases in the linear layers. This mod-
ification reduces a slight computational overhead without significantly impacting
model size, thereby increasing throughput at little performance cost.

Pre-normalization and Final Normalization Layer Previous studies by
Popel and Bojar [2018] have shown that pre-normalization, which involves nor-
malizing the input of each transformer sub-layer rather than the output (post-
normalization), benefits the stability of the training process. Following this advice
and in alignment with Geiping and Goldstein [2023], we use pre-normalization
and add a final normalization layer at the end of the final transformer layer before
the language modeling head.

No Dropout During Pre-training. We have decided to eliminate dropout
during pre-training. Given that our models undergo only a single pass or less
over the pre-training corpus, overfitting is not possible [Geiping and Goldstein,
2023], making dropout less necessary.

Chapter 4

Bidirectional Model

4.1 Data

We use the pre-training corpus proposed by the BERT model [Devlin et al., 2018],
composed of English Wikipedia as of the 1st of March 2022 and BookCorpusOpen
1. Our main motivation of choosing these sources is to facilitate direct compar-
isons to BERT. The documents are pre-processed according to Section 3.1, using
the uncased DistilBertTokenizer [Sanh et al., 2019] as the pre-trained tokenizer.

4.2 Architecture

Name Params d nheads lencoder lbody ldecoder lr

THF-6-4-2 94M 768 12 6 4 2 6e-4
THF-8-4-2 106M 768 12 8 4 2 6e-4
THF-8-6-4 192M 1024 16 8 6 4 5e-4
THF-10-4-2 174M 1024 16 10 4 2 5e-4

Table 4.1: Model sizes together architectural and optimization hyperparameters
for bidirectional models.

The text x1, · · · , xn (where n is typically 128, our context size for this model)
is first processed. We do not physically split into sentences as described in Sec-
tion 3.1, but instead keep track of a sentence index vector (see Section 3.3). After
applying positional embeddings, each sentence’s tokens are first processed by the
wlt_encoder to generate contextualized sub-word embeddings. The wlt_encoder
uses the block attention matrix as outlined in Section 3.3, computed with the help
of the sentence index vector.

1The original authors used BookCorpus, which is not available anymore due to licensing
issues. BookCorpusOpen serves as an alternative, being compiled from books that are publicly
accessible.

11

4. Bidirectional Model 12

wlt_encoder
slt_body𝑒1

𝑒2

𝑒3

ෝ𝑒1

ෝ𝑒2

ෝ𝑒3

wlt_decoder

ෝ𝑒1

ෝ𝑒2

ෝ𝑒3

PAD

PAD

PAD

PAD

PAD

PAD

Pre-training

𝑥1

𝑥2

𝑜1

𝑜2

𝑜𝑛

CLS

CLS

CLS

Figure 4.1: Overview of the Bidirectional THF Architecture without the classi-
fication head. The colors in the tokens indicate which sentence they belong to.
The boxes in the modules indicate the attention masks being used in training
and inference: Block attention masks as outlined in Section 3.3 for wlt_encoder
and wlt_decoder, and a full attention matrix for the slt_body.

The pooling method of our choice to produce sentence embeddings ei is the output
token of the encoder corresponding to the CLS token of the sentence si. This is
standard practice in BERT-like models, and no improvement was found when
using average pooling. The fetching operation can be implemented efficiently by
leveraging the sentence index vector. The sentence embeddings e1, · · · , em are
processed by the slt_body, where they are further contextualized at the sentence
level to form ê1, · · · , êm. A fully dense attention matrix is used in this stage.

At inference time, ê1, · · · , êm are averaged in order to obtain one final embedding,
which is run through a final layer in order to produce the classification logits. No
difference in performance was found when employing a different pooling method.

During pre-training, to recover a full sequence of hidden states, the wlt_decoder
is used. Each êi is concatenated with padding tokens until the original length
of the sentence is restored. This input is then processed by the wlt_decoder,
producing o1, · · · , on, which can be processed by a language modeling head.

For an illustration of the architecture, see Figure 4.1. A summary of the model
sizes and other hyperparameters are provided in Table 4.1. As outlined in Sec-
tion 3.4, we align our model with CrammedBERT [Geiping and Goldstein, 2023],
both in order to train THF fast and to have a model that is easy to compare to
it. In practice, we make the following design choices, many of which are taken
directly from their work.

Embeddings. We implement scaled sinusoidal positional embeddings as de-
scribed by Geiping and Goldstein [2023]. Moreover, we add a final layer normal-

4. Bidirectional Model 13

ization at the end of the embedding block.

Activation Function. We use GELU [Hendrycks and Gimpel, 2016] activa-
tion, where the block is re-ordered into a gated linear unit (GELUglu) without
increasing the number of the parameters in the FF block to compensate for the
halving of the hidden dimensionality due to gating.

Layer Structure. As outlined in Section 3.4, we use pre-normalization. Apart
from that, the layer is equivalent to a PyTorch transformer encoder block.

In the subsequent section, we briefly describe the pre-training details for the
bidirectional model. An evaluation of the bidirectional model can be found in
Appendix A.

4.3 Pre-training.

Objective. In the pre-training phase, we employ the Masked Language Mod-
eling (MLM) approach. Consistent with the standard BERT pre-training proce-
dure, 15% of the tokens in the input sequence are masked, out of which 80% are
replaced by a mask token, 10% are replaced by random tokens and 10% remain
unchanged. Following insights from RoBERTa [Liu et al., 2019] and other related
studies, we omit the Next Sentence Prediction task due to its limited impact on
performance.

Optimizer. We use Adam [Kingma and Ba, 2014] as the optimizer of choice,
with weight decay of 0.01 as described by Loshchilov and Hutter [2018], and
similar to CrammedBERT use β1 = 0.9, β2 = 0.98 and ϵ = 10−12. Moreover, we
include gradient clipping at a clip value of 0.5.

Learning Rate and Scheduler. Different to CrammedBERT’s one-cycle learn-
ing rate scheduler, we found a slight improvement for our models by employing
linear decay with 10000 warm-up steps. The peak learning rates, together with
other hyperparameters, can be found in Table 4.1.

Batch Size Scheduler. The batch sizes are accumulated using gradient ac-
cumulation according to the batch size scheduler from CrammedBERT, starting
at 256 and and linearly ramping up to 8192, reaching this peak at 60% of the
training duration. This provides an early boost while performing more modest
updates in the later stages of training.

Chapter 5

Generative Model

5.1 Data

Our training corpus incorporates OpenWebText, Wikipedia and ArXiv. Open-
WebText, an open alternative to the Webtext dataset used by OpenAI for train-
ing GPT2 [Radford et al., 2019], forms the backbone of our corpus due to its
larger size and diverse internet content. This allows our model to handle a broad
spectrum of topics and writing styles. Wikipedia, known for its comprehensive
coverage across various areas of general knowledge, ensures that the model de-
velops a well-rounded understanding of general facts. Finally, ArXiv augments
our corpus by adding scientific and highly technical texts, enabling our model to
understand and generate high-quality content in these domains as well.

Moreover, we modify the tokenization process by adding a designated “end-of-
sentence” token after each sentence. As we will see, this “end-of-sentence” token
plays a crucial role in the design of a fast generation method, a cornerstone of
this work.

5.2 Architecture

At this point, the reader has likely obtained a general understanding of the inner
workings and the interplay between the wlt_encoder and the slt_body. To avoid
repetition, we will directly describe the inference process of the Generative THF
(GPTHF), highlighting the key changes from the bidirectional model.

Inference. The model predicts the token j in sentence i by utilizing all com-
pressed sentence embeddings from sentences 1 to i−1 and the compressed prefix
of tokens from 0 to j−1 within sentence i. The compressed embeddings are gen-
erated by the word-level encoder, which compresses each sentence independently
without cross-sentence contamination by using a block-attention mask. Instead
of fetching the CLS embedding, we fetch the last embedding, consistent with the

14

5. Generative Model 15

𝑥1

𝑥2

𝑥𝑛

wlt_encoder
slt_body𝑒1

𝑒2

𝑒3

ෝ𝑒1

ෝ𝑒2

ෝ𝑒3

LM head 𝑥𝑛+1

Figure 5.1: Overview of the Generative THF (GPTHF) Architecture during
inference.

Name Params d nheads lencoder lbody lr

GPTHF-8-4 151M 768 12 8 4 6e-4
GPTHF-16-8 454M 1024 16 16 8 4e-4

Table 5.1: Model sizes together architectural and optimization hyperparameters
for GPTHF models.

training process, as we will see in the subsequent section. These embeddings are
then contextualized by the slt_body.

Intuitively, the inference behavior is almost identical to the inference behavior
of the bidirectional model (treating the token as a classification label), with the
only difference being the pooling method. First, the last embedding instead of the
CLS embedding of each sentence is fetched as the sentence embedding. Second,
the last contextualized sentence embedding instead of the mean of all sentence
embedding is chosen as the input of the language modeling head.

For an illustration of the GPTHF at inference time, refer to Figure 5.1. A
summary of the model sizes and other hyperparameters are provided in Table 5.1.
Through empirical experimentation, we found that a relatively large encoder is
beneficial, likely because it allows the model to perform extensive operations
on sequences of normal length. Moreover, the architectural hyperparameters
proposed by CrammedBERT were not as effective, which we believe are likely
optimized for bidirectional models. Instead, we decide on these modifications,
taken directly from Llama-1 [Touvron et al., 2023].

5. Generative Model 16

𝑥1

𝑥2

𝑥𝑛

wlt_encoder

𝑒1,3

𝑒2,4

𝑒3,1

LM headslt_body

ෞ𝑒3,1

𝑥2

𝑥3

𝑥𝑛

PADFigure 5.2: High-level overview of the parallel training of the generative THF on
the next token prediction objective. The boxes in the models indicate the type
of attention masks used. The attention masks are explained in Figure 5.3.

For instance, the embedding e3,1 is allowed to attend to e1,3 and e2,4 while
being processed by the slt_body, as ensured by the attention mask

Embeddings. Similar to Llama-1, we replace an absolute positional embedding
layer with rotary positional embeddings (RoPE), introduced by Su et al. [2024],
at each attention layer of the network.

Activation Function. We use the SwiGLU activation function, introduced by
Shazeer [2020]. Following the recommendation of Llama-1, we use a dimension
of 2/3 4d instead of 4d as in PaLM.

Layer structure We continue to use pre-normalization, but instead of Layer-
Norm, which was used in CrammedBERT, we use RMSNorm [Zhang and Sen-
nrich, 2019].

5.3 Pre-training

Objective. For pre-training, we employ the next token prediction objective,
common in autoregressive language models. The tokens are shifted by one posi-
tion to the right to create the target sequence.

Procedure. To prepare our model for the task of predicting tokens with ac-
cess only to embeddings of preceding sentences and the compressed prefix of the
current sentence, while at the same time enabling efficient parallel training, we
need a clever strategy. It turns out that we can achieve this with minimal change

5. Generative Model 17



1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 1


(a) Encoder attention matrix



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 1 1 0
0 1 0 0 1 0 1


(b) Body attention matrix

Figure 5.3: Attention masks during pre-training for an input with the sentence
index vector [0,0,1,1,1,2,2]: The left matrix is the "block triangular mask" in-
troduced in Section 3.3. Every token can attend to every preceding token of
the sequence, but not to token of previous sequences. After going through the
encoder, every token represents the compressed prefix of its sequence up to itself,
and is only allowed to attend to itself and compressions of previous sequences
(right).

to the usual pre-training procedure by using specialized attention masks as de-
picted in Figure 5.3. Following the application of the block-triangular mask in
the encoder, the body attention mask ensures that each token can only attend
to its position, which contains the compressed token sequence up to that point,
and the last embedding of each preceding sentence. The target is the next token
in the sequence. This setup trains the model for the inference scenario, where it
can only access the compressed embeddings of each sentence.

Optimizer. We use Adam with weight decay of 0.01 from Section 4.3 as the
optimizer. Moreover, we use β1 = 0.9, β2 = 0.98 and ϵ = 10−8. Additionally, we
maintain gradient clipping at a clip value of 0.5.

Learning Rate and Scheduler. We again use linear decay with 10000 warmup
steps as our learning rate scheduler. The peak learning rates are provided in Ta-
ble 5.1.

Batch Size Scheduler. We keep the batch size scheduler from Section 4.3.
To account for the increased context size, the batch size starts at 64 and linearly
ramps up to 4096, reaching this peak at 60% of the training duration.

Remark. It may seem surprising to the reader that the essential difference
between training a conventional GPT and training a GPTHF, which at first sight

5. Generative Model 18

wlt_encoder
slt_body𝑒1

𝑒2

𝑒3

ෝ𝑒1

ෝ𝑒2

ෝ𝑒3

LM head 𝑥𝑛+1

s_embedding_cache

𝑒1 𝑒2

𝑒3

--
--

--
--

--
-f

in
is

h
ed

--
--

--
--

--
-- If 𝑥𝑛+1 = end-of-sentence

𝑒3

𝑠3

Figure 5.4: Illustration of an iteration of the Fast Generation Algorithm. After
having finished two sentences s1 and s2 in the context, any subsequent token
mathematically cannot influence e1, e2. The Fast Generation Algorithm caches
them and feeds them directly to the slt_body, together with e3, a compressed
representation of the tokens in s3, the current sentence.

appear very different, lies in just substituting full triangular attention matrices
with sparser ones dynamically computed for each input, with no architectural
changes. Theoretically, this results in a strictly weaker generative power when
comparing to a conventional GPT. We will experimentally verify the extent of
the performance drop in the following sections. For now, let’s explore how our
method allows a faster generation process, with speedup scaling proportionally
to the number of sentences in the context.

5.4 Fast Generation

The key insight that enables our fast generation algorithm to be mathematically
equivalent to regular generation is the design of our block-wise attention matrix.
During the generation loop, when generating a token in sentence j, the block-
attention matrix ensures that this process only affects the tokens in sentence j
and never any token in previous sentences. Since the feedforward layers operate
element-wise, there is no operation within the transformer layer that alters the
compressed embeddings e1, e2, · · · , ej−1. Thus, these embeddings remain fixed.
The core idea is to cache these embeddings, allowing the encoder to process
only the current sentence j to compute ej and then feed the body with the

5. Generative Model 19

concatenation of the cached embeddings e1, e2, · · · , ej−1 and the newly computed
ej . Below, we outline the algorithm in pseudo-code. An illustration can be found
in Figure 5.4. Intuitively, since the fast generation algorithm processes only the
current sentence after the first iteration, and these sentences are (statistically)
bounded by a constant length, we can expect to observe a speedup that increases
asymptotically with the number of sentences. We will conduct experiments later
to verify this intuition.

Algorithm 1 Fast generation
Require: input_ids, attention_mask, sentence_ids, max_new_tokens, tem-

perature, top_k

emb_cache ← []
for i← 1 to max_new_tokens do

word_emb ← self.encoder(input_ids, attention_mask, sentence_ids)
sent_emb ← fetch_sent_emb(word_emb, sentence_ids)
body_input ← concat(emb_cache, sent_emb)
final_emb ← self.body(body_input, attention_mask, sentence_ids)
next_token ← get_next_token(final_emb, temperature, top_k)
emb_cache ← sent_emb of finished sentences (marked by end-of-sentence

token)
Truncate input_ids, attention_mask, sentence_ids by finished sentences

end for

Chapter 6

Experiments

In this chapter, we present the details of our experimental setup for our generative
model. We include model configurations, training procedures, and the results of
our evaluations.

6.1 Experiment Setup

We start by reporting pre-training perplexity, a measure of how well our predicted
probability distribution matches the distribution of the training data. We do
not include evaluations on downstream generation tasks, such as zero-shot or
few-shot tasks (e.g., Question-Answering (BoolQ) or Reading Comprehension
(RACE)), as our model and training were likely too small for these evaluations
to be meaningful. Preliminary trials indicated that a certain threshold in model
scale is required to perform significantly better than random guessing. Finally,
we evaluate the inference speed of our models, focusing on FLOPs and runtime.

Baselines. To ensure a fair comparison and avoid disadvantaging our baselines
in the low-compute setting, we trained a 12-layer baseline named “Baseline-12”
and a 24-layer “Baseline-24” with the exact same architecture and same number of
parameters as their GPTHF counterparts. The only difference was that they were
trained using full triangular masks for both the encoder and body, as opposed
to the masks in Figure 5.3). As remarked in Section 5.3, the baselines can be
regarded as equivalent to conventional GPTs.

In order to compare with more established architectures, we also include the
vanilla Huggingface implementations of OPT [Zhang et al., 2022] and Llama-1
[Touvron et al., 2023], open-source alternatives to GPT. We chose OPT because
the authors provided detailed hyperparameter configurations for training models
of comparable size, and Llama-1 because we incorporated many design choices
from it into our architecture, facilitating a more direct comparison. However, we
ultimately replaced the training configurations proposed in the OPT paper with
ours, as their configurations resulted in slightly higher perplexities for our setup.

20

6. Experiments 21

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B
15

25

35

45

Baseline-12 Baseline-24 GPTHF-16-8 GPTHF-8-4 LLaMA-12 LLaMA-24 OPT-125M OPT-350M

Tokens

Pe
rp
le
xi
ty

Figure 6.1: Validation perplexity of pre-trained models and baselines. Lower
values indicate better performance.

Training Configurations. Due to computational constraints, we limited the
pre-training of each model to 10 billion tokens. This means that the models were
trained for 320,000 (micro-batch) steps at a context size of 512 with an effective
micro-batch size of 64. The 12-layer models were trained on either 2 NVIDIA
A6000 GPUs for 320,000 steps each or 4 NVIDIA RTX 3090 GPUs for 160,000
steps each. The 24-layer models were trained on 2 NVIDIA A100 GPUs for
320,000 steps each. Using this setup, training can be completed in 2-3 days.

6.2 Perplexity.

The pre-training perplexity after processing 10 billion tokens are presented in
Figure 6.1. The perplexity scores are computed on a hold-out validation dataset
comprising 1000 micro-batches, which totals 16 million tokens (using a micro-
batch size of 32 at a context size of times 512). The perplexity scores are calcu-
lated on a per-subsequence basis, meaning that a document split into multiple
sequences of 512 tokens is reset at the beginning of each subsequence, rather
than using a more accurate but cumbersome “context sliding window” approach
[Huggingface, 2020]. This method has the drawback of slightly overestimating
the actual perplexity.

Llama-1 and OPT Have High Perplexity Scores. Unfortunately, our
Llama-1 and OPT baselines perform subpar. This is likely due to the archi-
tectures not being optimized for a low-compute setting or sub-optimal training
configurations. The configuration proposed by the OPT authors (no specific con-
figuration were provided by Llama-1 for our model sizes) resulted in even higher
perplexity scores. Due to time constraints, we did not optimize the configurations
for these baselines. Consequently, for the remainder of this chapter, we focus on
comparing GPTHF with “Baseline-12” and “Baseline-24”.

6. Experiments 22

Scaling Law Holds for GPTHF in the Low-Compute Setting. Our refer-
ence baselines yield significantly lower perplexity scores than the GPTHF models,
as expected. Interestingly, scaling law appears to hold for GPTHF (in the low-
parameter regime) as well. Morever, the same shift in perplexity, approximately
5 points from a 12-layer model to a 24-layer model of the same architecture after
10B tokens, is observed for both the baseline and GPTHF architecture. This
indicates that it may be possible to compensate for performance loss due to com-
pression simply by increasing model size. Perhaps even at an equally reliable rate
as for conventional GPTs, as suggested by the same shift of 5 points, but clearly
it is difficult to extrapolate this result to large-scale models.

Tripling the Model Size Brings Performance Back. We observe that
the perplexity plots of GPTHF-16-8 and the 12-layer baseline are very similar.
This sets up a basis for further comparisons: If GPTHF-16-8 can achieve faster
generation efficiency and/or speed than the baseline of 12 layers, it might be
worthwhile to invest in training a larger model capable of compression.

6.3 Experiments on Generation Speed

The primary motivation for this study is to leverage sentence compression to
gain efficiency in inference, in the hope to justify an expected drop in predictive
performance compared to a standard GPT. To achieve this, we measure FLOPs
(floating-point operations) as a robust indicator of the time and energy cost of
our model. In addition, we provide an analysis of the actual runtime.

6.3.1 FLOPs

Our fast generation algorithm is designed to achieve speedups; however, the ex-
tent of this speedup depends heavily on the distribution of tokens into sentences.
Intuitively, having many sentences is beneficial because completed sentences can
be cached and hence bypass the encoder, which comprises two-thirds of the model.
Therefore, analyzing the FLOP count theoretically is impractical. Instead, we an-
alyze it by running a number of samples from OpenWebText with varying lengths
as prompts, and count the FLOPs empirically using a specialized tool [Li]. The
results are presented in Table 6.1. Note that KV-caching [Pope et al., 2023] is
disabled for our experiments, significantly impacting our results, as it requires
a considerable effort to make our approach compatible with KV-caching, which
was not pursued due to time constraints.

Efficiency Gain Increases With Prompt Length. The results indicate that
the longer the prompt, the higher the efficiency factor, as expected, confirming

6. Experiments 23

Batch size 1

Model n ≤ 100 n ≤ 250

k = 100 efficiency k = 250 efficiency k = 100 efficiency k = 250 efficiency

Baseline-12 2.38T 1.00x 9.1T 1.00x 4.88T 1.00x 15.7T 1.00x
GPTHF-8-4 0.95T 2.51x 4.16T 2.19x 0.80T 6.10x 4.31T 3.64x

Baseline-24 8.30T 1.00x 31.4T 1.00x 17.0T 1.00x 53.9T 1.00x
GPTHF-16-8 2.99T 2.78x 17.4T 1.81x 2.97T 5.72x 17.5T 3.08x

Batch size 32

Model n ≤ 100 n ≤ 250

k = 100 efficiency k = 250 efficiency k = 100 efficiency k = 250 efficiency

Baseline-12 2.46T 1.00x 9.62T 1.00x 4.96T 1.00x 16.0T 1.00x
GPTHF-8-4 1.90T 1.29x 7.72T 1.25x 2.53T 1.96x 9.32T 1.72x

Baseline-24 8.52T 1.00x 32.69T 1.00x 17.2T 1.00x 54.9T 1.00x
GPTHF-16-8 6.11T 1.39x 25.6T 1.28x 8.39T 2.05x 31.3T 1.75x

Table 6.1: Empirical count of Tera-FLOPs consumed per sample for different
prompt lengths n and number of tokens generated k. Lower values are better.
Bold values indicate the configuration with the highest efficiency gain for each
batch size. The mean over 50 batches is reported. For GPTHF models, the
number corresponding to the fast generation algorithm is reported. Efficiency is
calculated as the inverse FLOPs reduction of the GPTHF model compared to its
respective baseline.

our intuition at the beginning of this section. However, that would entail that
more tokens would magnify our speedup, as the fast generation method bypasses
sentence generation once a sentence is completed. However, the numbers do not
fully support this hypothesis. An explanation is provided below.

Inability to Generate End-of-Sentence Embeddings. The trends in our
results show that the efficiency gain is negatively correlated with the number of
tokens generated, contrary to our initial intuition. A close examination of the
generated text reveals the answer: Our models are only able to generate a few
relevant tokens, but seem to repeat those tokens indefinitely without ever gener-
ating an end-of-sentence token. This problem occurs both in GPTHF models and
baselines, indicating that it is likely due to insufficient scale or training rather
than a limitation of the compression procedure.

While quality of text normally is not coupled to efficiency, it is tightly coupled in
the case of the GPTHF, as generating end-of-sentence embeddings is crucial for
the fast generation algorithm to detect a finished sentence embedding. To under-
line this issue, we augment our initial experiment with two additional settings: a)
when prompting 20 tokens and generating 500 tokens, and b) When prompting
500 tokens and generating 20 tokens. The results are shown in Table 6.2. In the
former setting, we observe only tiny efficiency gains, as the model is unable to

6. Experiments 24

Model Batch size 1 Batch size 32

n, k = 20, 500 efficiency 500, 20 efficiency n, k = 20, 500 efficiency 500, 20 efficiency

Baseline-12 21.8T 1.00x 1.56T 1.00x 27.1T 1.00x 1.7T 1.00x
GPTHF-8-4 21.2T 1.03x 0.17T 9.18x 21.7T 1.25x 0.58T 2.93x

Baseline-24 78.7T 1.00x 5.45T 1.00x 83.1T 1.00x 5.95T 1.00x
GPTHF-16-8 69.2T 1.14x 0.56T 9.73x 76.4T 1.10x 2.04T 2.92x

Table 6.2: Empirical number of FLOPs per sample for extreme values of prompt
length n and number of tokens generated k. The setup is the same as in Table 6.1.
This table illustrates: a) the issue that our models struggle to predict sentence
boundaries, hindering efficiency gains, and b) the extent of efficiency gains that
can be obtained when processing large text segments with regular sentence length
distributions.

terminate sentences by predicting end-of-sentence embeddings. However, when
given 500 tokens of prompt (packed in well-formed sentences), we observe effi-
ciency gains up to an order of magnitude, and almost triple when comparing
GPTHF-16-8 to the 12-layer baseline.

We hypothesize that a model capable of correctly terminating sentences achieves
much greater efficiency gains than reported in Table 6.1. They would be closer
to the efficiency gain observed in the 500 prompt, 20 generated tokens scenario,
and would likely magnify even further with more tokens.

5 10 15 20
Average number of sentences

2

4

6

8

10

12

Ef
fic

ie
nc

y
ga

in

24-layer models
12-layer models

(a) Batch size = 1

2.5 5.0 7.5 10.0 12.5 15.0
Average number of sentences

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ef
fic

ie
nc

y
ga

in

24-layer models
12-layer models

(b) Batch size = 32

Figure 6.2: Scatter plots showing the average number of sentences (x-axis) versus
the efficiency gain (y-axis) of the GPTHF model over its equal-sized baseline when
generating 20 tokens. The left plot represents a batch size of 1, the right plot a
batch size of 32.

Sentences vs Efficiency. To better understand the influence of the number
of sentences present in the prompt on efficiency, we provide scatter plots in Fig-
ure 6.2 that display the average number of sentences on the x-axis and the speedup

6. Experiments 25

gain of the GPTHF model over the baseline on the y-axis. The figure demon-
strates that the efficiency gain increases asymptotically with the average number
of sentences, in particular that the relationship appears to be linear. For batched
data, the efficiency gain is smaller compared to unbatched data, likely due to the
increased variety (which can be observed from the increased variance) in tokens
leading to more padding tokens being processed, which inhibits the gain from the
fast generation algorithm.

6.3.2 Inference Time

A skeptical reader might argue that while we save many FLOPs, not all of these
savings can be converted into reduced actual running time. The skepticism is
valid because our algorithm includes considerable overhead and tracking, con-
ditional executions etc. In other words, code that goes beyond straightforward
matrix multiplications may not run as efficiently on a GPU. Therefore, we mea-
sure actual inference times, with the entire setup identical to the experiment for
FLOPs.

Batch size 1

Model n ≤ 100 n ≤ 250

k = 100 speedup k = 250 speedup k = 100 speedup k = 250 speedup

Baseline-12 1.73s 1.00x 4.44s 1.00x 1.82s 1.00x 4.77s 1.00x
GPTHF-8-4 1.77s 0.98x 4.46s 1.00x 1.77s 1.03x 4.48s 1.06x

Baseline-24 3.40s 1.00x 8.88s 1.00x 3.73s 1.00x 9.85s 1.00x
GPTHF-16-8 3.32s 1.02x 8.43s 1.05x 3.32s 1.12x 8.44s 1.17x

Batch size 32

Model n ≤ 100 n ≤ 250

k = 100 speedup k = 250 speedup k = 100 speedup k = 250 speedup

Baseline-12 0.17s 1.00x 0.57s 1.00x 0.28s 1.00x 0.88s 1.00x
GPTHF-8-4 0.15s 1.13x 0.50s 1.14x 0.18s 1.56x 0.56s 1.57x

Baseline-24 0.40s 1.00x 1.42s 1.00x 0.73s 1.00x 2.34s 1.00x
GPTHF-16-8 0.35s 1.14x 1.24s 1.15x 0.37s 1.97x 1.29s 1.81x

Table 6.3: Empirical number of Generation time in seconds per sample for dif-
ferent prompt lengths (denoted by n) and number of tokens generated (denoted
by k). Lower values are better. Bold values indicate the configuration with the
highest speedup gain for each batch size. The mean over 50 batches executed on
a single NVIDIA RTX A6000 is reported. For GPTHF models, the measurement
corresponding to the fast generation algorithm is reported. Speedup is calculated
as the inverse time reduction of our model in comparison to the baseline.

6. Experiments 26

Model Batch size 1 Batch size 32

n, k = 20, 500 speedup 500, 20 speedup n, k = 20, 500 speedup 500, 20 speedup

Baseline-12 1.73s 1.00x 4.44s 1.00x 1.54s 1.00x 0.093s 1.00x
GPTHF-8-4 1.77s 0.98x 4.46s 1.00x 1.33s 1.16x 0.041s 2.27x

Baseline-24 3.40s 1.00x 8.88s 1.00x 3.65s 1.00x 0.26s 1.00x
GPTHF-16-8 3.32s 1.02x 8.43s 1.05x 3.4s 1.07x 0.087s 2.99x

Table 6.4: Empirical number of generation time in seconds per sample for different
prompt lengths (denoted by n) and number of tokens generated (denoted by k).
The mean and standard deviation over 100 samples on a single NVIDIA RTX
A6000 is reported. For our models, the fast generation number is reported.
Speedup is calculated as the inverse time reduction of our model in comparison
to the baseline.

Speedup Increases With Context. Similar to the FLOP experiment, we
observe that the longer the prompt, the greater the speedup. For unbatched
input, speedup seems to increase with the number of generated tokens as well,
but the gains are limited, up to 17%. For batched data, a larger context yields
higher speedup, but more tokens do not, which we attribute to the same problem
of the model failing to terminate sentences correctly.

Latency vs. Throughput. We observe significant differences in speedup gains
between unbatched and batched data. We attribute this observation to be a clas-
sical latency vs. throughput issue. For unbatched data with small contexts, fast
generation is slightly slower, likely due to the overhead of caching and additional
operations. If too little data is available, the gains in FLOPs result in parts of
the GPU simply staying idle. Consequently the runtime is bound by latency, pri-
marily dependent on the model size, thus failing to translate into actual runtime
gains.

When batched, there is enough data to keep the GPU busy, converting efficiency
gains in FLOPs into higher throughput. Moreover, the speedup seems to increase
with model size as well 1. This results in speedups up to triple (for the n =
500, k = 20 setting, in Table 6.4) when comparing GPTHF with their equal-
sized baselines and slightly faster when comparing the GPTHF 16-8 with the
12-layer baseline. We conclude that runtime improvements are primarily about
how effectively we can keep the GPU busy.

Sentences vs. Speedup. Similar to the FLOPs analysis, we provide scatter
plots (cf. Figure 6.3 that display the average number of sentences on the x-axis

1Contrary to the higher speedups with longer context, it is reasonable to assume that this
will not continue increasing indefinitely, but will rather saturate at a certain threshold in model
size.

6. Experiments 27

5 10 15 20
Average number of sentences

1.00

1.05

1.10

1.15

1.20

1.25

Sp
ee

du
p

ga
in

24-layer models
12-layer models

(a) Batch size = 1

2.5 5.0 7.5 10.0 12.5 15.0
Average number of sentences

1

2

3

4

5

Sp
ee

du
p

ga
in

24-layer models
12-layer models

(b) Batch size = 32

Figure 6.3: Scatter plots showing the average number of sentences (x-axis) versus
the speedup gain (y-axis) of the GPTHF model over its equal-sized baseline when
generating 20 tokens. The left plot represents unbatched input, while the right
plot represents a batch size of 32.

and the speedup gain in runtime of the GPTHF model over the baseline on the y-
axis. The figure highlights a linear relationship between the number of sentences
and the speedup. As noted earlier, for unbatched data the speedup is limited,
while the speedup also seems to increase with model size, likely due to our latency
versus throughput considerations.

6.4 Discussion

Compression Leads to a Performance Drop. We conclude that compres-
sion does lead to a notable performance drop. Specifically, transitioning from a
baseline/GPT model to a GPTHF model (for small sizes) results in a shift of
approximately 5 points higher in perplexity after 10B tokens of training. This
performance drop is comparable to the decrease observed when reducing a 24-
layer GPT to a 12-layer GPT. Moreover, the perplexities of a GPTHF-16-8 and
a 12-layer baseline are equivalent, as shown in Figure 6.1.

Scaling Potential of GPTHF Models. A promising observation from our
results is that the GPTHF models could scale. The shift of 5 points in perplexity
is observed when moving from a GPTHF-16-8 to a GPTHF-8-4. The important
question is whether this relationship holds in the high-scale regime. A positive
answer would entail that sentence embeddings can adequately replace sub-word
embeddings if a larger model is used to compensate for the compression. This
tradeoff is not only understandable, but is worthwhile if a compressed model
comes with a corresponding speedup. On the other hand, there is a possibility

6. Experiments 28

that the quality of text generated by a compression model hits a natural ceiling,
possibly due to information-theoretic limits when compressing. If this is the
case, sub-word embeddings would remain superior to sentence embeddings for
high-quality text generation.

Substantial Gains in Efficiency and Speed. Our approach achieves sub-
stantial speed-ups, up to an order of magnitude in FLOPs and up to triple in run-
time when comparing equally sized models. Moreover, we observed empirically
that these speedup factors increase asymptotically (linearly) with context size. It
is important to keep in mind that our results are obtained with KV-caching [Pope
et al., 2023] disabled. KV-caching could exhibit similar asymptotic properties,
potentially making our fast generation method an alternative, but not necessarily
an improvement over KV-caching. The exact factors would have to be carefully
studied to make a definitive statement.

Is It Worth It? To evaluate the overall tradeoff, we compare the GPTHF-
16-8 and the 12-layer baseline, which have similar perplexities. When processing
500 tokens of context, the GPTHF-16-8 uses roughly a third of the FLOPs for
unbatched data and is slightly faster (7%) for batched data. While we have not
found simultaneous improvements for both FLOPs and runtime in our configura-
tions, such improvements are to be expected when increasing the prompt length
and batch size due to the asymptotical result. Therefore, in the low-compute
scale, this tradeoff appears worthwhile, although this conclusion again disregards
the potential impact when including KV-caching.

Chapter 7

Limitations and Future Work

We outline several ways to build on and improve this project.

Scaling Up. The central question remains: Can a transformer generate high-
quality text using only compressed sentence embeddings if provided with suffi-
cient size and training? Informally speaking, the existence proof has yet to be
done. For GPTHF models of our size, this does not seem to be the case, as
proved in their inability to finish sentences. It is difficult to entangle if this limi-
tation stems from insufficient scale or inherent challenges of text generation using
sentence embeddings. Our perplexity plots suggest that small GPTHF models
follow scaling laws similar to conventional GPTs. It is unclear if this relationship
will hold for larger models or if there is a performance ceiling for GPTHF. We
consider this the most significant limitation. A larger budget for trainingcould
allow for a more thorough investigation.

Downstream Evaluation. Once sufficiently large models are obtained, we
should not rely solely on perplexity as an evaluation metric. Future work should
include downstream tasks to assess the practical effectiveness of the models.

Compatibility or Competition with Existing Optimizations. In order
to obtain a true speedup for existing language models in practice, it would have
to be compatible with existing optimizations, most importantly KV-caching, and
re-evaluated for speed gains with the optimizations. A "diminishing-in-returns"
phenomenon is possible, where the gains would be much more limited, and the
growing of efficiency factors would not grow linearly in the number of sentences.
However, our approach also does not contradict KV-caching, leaving this as a
possible task.

Ablation Studies. Future studies could explore the impact of various individ-
ual factors such as the number of layers, hidden size, and other parameters on
THF performance. The most interesting parameter is likely the hidden size, as it

29

7. Limitations and Future Work 30

determines the size of the bottleneck. With more computational resources, com-
prehensive ablation studies could provide deeper insights into what contributes
most to model performance.

Alternative Approaches. Our current model generates tokens from sentence
embeddings, which can be thought of as a preliminary compression step compared
to directly reducing a sequence to one embedding. We did not explore predicting
a sentence embedding and training a decoder to decode those sentences due to
the project’s scope and additional challenges this approach would entail. This
approach could be interesting to investigate in future work.

Chapter 8

Conclusion

In this thesis, we have questioned the established notion of large language mod-
els (LLMs) to operate on sub-words by exploring the idea of compressing entire
sentences into single embeddings. Our goal was to leverage this idea to obtain
speedups in language models, in addition to other known methods such as prun-
ing, quantization, and knowledge distillation.

We demonstrated how to implement a compression bottleneck into existing ar-
chitecture by building the THF, a hierarchical transformer, with a bidirectional
and a generative variant. The surprising (and theoretically pleasing) takeaway
is that we can achieve this with minimal changes to existing training procedures
by using sparse attention matrices dynamically computed for each input.

Our evaluations of the generative model on perplexity and generation speed reveal
several important findings. First, GPTHF models follow scaling laws, at least in
the low-compute setting, with roughly the same perplexity shifts (5 points) as
for conventional GPTs. The answer to the question of whether this finding holds
true in a large-scale setting would lead us to the answer to a central research
question: whether transformers are capable of compressing sentences into indi-
vidual embeddings, and whether high-quality text generation is possible using
only these embeddings.

Second, we have seen that our generative models exhibit impressive efficient gains:
When given enough context, up to ten times more efficient in terms of FLOPs
and approximately three times faster in terms of generation speed compared to
their counterparts. This is possible due to a new fast generation method that
caches sentence embeddings, which mathematically remain fixed once completed.
The speedup factors increase linearly with the number of sentences present in the
context.

When considering FLOPs, the GPTHF-16-8 model is significantly more efficient
than a 12-layer GPT model. Given their equal perplexities, this makes for a
worthwhile trade-off. Achieving the same level of efficiency in actual runtime is
more challenging. The speedup factor depends significantly on many factors, such
as batch size, context size and model size. This is due to latency vs. throughput

31

8. Conclusion 32

considerations. Despite this, given sufficient context and batch size, we found
that GPTHF-16-8 is faster than a 12-layer baseline, making this a worthwhile
trade-off when handling large data. Our results were obtained with KV-caching
disabled.

In conclusion, our exploration of compressing sentences into single embeddings for
LLMs offers potential for promising speedup gains, particularly when processing
large amounts of data. More research with more rigorous evaluation, includ-
ing downstream tasks, in the high-scale regime and with KV-caching enabled is
needed to fully understand the potential and limitations of this approach.

Bibliography

M. Augasta and T. Kathirvalavakumar. Pruning algorithms of neural net-
works—a comparative study. Open Computer Science, 3(3):105–115, 2013.

S. Bird, E. Klein, and E. Loper. Natural language toolkit (nltk). https://www.
nltk.org/, 2023. Version 3.6.5.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901,
2020.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling
language modeling with pathways. Journal of Machine Learning Research, 24
(240):1–113, 2023.

Z. Dai, G. Lai, Y. Yang, and Q. Le. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. Advances in neural information
processing systems, 33:4271–4282, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity. Journal of Machine Learning
Research, 23(120):1–39, 2022.

J. Geiping and T. Goldstein. Cramming: Training a language model on a single
gpu in one day. In International Conference on Machine Learning, pages 11117–
11143. PMLR, 2023.

J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6):1789–1819, 2021.

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized
neural networks: Training neural networks with low precision weights and ac-
tivations. Journal of Machine Learning Research, 18(187):1–30, 2018.

33

https://www.nltk.org/
https://www.nltk.org/

BIBLIOGRAPHY 34

Huggingface. Perplexity of fixed-length models. https://huggingface.co/
transformers/v3.2.0/perplexity.html, 2020. Accessed: 2024-06-15.

Y. Kim and A. M. Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

M. M. Krell, M. Kosec, S. P. Perez, and A. Fitzgibbon. Efficient sequence pack-
ing without cross-contamination: Accelerating large language models without
impacting performance. arXiv preprint arXiv:2107.02027, 2021.

C. Li. flops-profiler. https://pypi.org/project/flops-profiler/.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. 2018.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning con-
volutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

I. Montero, N. Pappas, and N. A. Smith. Sentence bottleneck autoencoders from
transformer language models. arXiv preprint arXiv:2109.00055, 2021.

N. Muennighoff. Sgpt: Gpt sentence embeddings for semantic search. arXiv
preprint arXiv:2202.08904, 2022.

H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Barnes, and
A. Mian. A comprehensive overview of large language models. arXiv preprint
arXiv:2307.06435, 2023.

P. Nawrot, S. Tworkowski, M. Tyrolski, Ł. Kaiser, Y. Wu, C. Szegedy, and
H. Michalewski. Hierarchical transformers are more efficient language mod-
els. arXiv preprint arXiv:2110.13711, 2021.

D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So,
M. Texier, and J. Dean. Carbon emissions and large neural network training.
arXiv preprint arXiv:2104.10350, 2021.

R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek, K. Xiao,
S. Agrawal, and J. Dean. Efficiently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5, 2023.

M. Popel and O. Bojar. Training tips for the transformer model. arXiv preprint
arXiv:1804.00247, 2018.

https://huggingface.co/transformers/v3.2.0/perplexity.html
https://huggingface.co/transformers/v3.2.0/perplexity.html
https://pypi.org/project/flops-profiler/

BIBLIOGRAPHY 35

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202,
2020.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean.
Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for
deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced trans-
former with rotary position embedding. Neurocomputing, 568:127063, 2024.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neu-
ral information processing systems, 30, 2017.

K. Wang, N. Reimers, and I. Gurevych. Tsdae: Using transformer-based se-
quential denoising auto-encoder for unsupervised sentence embedding learning.
arXiv preprint arXiv:2104.06979, 2021.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention
networks for document classification. In Proceedings of the 2016 conference of
the North American chapter of the association for computational linguistics:
human language technologies, pages 1480–1489, 2016.

B. Zhang and R. Sennrich. Root mean square layer normalization. Advances in
Neural Information Processing Systems, 32, 2019.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab,
X. Li, X. V. Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Appendix A

Experiments on Bidirectional
Model

A.1 Bidirectional Model

A.1.1 Fine-Tuning on GLUE.

The General Language Understanding Evaluation (GLUE) benchmark is a col-
lection of diverse natural language understanding tasks designed to evaluate the
general language understanding a model has obtained after pre-training.

We report the median GLUE scores over five runs for each task, ensuring robust-
ness of the results. The results can be found in Table A.1. The same hyperpa-
rameters were used consistently across all GLUE tasks, as follows:

• Learning Rate: 4e-5

• Batch Size: 16

• Epochs: 3

• Optimizer: AdamW with weight decay

• Dropout is re-enabled with a value of 0.1

During fine-tuning for sequence classification tasks, we discarded the decoder
component, as it did not contribute to performance improvements. This proce-
dure was consistently applied across various GLUE tasks.

We see that the bidirectional THF models are outperformed equal-sized and
sometimes smaller baselines. The reasons for this were not further investigated
due to time constraints.

A-1

Experiments on Bidirectional Model A-2

Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STSB Avg.

CrammedBERT-12 42.6 78.1 87.9 85.6 85.5 57.4 89.2 84.6
CrammedBERT-10 48.3 79.0 87.4 86.3 86.3 57.0 88.5 84.8
CrammedBERT-8 45.3 78.2 86.6 85.8 85.8 56.7 89.7 85.0

THF-every2-12 35.1 76.1 86.0 84.5 84.6 56.0 87.5 83.7
THF-every4-12 42.2 76.7 88.6 84.2 84.4 58.5 88.4 84.0

THF-8-4-2 45.4 76.4 83.2 84.2 84.8 54.5 86.6 82.4
GPTHF-16-8 46.6 79.1 1.07x 99.2 91.8 84.8 99.2 79.6

Table A.1: Results of our models on the GLUE dev set. For each value, the
median over 5 runs is reported. THF-everyN denote baselines that instead of a
sentence bottleneck have a bottleneck by compressing every group of N embed-
dings into one.

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	2.1 Hierarchical Transformers
	2.2 Sentence Embeddings

	3 Method
	3.1 Data Preprocessing
	3.2 Architecture
	3.3 Optimization 1: Efficient Sentence Packing
	3.4 Optimization 2: Training in Low-Compute Setting

	4 Bidirectional Model
	4.1 Data
	4.2 Architecture
	4.3 Pre-training.

	5 Generative Model
	5.1 Data
	5.2 Architecture
	5.3 Pre-training
	5.4 Fast Generation

	6 Experiments
	6.1 Experiment Setup
	6.2 Perplexity.
	6.3 Experiments on Generation Speed
	6.3.1 FLOPs
	6.3.2 Inference Time

	6.4 Discussion

	7 Limitations and Future Work
	8 Conclusion
	A Experiments on Bidirectional Model
	A.1 Bidirectional Model
	A.1.1 Fine-Tuning on GLUE.

