
Distributed

 Computing

Leveraging Dense Text Representations
for Efficient Language Modeling

Master’s Thesis

Philippe Schläpfer

pschlaepfer@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák

Prof. Dr. Roger Wattenhofer

April 24, 2024

Acknowledgements

I want to express my gratitude to the people who have supported me in various
ways, not only during the work on this thesis but also throughout my studies.

Firstly, I thank my supervisor Peter Belcák for his guidance and invaluable
input and for opening my eyes to what’s possible in the realm of efficient NLP
models.

Next, I thank Prof. Roger Wattenhofer for giving me the opportunity to do
the thesis in his lab and for the access to the lab’s GPU resources.

Lastly, I thank my parents, siblings, and brother-in-law, for their uncondi-
tional support throughout my studies, for always having confidence in me, and
for the numerous Sunday evening dinners. These gatherings have helped me
recharge my batteries when I needed it the most.

Special thanks go out to Dano and Nic for their feedback and engaging in
countless discussions, which helped shape and refine my ideas significantly.

i

Abstract

This thesis introduces a transformer-based text compression model that is able
to efficiently operate on dense, compressed sentence representations. This is
achieved by incorporating an artificial bottleneck into the BERT architecture.
The model includes sentence-level transformer blocks that require only a 768
or 1024-dimensional embedding, representing an entire sentence, to reconstruct
the masked-language-modeling objective. Consequently, the model serves as a
general-purpose, encoder-only model.
With this approach, the model can achieve a text compression rate of up to 128x
compared to the traditional BERT model. An additional benefit of the approach
is that the model can do language modeling on a sentence level. This results in
better perplexity scores than BERT.
Our approach achieves scores on the GLUE benchmark close to those of the
BERT model while having roughly the same number of parameters. The most
efficient configuration of the model achieves a speedup of up to 45% compared
to BERT, potentially giving the model the capability of extending its context
window to 8192 tokens or even more.
The model is implemented in the Crammed-BERT framework, making it train-
able on a single A6000 GPU in approximately 5 days.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Language Modeling . 1

1.2 Thesis overview . 2

2 Related Work 3

2.1 Efficient Language Modeling . 3

2.2 Compression-based approaches 4

2.2.1 Distillation for language models 4

2.2.2 Sentence compression . 4

2.2.3 Sentence-level NLP . 5

2.2.4 Efficient transformer architectures 5

2.2.5 Hierarchical representation of language 6

2.3 Evaluation of Language models 8

2.3.1 GLUE Benchmark . 8

2.3.2 Evaluation of computational resources 9

2.3.3 Perplexity for masked language models 9

2.4 Training Data & Implementation 9

3 Approach 11

3.1 Architecture . 11

3.1.1 Fine-tuning & Inference 13

3.1.2 How can the standard transformer blocks handle the 3D
data? . 13

3.2 Data preprocessing . 16

3.3 Pre-training details . 17

iii

Contents iv

4 Experiments on Language Modeling 18

4.1 Attention over sentence embeddings 18

4.1.1 Masking sentences . 18

4.1.2 Unshuffling of sentences 19

4.2 GLUE . 19

4.2.1 Findings . 21

4.3 Masked Perplexity . 24

4.3.1 Packed vs. Non-packed . 27

4.4 The impact of more document-level layers on perplexity 27

4.5 Model sizes . 30

5 Speed experiments 31

5.1 Packed sequence . 31

5.1.1 speed comparison of the whole architectures 31

5.1.2 Document level block vs. BERT encoder block 34

5.2 Non-packed sequences . 37

6 Conclusion and Outlook 40

6.1 Limitations and future work . 41

Bibliography 43

A Perplexity plots A-1

B Detailed perplexity results B-1

B.1 Perplexities per bucket for THF-8-2-4 B-1

B.2 Perplexities per bucket for THF-8-4-4 B-3

C Full speed measurements C-1

Chapter 1

Introduction

1.1 Language Modeling

With the advent of the transformer architecture [1], language models have ex-
ponentially increased in size. Starting with GPT-1 (110 million parameters) [2]
in 2018 to GPT-3 [3] or Google’s PaLM [4] (175 billion, 540 billion respectively)
in 2022. This corresponds to a more than 1000-fold increase in the number of
parameters in four years.
Recently it seems like the NLP community has focused on improving the LLMs’
efficiency with approaches like the Mixture-of-Expert models [5] (like Mixtral [6])
or by improving the training signals (like Orca 2 [7]).

However, despite major efforts to reduce the footprint of the LLMs, all LLMs
operate on (sub)words. Each of these subwords is represented with one embed-
ding. In the case of GPT-3, one such embedding has a dimension of 12288. Even
with newer, more efficient models, like Mixtral, the dimension of the embeddings
is still 4096. According to Huggingface 1, the Mixtral model can directly be
loaded in half-precision (i.e. float16). Therefore, each subword has a size of 8KB.
If we use Mixtral with 4-bit quantization, each token would still be represented
by an embedding with a size of 2KB. Thus it seems like we hit a natural limit by
just trying to decrease the precision of the models.

In addition to the memory needed for each embedding, the processing of
subwords during a forward pass also needs to be considered. In deep learning
architectures, the embeddings are multiplied with matrices over and over again
and since matrix multiplication is an expensive operation, the length of the se-
quence maintained during the forward pass has a direct impact on the efficiency
of a language model. This is especially relevant for transformer-based models,
whose attention mechanism scales quadratically in the length of the input. Con-
sequently, if the length of the sequence could be reduced it would have a drastic
impact on the efficiency of such architectures.

1https://huggingface.co/docs/transformers/en/model_doc/mixtral

1

https://huggingface.co/docs/transformers/en/model_doc/mixtral

1. Introduction 2

Going beyond subwords. The goal of this thesis is to find a deep learning-
based approach, which compresses enough meaning into sentence-level embed-
dings, such that these embeddings can be used to solve NLP tasks. If there is a
way to do that, there are two major ways that it could influence the NLP land-
scape.
First and foremost, it would mean that we could do NLP on sentence level.
This would imply that only one embedding would need to be processed to solve
sentence-level tasks like GLUE [8], for instance. This would have a major impact
on the efficiency of language models. A quick look at a subset of the Wikipedia
dataset [9], shows that on average a sentence is made up of 26 subwords. If the
sentences could be compressed into one embedding of the same size, this would
be a compression of factor 26.
On the other hand, it could potentially make it possible to process longer se-
quences with no significant increase in model size. One major advantage of
LLMs is their ability to process longer sequences. Mixtral for example has a
context size of 32k tokens. Some commercial LLMs like GPT-4 [10] or Gemini
[11] claim to have a context size up to 10 million tokens. The hypothesis here is
that the sentence embeddings can be processed by a transformer network in the
same manner as subword embeddings. Hence, training a transformer model with
an input length of 128 would mean that whole paragraphs up to 128 sentences
could be processed in one go. Assuming that an average sentence consists of 26
tokens, it would mean the resulting model has a context size of 3328 tokens with
the parameter count of a normal BERT [12] model.
This thesis focuses on the masked language modeling objective and builds upon
the BERT architecture.

1.2 Thesis overview

Chapter 2 discusses related work which influenced design decisions of this thesis
and helps understand the whole field better. It also introduces related compression-
based language models which are used as baselines to compare against.
Chapter 3 provides both a high-level overview and a detailed description of the
approach. It also outlines the data preprocessing steps.
In Chapter 4, the performance on language modeling tasks is discussed and com-
pared to different baselines described in Chapter 2.
Chapter 5 discusses the results of multiple efficiency and speed measurements of
the developed models. These are also compared to baseline models.
To conclude the thesis, chapter 6 reviews the results, discusses the limitations of
the approach and provides some ideas for future work.

Chapter 2

Related Work

2.1 Efficient Language Modeling

A lot of effort is being put into improving the efficiency of large language models.
As described in Chapter 1.1, there’s a trend towards larger and more memory-
and compute-intensive language models. Hence, the NLP community has devel-
oped a lot of different approaches to make LLMs more accessible. The recently
published survey paper “The Efficiency Spectrum of Large Language Models: An
Algorithmic Survey” [13] has a comprehensive overview of all the different aspects
of LLM efficiency. In this chapter, the different aspects are only explained briefly.
For the interested reader, the above-mentioned survey paper is a good starting
point.
The authors of that paper put the different aspects of efficiency into five different
groups:

• Budget efficiency (mainly about scaling laws)

• Data efficiency (including Data filtering, active learning & curriculum learn-
ing)

• Architecture efficiency (including Efficient attention & sparse modeling)

• Training & Tuning efficiency (including Mixed precision training, Parameter-
efficient fine-tuning, etc.)

• Inference efficiency (including pruning, distillation, quantization & low-
rank decomposition)

Taking these groups as a basis, the work in this thesis can be put into both
groups architecture efficiency as well as inference efficiency. It’s important to
note that this is just an attempt to somehow classify the different approaches.

3

2. Related Work 4

2.2 Compression-based approaches

As can be seen from the previous section, there’s not a lot of attention in the
research community on sentence-based NLP. Nevertheless, there are many similar
research directions.

2.2.1 Distillation for language models

A very successful approach to training efficient language models is distillation
[14]. Distillation is the process of compressing the knowledge of a larger model,
called the teacher model, into a smaller one, called the student model. To achieve
this, the student model tries to predict either the logits or the softmax outputs
of the teacher model. Note that the teacher model is a model that is already
trained on a task and achieves a good performance on it.
In DistilBERT [15], the authors apply distillation to BERT by training a student
model that has the same architecture as the original BERT model but with half
as many layers. They can retain 97% of BERT’s performance with 40% fewer
parameters.
The authors of MobileBERT [16] build upon the distillation technique used in
DistilBERT. They enhance this approach by integrating bottleneck layers into
the architecture, with which the hidden dimension of the model gets decreased
to achieve an even smaller model size. The resulting model is 4.3 times smaller
than BERTBASE and 5.5 times faster while achieving competitive results on NLP
benchmarks.
In the paper “Well-read students learn better” [17], the authors show that it
is beneficial to first pre-train a model with a small architecture and then do
knowledge-distillation on that model instead of doing knowledge-distillation only.

2.2.2 Sentence compression

Somewhat related to the topic of this thesis is the field of sentence embeddings,
i.e. learning meaningful representations of sentences, which in turn can be used
for downstream tasks. This can also be seen as some kind of compression since
whole sentences are stored in one vector. The goal is to learn a fixed-size vector
space in which sentences with similar meanings are close to each other. These
approaches are usually evaluated with semantic textual similarity tasks or transfer
learning tasks.
SentenceBERT [18] achieves meaningful sentence representations by modifying
the original BERT architecture with siamese and triplet network structures. A
major drawback of this and similar methods is the fact that they need labeled
parallel data to be able to fine-tune their model on sentence pairs. TSDAE [19]
solves this problem by using a denoising autoencoder. It works by adding noise
to the input sentence (either deleting or swapping tokens in the input sequence)

2. Related Work 5

and then learning to reconstruct the input. It does that by having a transformer
encoder that encodes the input into a fixed-size vector that is fed into a decoder
trying to reconstruct the input sequence.
The authors of the paper “Sentence Bottleneck Autoencoders from Transformer
Language Models” [20] use a similar setup. They also use a denoising autoencoder
with a transformer-based encoder that compresses the input into a fixed-size
vector z, which is then fed into a transformer decoder layer. Somewhat novel
is their proposed gating mechanism (similar to the one in LSTMs) to solve the
problem where only one single representation is given to the decoder. The model
is evaluated on sentence classification, sentence similarity and sentence generation
tasks. To make the training converge faster, the encoder model is initialized with
the weights of RoBERTa [21].

2.2.3 Sentence-level NLP

Research in the field of sentence-level NLP tries to design models that can cap-
ture higher-level information of text. E.g. sentences and the relationships among
them. The authors of SLM [22] propose a Sentence-Level Language Model that
uses a hierarchical transformer to reconstruct the order of the input sentences,
which have been shuffled.
In [23] the authors present a transformer-based model with the goal of generating
more fluent stories. The proposed model does this by treating the story so far
as a sequence of pre-trained sentence embeddings. The task of the model is to
predict the next sentence embedding. This is treated as a standard classification
task by presenting the model N candidate sentences of which only one is the
actual next sentence in the story.

2.2.4 Efficient transformer architectures

A major disadvantage of the transformer architecture and self-attention in partic-
ular is the quadratic time- and space-complexity in the length of the input. While
there has been groundbreaking research in this field (with a huge practical im-
pact), like Flash Attention [24], the focus of this chapter lies on the improvement
of the transformer architecture as a whole.

Funnel transformer

Funnel transformer [25] tries to solve the problem of “maintaining full-length
token-level presentations” which BERT-like architectures do. The architecture
gradually decreases the hidden size of the token representations during the for-
ward pass. The saved compute can in turn be used to make the model deeper.

2. Related Work 6

Funnel-Transformer outperforms the standard Transformer on many tasks while
needing comparable or fewer FLOPs (floating point operations per second).
This is achieved by introducing pooling layers during the encoding step, which
shorten the representations along the sequence dimension. The shortened repre-
sentation is used as the query vector of the self-attention mechanism, while the
unpooled representation functions as the key & value.
For the decoding step, an up-sampling operation is used, which repeats each hid-
den vector. Importantly, since all of these vectors contain the same information,
a residual connection is used which adds the last representation of the full-sized
vector of the encoder to the upsampled representation. This in turn makes the
training easier and lets the model converge faster.
For downstream tasks where no token-level prediction is needed, the decoder is
not used.

Hierarchical transformers

In [26], the authors use a very similar approach as in the Funnel transformer
paper, but in contrast to that, their Hourglass architecture is autoregressive.
They show that their architecture can efficiently handle longer contexts.

Lite Transformer

The Lite Transformer architecture [27] aims to create an efficient transformer
architecture by combining CNNs and traditional Multihead-Attention layers,
which the authors call Long-Short Range Attention (LSRA). CNNs allow the
model to efficiently extract local information, whereas the Multihead-Attention
layers maintain the Transformer architecture’s strength in modeling complex,
long-range dependencies.

2.2.5 Hierarchical representation of language

A related line of research tries to make use of the hierarchical forms of language
by adding an inductive bias to the model. This is often done by first processing
words or subwords, which are summarized in single sentence embeddings. These
sentence embeddings are then further processed to get a representation of multiple
sentences, often called documents in the literature.

Hierarchical Attention Networks for Document Classification

Early work on hierarchical representation learning is done by [28]. The authors
use a Gated Recurrent Unit (GRU) [29] with an attention mechanism to encode
the text on a word level. These hidden, contextualized representations of words

2. Related Work 7

are then used as input for the next layer, which processes multiple such sentence
embeddings to classify documents.

Document-Level Neural Machine Translation with Hierarchical Atten-
tion Networks

The work of [30] is very similar to [28], but instead of a GRU, Multihead-Attention
is used. Alongside this, a “Context Gating” mechanism is used to regulate the
information at a sentence and document level.

HIBERT

HIBERT [31] uses sentence-level embeddings to encode whole documents and
utilizes the document representations to do document summarization. They use
a transformer-based sentence encoder to represent each sentence in a document
by one vector followed by a document encoder (also transformer-based) to learn
sentence representations given surrounding sentences as context. For the repre-
sentation of a sentence, the last token of a sentence is taken (i.e. the EOS token).
To force the model to use attention on the sentence level, 15% of the sentences
are randomly masked (like in BERT, but on a sentence level). By “masking sen-
tences“ the authors mean that all of the words in a sentence are masked. This
approach is the one that is most related to the work in this thesis.

A Discourse-Aware Attention Model for Abstractive Summarization
of Long Documents

In [30] an encoder-decoder bi-LSTM [32] network is proposed in which the en-
coder is a hierarchical RNN encoding whole documents. Their “discourse-aware
decoder” can attend to the words in the document and also to the relevant “dis-
course sections”, which they call the encodings of the sentences in the source
document. This approach is used for abstractive summarization of documents.

Hierarchical Learning for Generation with Long Source Sequences

The authors of [33] propose a Hierarchical Attention Transformer-based architec-
ture (HAT) which extends the original transformer architecture with a “Hierar-
chical Learning” component on top of the encoder as well as in the decoder. They
include beginning of sequence (BOS) tokens at the beginning of each sentence
in the input. The hidden representations of these tokens are then fed into the
hierarchical component of the encoder. The output of this component is fed into
its counterpart component in the decoder part of the transformer.

2. Related Work 8

2.3 Evaluation of Language models

Language models are usually evaluated on a variety of downstream tasks. These
tasks can cover a lot of different aspects of language (text classification, machine
translation, coding tasks, math problems, commonsense reasoning, etc.).

2.3.1 GLUE Benchmark

In this thesis the GLUE benchmark [8] is used to evaluate the performance of
the trained models. It is one of the most widely used benchmarks and consists of
multiple different tasks, all related to language understanding. Hence, it is well-
suited to compare the performance of our model to other pre-trained language
models. The different tasks are the following:

• CoLA: English acceptability judgments from books and journals on lin-
guistic theory. The goal is to predict if a given sentence is linguistically
acceptable or not. Thus, it’s a binary classification problem but evaluated
with the Matthews correlation coefficient.

• SST-2: Sentences from movie reviews with a binary label (positive/nega-
tive)

• MRPC: Given two sentences, the goal is to predict whether these are se-
mantically equivalent.

• QQP: A collection of question pairs from Quora. The goal is to predict if
a pair of questions are semantically equivalent.

• STS-B: A collection of sentence pairs, where the task is to predict a simi-
larity score between 1 and 5.

• MNLI: Given a premise sentence and a hypothesis sentence, the goal is to
predict whether the premise entails the hypothesis. There are three labels
for this task: entailment, contradiction and neutral.

• QNLI: For each sample, there’s a question and a sentence. The task is to
determine whether the sentence entails the question or not.

• RTE: Given two sentences, the task consists of predicting whether the first
sentence entails the second.

• WNLI: Same task as RTE.

2. Related Work 9

2.3.2 Evaluation of computational resources

Since the goal of this work is to come up with an efficient (sentence-level) archi-
tecture, we also compare the model to BERT based on FLOPS (Floating point
operations per second) 1 & MACs (multiply–accumulate operations) 2. More-
over, the actual time spent processing is measured to get a better picture of the
efficiency of this approach.

2.3.3 Perplexity for masked language models

In addition to the two above-mentioned evaluation schemes, the models are also
evaluated using the perplexity [34], defined as follows:

PPL(X) = exp{−1

t

|X|∑
i

log pθ(xi|x<i)} (2.1)

Where X = (x0, x1, ..., xt) is a sequence of words, pθ(xi|x<i) denotes the proba-
bility for a word xi given all previous words in the sequence and θ are trainable
parameters. A caveat of this definition is that it is only applicable to autore-
gressive models, which do not have access to tokens xm, where m > i. Since the
language model in this work is a masked language model, it has access to the
whole word sequence at once. Therefore we use the definition of [35], which the
authors call pseudo-log-likelihood scores (PLL):

PLL(X) =
|X|∑
t=1

log pθ(xt|X\t) (2.2)

pθ(xt|X\t) is the (masked language model) probability of token xt given all other
tokens in the sequence X.

The perplexity is low if the probability of a given token is high. Hence, in
general, we strive to train language models which achieve a low perplexity.

2.4 Training Data & Implementation

For all of the pre-trainings in this work the BookCorpus [36] and English Wikipedia
are used, which are also used for the original BERT pre-training.
The whole approach is implemented within the Crammed-BERT [37] framework
3. This is done because the framework provides a way to train a BERT model

1https://en.wikipedia.org/wiki/FLOPS
2https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
3code forked from https://github.com/JonasGeiping/cramming

https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://github.com/JonasGeiping/cramming

2. Related Work 10

within one day on consumer-grade hardware, hence it facilitates fast iteration and
it doesn’t need as much resources. Furthermore, it provides all of the necessary
building blocks like transformer encoders, embedding layers, etc. Therefore it
makes sense that the data preprocessing for baseline models is directly used from
that framework. For our approach, we use the same data, but since our approach
operates on a document level, we have to implement our own data preprocessing.
We keep the maximum length of input sentences at 128 tokens since the whole
Crammed-BERT setup is designed to work best that way. More info regarding
data preprocessing can be found in section 3.2.

Chapter 3

Approach

The architecture of the model is very similar to BERT, but with the difference
of having an artificial bottleneck to force the model to learn dense sentence rep-
resentations. It also has elements of an autoencoder, since the model is trained
on a masked language modeling objective (like BERT), but it has to predict all
masked tokens in a sentence from just one hidden vector. This task is harder
than the BERT task, since in the BERT architecture, a hidden vector for each
input token is maintained throughout the whole forward pass.
For the remainder of this thesis, the terms documents and paragraphs are used
interchangeably. Both refer to a collection of related sentences.

3.1 Architecture

As discussed in section 1.1, this thesis focuses on sentence-level language modeling
with the potential of processing whole paragraphs or documents at once. There-
fore, the highest level of abstraction we have to maintain is at the document or
paragraph level. In contrast, traditional methods simply involve storing sequences
of tokens. This can be viewed as augmenting the data with an extra layer, creat-
ing a new, additional dimension. Instead of sequences X(i) = (x0, x1, x2, ..., xn)
containing n tokens, this model processes documents D, which themselves contain
sequences of tokens X(i).

Di = (X(0), X(1), ..., X(m))

= ((x
(0)
0 , x

(0)
1 , ..., x(0)n0

), (x
(1)
0 , x

(1)
1 , ..., x(1)n1

), ..., (x
(m)
0 , x

(m)
1 , ..., x(m)

n2
))

(3.1)

As can be seen in figure 3.1, we start with documents as the basis. These doc-
uments are preprocessed such that each document is processed as a whole unit.
This is necessary since during the forward pass, the model needs to keep track
of which sentence belongs to which document. Otherwise, attention between
sentences (within a document) wouldn’t be possible.

11

3. Approach 12

Documents
Sentence encoder

Sentence
representations

Document encoder

Contextualized
sentence

representations

Decoder LM H
ea

d

(Attention between tokens)

(Attention between sentences)

Figure 3.1: Simplified overview of the architecture.

1. The individual sentences are processed by the sentence-level encoder, which
outputs representations for each sentence. This step applies the attention
mechanism on a token level to capture relationships between tokens within
a single sentence. The output of this step is a list of sentence embeddings
for each document.

2. The sentence embeddings of the previous steps are fed into the document-
level encoder. The job of this encoder is to capture any relationships be-
tween the sentences. The output can be thought of as contextualized sen-
tence representations. This is also the component from which speed gains
come. Since whole sentences are processed as one single unit (i.e. one
vector), this operation is very efficient.

3. The contextualized sentence representations are then fed into the decoder
part of the model, which is responsible for reconstructing the individual
tokens from the input such that the masked language modeling loss can be
calculated.

All of the orange boxes are regular transformer encoder blocks. The decoder
is also a transformer encoder (although it’s called a decoder) since it has a similar
job as the decoder in an autoencoder. It’s worth mentioning that a hierarchical
encoding is done with this architecture by first encoding the sentences and then
using the sentence embeddings to encode whole documents, similar to approaches
described in section 2.2.5.

3. Approach 13

3.1.1 Fine-tuning & Inference

The decoder is not used for inference as well as fine-tuning on downstream tasks.
Usually, the output of the document encoder is passed through a feed-forward
layer with the number of output neurons needed to solve a specific task.

3.1.2 How can the standard transformer blocks handle the 3D
data?

They can’t. However, since the architecture consists of a sentence-level encoder,
the input documents can be reshaped such that each sentence is processed indi-
vidually by the sentence encoder. 3.2 shows a detailed version of a forward pass
through the architecture. Here d is the number of documents in the batch, n
is the number of sentences in each document, l is the maximum length of the
sentences (which is capped at 128 tokens) and h is the hidden dimension (the
size of the embeddings).

The following steps describe an exemplary forward pass depicted in figure 3.2
with three documents as input.

1. Starting with a batch D ∈ Rd×n×l×h consisting of three documents, the
first step is to flatten the data along the first dimension to get a list of
sentences ∈ R(d·n)×l×h.

2. Now the data is ready to be applied to attention on a sentence level. Each
sentence is processed separately. There is no explicit information to which
document each sentence belongs.

3. The next step is to take the first b embeddings of each processed sentence
as a representation for each sentence. Most of the time (and also for this
example), the representation of the first token is taken (the representation
of the BOS token). This implies that the bottleneck size directly depends
on the size of the hidden dimension. The result is a two-dimensional tensor
of shape (d · n) × h. This 2D array is reshaped back into document-level.
But since each representation of a sentence consists of only one element,
it’s now possible to pass it through a transformer. Comparing it to the
initial input, we basically got rid of the length dimension by compressing
each sentence of length represented by a 2D tensor l×h into just one vector
of dimension h.
This is the step where the efficiency comes into play. Since we can operate
on just one embedding representing the whole sentence instead of 128 em-
beddings, this block is a lot more efficient than the sentence-level encoders.

3. Approach 14

4. Passing the documents through the document encoder results in sentence
embeddings that have context from the other sentences in the same docu-
ments. It’s reshaped back to sentence level and the output for each sentence
is repeated l times. Although this doesn’t add any information, experi-
ments showed that it works slightly better compared to just padding with
zero values. This representation is passed through the decoder with a lan-
guage modeling head on top to predict the masked tokens.
Note that, unlike the funnel transformer architecture, this approach does
not need a skip connection from the full-sized hidden representations to
make the decoding easier. We want the architecture to be able to recon-
struct the MLM objective only from one embedding.

3. Approach 15

flatten along
document dimension

Sentence encoder

Take hidden repr.
of first token

for each sentence

Reshape back
to doc-level

representation
Document encoder

repeat contextualized
sentence embeddings

(and flatten along doc dimension)

Decoder LM H
ea

d reshape back
to doc-level

Figure 3.2: Detailed overview of the architecture.

3. Approach 16

3.2 Data preprocessing

Given a list of documents, the first step is to split up the given documents
into sentences (sometimes also called sentencizing). For the sentencize step the
tokenize.sent_tokenize() method of the nltk library [38] is used. After that,
the individual sentences are tokenized into subwords. The documents are then
treated as single training samples, the same way as text sequences in traditional
pre-training are treated.
Since the Wikipedia and Bookcorpus datasets both can have very large docu-
ments, the number of sentences for each document is capped at 64 to make the
training a bit easier. This means that the theoretically maximal context size of
this model is 8192 tokens (128 tokens per sentence times 64 sentences per docu-
ment). The whole process is schematically visualized in figure 3.3.
There are some tricks needed during the preprocessing which make the reshaping
operations shown in figure 3.2 work efficiently:

• Each batch consists of documents with the same number of sentences. This
is necessary such that the reshaping operations discussed in the previous
section can be handled efficiently. Also, if that wouldn’t be the case, there
could be batches in which one document has only one sentence, and another
one has 64. Hence, the document with only one sentence would have to be
padded with 63 empty sentences, which in turn would make the forward
pass make a lot of unnecessary calculations.

• To better control the size of the batches, we defined a constraint that helps
fill up batches with documents up to a pre-defined maximum number of
sentences. We defined nmax as the total maximum number of sentences
in a batch (over multiple documents). For a group of documents, each
consisting of n sentences, the maximum number of documents dmax in a
batch is constrained by:

dmax ≤ nmax

n
(3.2)

During preprocessing the documents are grouped into lists of documents
such that equation 3.2 is satisfied.

3. Approach 17

Sentencize
Documents

sentence 1

sentence n

102, 1177, .., 103

102, 5007, ..., 103

Tokenize

Figure 3.3: Preprocessing steps

3.3 Pre-training details

All of the models were trained with a one-cycle learning rate schedule [39] for
2′000′000 steps with a peak learning rate of 0.001. As an optimizer, AdamW
[40] was used with weight decay 0.01, ϵ = 1−12, β = (0.9, 0.98). For the rest of
the hyperparameters, the default values of the Crammed-BERT framework were
used.

For the THF model (short for Thoughtformer), we’ve chosen the format (se-
de-d), to describe the number of sentence encoder layers (se), the number of
document level encoder layers (de) and the number of decoder layers (d). Since
the decoder layers are not used for downstream tasks, it makes sense to directly
compare a BERT model with n layers to a THF model with n = se + de. But
of course, it also makes sense to compare architectures with different numbers of
encoders.

Training for the largest model (i.e. the (12-4-4) configuration) took 5 days
on a single A100 GPU and the (6-2-4) configuration was finished in roughly 3.5
days, also on an A100 GPU.

Chapter 4

Experiments on Language
Modeling

4.1 Attention over sentence embeddings

In section 1.1 it’s stated that with an encoder that can operate on a sentence
level, it would be possible to apply attention on a document level. Unfortunately,
without a loss function that explicitly forces the document-level encoder to train
the sentence-level attention mechanism, fine-tuning does not work if the input is
split up into individual sentences. This can be seen in table 4.1. Surprisingly,
it works if the whole input is packed into one input sentence, even though the
model is trained on individual sentences. Note that the MRPC task is a binary
classification task with a class balance of 31% for one class and 69% for the other
class. Therefore, having an accuracy of 69% is the same as random guessing.

We’ve tried two different approaches to force the document-level encoder to
learn relations between sentences. Both are discussed below.

4.1.1 Masking sentences

Inspired by the HIBERT paper [31], we’ve tried to mask whole sentences for a
fraction of the training samples. The intuition behind this idea is that (some)
of the words in the masked sentence can be predicted based on the surrounding
sentences.
Since the fraction of sentences to mask is a hyperparameter, different values were
tested (15%, 20%, 50%). The rest of the training samples were kept to the MLM
objective. Although the loss went down, it didn’t go as far down as the MLM-only
objective. The downstream performance was on the level of random guessing.
We hypothesize that the task is just too hard for a language model (probably
also for a human).

18

4. Experiments on Language Modeling 19

4.1.2 Unshuffling of sentences

The SLM paper [22] has a different approach to training a sentence-level language
model. The authors shuffle the sentences of the input sequence in 50% of the
training samples. To solve the shuffling task, a separate decoder network is
introduced, which is responsible for solving the unshuffling task. The model is
then trained jointly on both tasks such that the final loss function looks like this:

Ltotal = LMLM + Lshuffle (4.1)

We adapt this approach by shuffling the hidden representations of the input
sentences before they are passed through the doc-level encoder. The output of
the doc-level encoder is then passed through the sentence-unshuffling network as
well as through the decoder.
This approach unfortunately didn’t work either and due to time constraints was
not further pursued.

Model type dim MRPC (acc./f1) STS-B
THF-12-4-4 vanilla THF 1024 69.2/79.2 40.1
THF-12-4-4 masking 20% of the sentences 1024 67.9/77.9 42.2
THF-12-4-4 shuffle all sentences 1024 66.9/77.2 38.7
THF-12-4-4 shuffle 50% of the sentences 1024 69/78.5 66.6
THF-12-4-4 shuffle 15% of the sentences 1024 67.9/78.3 52.4
Bi-LSTM - 1500 74.3/81.8 67.8

Table 4.1: Results on the MRPC and STS-B tasks from GLUE. As a baseline a
vanilla bidirectional LSTM [32] was used. Note that both approaches get out-
performed by the baseline. This hints at the fact that the fine-tuning procedure
of multiple sentence embeddings has to be improved for it to work.

4.2 GLUE

Since the attention over sentence embeddings did not work for GLUE, we’ve re-
sorted to an approach which we call packed sequencing. Meaning the whole input
is packed into one sequence instead of splitting it up into individual sentences.
The sentences are separated by special tokens ([SEP] tokens in this case). This
is how multiple input sentences are handled for the traditional BERT models.
Although this is not the initially intended way to measure the performance, it’s
the only way we’ve achieved high scores on GLUE. Also, it has the side benefit
of achieving the highest compression rate. Since the bottleneck consists of only
one hidden vector for the whole input sequence (which for most glue tasks con-
sists of multiple sentences). This means that a compression of up to 128x can be

4. Experiments on Language Modeling 20

achieved this way.

The performance of the model is evaluated on the GLUE dev set. The re-
sults are compared to the original BERT model, DistilBERT, a 6-layer well-read-
student model and multiple Crammed-BERT versions with different architecture
hyperparameters like hidden layers, hidden dimensions, etc. to have a direct
comparison of the THF model to the BERT models. The results are displayed in
table 4.2.

For fine-tuning, the same hyperparameters as in the Crammed-BERT paper
[37] are used, but with the following modifications:

• The models are fine-tuned for 3 epochs instead of 5.

• learning rate: 5e-5 instead of 4e-5

We report the median GLUE scores over five runs for each task. The same
hyperparameters are used for all the GLUE tasks.

Model dim MNLI SST-2 STSB RTE QNLI QQP MRPC Avg
THF-12-4-4 1024 79.9 90.6 83.5 54.9 86.7 86.7 87.6 81.39
THF-8-2-2 1024 78.7 89.9 82.5 54.2 85.5 85.8 87 80.51
THF-10-2-4 1024 79.3 89.3 83.9 56.7 86.4 86.2 86.6 81.2
THF-6-2-4 1024 78.5 89.4 82.9 57.8 85.8 85.6 86.2 80.89
THF-8-2-4 1024 79.2 89.4 83.1 54.2 85.4 86 86 80.44
THF-8-4-4 1024 79.1 90.3 82.7 55.6 85.5 86.1 85.6 80.7
THF-6-2-4 768 77.6 89.3 82.2 56.7 84.6 84.8 83.9 79.87
Baselines
BERTBase-Orig 768 86.7 92.7 89 69.3 91.8 89.6 88.6 86.81
BERTBase-Cram 768 83.4 91.9 86.7 59.2 90.6 87.7 89.3 84.11
Cramming-12 768 84.1 92.2 84.6 53.8 89.5 87.3 87.5 82.71
DistilBERT 768 82.2 91.3 86.9 59.9 89.2 88.5 87.5 83.64
BERT-6 768 82.5 92.7 - 66.7 89.4 87.7 89.4 84.73(∗)

Cramming-8 1024 35.4 90.8 85.2 52.7 49.5 63.2 84.8 65.94
Cramming-8 768 81 90.4 85 55.2 88.7 85.9 85.7 81.7

Table 4.2: Results on the GLUE dev set. BERT-6 is the 6-layer BERT model of
the “Well-read students” paper. BERTBase-Orig is the model from the original
paper and BERTBase-Cram denotes the results of the Crammed-BERT paper.
Cramming-x denotes a BERT model with x layers trained using the Crammed-
BERT framework. Bold are the best overall scores and violet are the best scores
amongst all THF models.
(∗): Scores for STSB and CoLA are not reported in the paper. Hence, the average
is not directly comparable to the averages of the other models.

4. Experiments on Language Modeling 21

4.2.1 Findings

The first thing that stands out is that the differences in the overall GLUE scores
between the individual THF setups are not that large, ranging from 79.87 overall
to 81.39. This fact implies that there’s an upper limit to the information that
the bottleneck can carry, which makes a lot of sense intuitively. Nevertheless,
the best (and largest) model comes close to the 12-layer Crammed-BERT model
trained by us, which has a score of 82.71.

Hidden dimension size. The size of the hidden dimension is the hyperpa-
rameter responsible for the largest difference in GLUE scores. The difference is
clearly visible between the (6-2-4) setups where one setup has a hidden dimension
of 1024 and the other has a setup of 768. The difference is biggest for the CoLA
and MRPC tasks.

Bottleneck width. To get an idea of the influence of the bottleneck width,
two almost identical models were trained with the only difference being the width
of the bottleneck. The models have a (6-2-4) configuration with a hidden dimen-
sion of 768. This means that the smaller bottleneck has a size of 768, whereas the
larger bottleneck’s dimension is 1536. Table 4.3 shows the results on the GLUE
dev-set. Unsurprisingly, the model with the larger bottleneck performs better,
but the difference is marginal. Nevertheless, it’s still surprising that the differ-
ence is so small since the model with the larger bottleneck should have twice the
capacity to store necessary information. A possible explanation for this outcome
is that the supplementary embedding does not significantly enrich the informa-
tion already captured by the [CLS] token representation, which is commonly used
for fine-tuning in the traditional BERT setting. Except for the CoLA task, the
differences in scores between the models are within a range of ±1.2.

width MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA Avg
1 77.6 89.3 82.2 56.7 84.6 84.8 83.9 50.5 76.2
2 77.6 88.1 82.1 56.7 84.6 85.1 84.3 51.9 76.3

Table 4.3: Glue dev scores of two THF models with the configuration (6-2-4) and
hidden dimension 768. The only difference is the bottleneck width. A width of
two means that the hidden representations of the first two tokens were taken and
concatenated.

Number of decoder layers. When comparing the (8-2-2) configuration
with the (8-2-4), we can see that their scores are almost equal (80.51 vs 80.44).
This makes sense intuitively, since for the decoding step, the hidden representa-
tion is just repeated n times. Nevertheless, when comparing the CoLA scores,
we see that the configuration with more decoders performs better. Also, since

4. Experiments on Language Modeling 22

the decoder is not used for fine-tuning and inference, most of the configurations
are trained with 4 decoders.

Number of sentence encoder layers. There’s clear evidence that more
sentence encoder layers lead to higher scores. Comparing the Glue scores of (x-2-
4) models with a hidden dimension of 1024 and with either 6, 8, 10 or 12 sentence
encoders, there’s a clear pattern (although the differences are small and there’s
a drop-off going from 6 encoder layers to 8 layers):

• 6 layers: 80.89

• 8 layers: 80.44

• 10 layers: 81.2

• 12 layers: 81.39

Number of document encoder layers. Comparing two setups which only
differ in the number of document level encoders, we see that the setup with more
document encoder layers performs slightly better (80.44 vs. 80.7). This can be
seen when comparing the two setups (8-2-4) and (8-4-4). But the difference is
small and the model with more document encoders only outperforms the smaller
model in 5 of the 8 tasks.

THF excels on the CoLA task. One thing that stands out is that all of
the THF architectures seem to excel on the CoLA task. Table 4.4 shows that the
(6-2-4) configuration with a hidden size of 768 for example performs almost on
par with DistilBERT and the same configuration with a wider bottleneck outper-
forms it. The configurations with larger hidden sizes even outperform the original
BERT architecture, which is not the case for any other task. This is remarkable
since [37] reports that approaches that distill BERT into smaller architectures,
often perform worse on this task. On the other hand, performance on CoLA can
be strongly influenced by hyperparameters [41].

4. Experiments on Language Modeling 23

Model dim CoLA Average
THF-12-4-4 1024 58 78.46
THF-8-2-2 1024 53.2 77.1
THF-10-2-4 1024 58 78.3
THF-6-2-4 1024 53.2 77.43
THF-8-2-4 1024 56.2 77.41
THF-8-4-4 1024 55.6 77.56
THF-6-2-4 768 50.5 76.2
THF-6-2-4
(bottleneck width=2) 768 51.9 76.3

Baselines
BERTBase-Orig 768 56.3 83
BERTBase-Cram 768 56.5 80.66
Cramming-12 768 44.5 77.94
DistilBERT 768 51.3 79.6
Cramming-8 1024 42.7 63.04
Cramming-8 768 38.7 76.33

Table 4.4: Results on the GLUE dev set for the CoLA task. The average column
is the overall score for all GLUE tasks. BERT-6 is not in this table because the
score on CoLA is not reported in the paper.

Pre-train and distill. Inspired by the “well-read students” paper, we’ve
applied the same training regime to a THF model to see if the scores can be
boosted. After pre-training a (8-2-4) configuration with a hidden dimension of
1024, we’ve used BERTLARGE as a teacher to continue pre-training with the dis-
tillation step. The results can be found in table 4.5.
Apart from CoLA, for which this model is almost on par with the largest THF
configurations, this approach does not seem to improve the scores by much. Al-
though the distillation step does improve the scores on all tasks except MRPC,
the improvements are at most 0.5.

MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA
Avg.
(w/o
CoLA)

Overall
Avg.

79.3 89.9 83.5 54.5 85.7 86 84.9 57 80.54 77.6

Table 4.5: Results of the pre-train & distillation approach for a (8-2-4) THF
model.

Comparison to BERT and DistilBERT. Comparing the performance of
THF to the original BERT model, we see that the differences for MNLI, STSB
and RTE are still quite large. On the other hand, for SST-2, MRPC and CoLA

4. Experiments on Language Modeling 24

the THF models are either almost on par with BERT or even outperform it.
The comparison with DistilBERT shows a similar picture, although the differ-
ences are smaller in general.

4.3 Masked Perplexity

In addition to the evaluation on the GLUE benchmark, the models are also
evaluated and compared with the masked perplexity, as described in 2.3.3. The
comparison is done by splitting up texts into chunks of different lengths (multiples
of 16 in this case) and making sure that all of these buckets have the same
number of samples. The lengths of texts are measured by the number of tokens.
The models are evaluated on unseen text data sampled from the Openwebtext
corpus [42]. The evaluations in this section are done on the unpacked version
(i.e. individual sentences, hence sentence attention is being done) unless stated
otherwise.
Since a probability distribution over the whole vocabulary is needed to calculate
the perplexity, the whole THF model including the decoder is used. Also, the
tokenizers for all the compared models are identical. Otherwise, it would be
difficult to compare the perplexities of the models.

Comparing the perplexity scores of BERTBASE to the THF model with a
(10-2-4) configuration and a hidden dimension of 1024 (figure 4.1), one can see
that for longer text sequences (starting from lengths 256), the THF model has a
lower perplexity. It’s also worth noting that the THF model has a much lower
variance than BERT. This is surprising since BERT has a much higher score on
the GLUE task. Figure A.1 shows the same finding for BERTLARGE and table
4.6 shows some more statistics for the models discussed in this section.
The same holds for the comparison of DistilBERT against a (6-2-4) configuration
of THF with a hidden dimension of 768, which can be seen in figure 4.2. Except
the difference in perplexity scores between DistilBERT and THF is even larger
for longer sequences.
Interestingly enough though, the perplexity scores of the 6-layer “well-read stu-
dents” model are lower than the 6-layer THF model and therefore also lower
than the scores of the original BERT models. Even the variances of the scores
are lower than the THF model. This can be seen in figure A.2.

Why do THF models have lower perplexity but worse GLUE scores?

There are two possible explanations for this phenomenon:

1. The design of the architecture, as described in section 3.1, operates on
shorter sequences, which could make it easier for the model to handle longer
sequences. This stems from the fact that each sentence in the input se-
quence is processed individually and hence there’s no cross-contamination

4. Experiments on Language Modeling 25

[43] happening between sequences. In other words, since the input se-
quence is split up into sentences, the attention mechanisms of the sentence-
level encoders can operate on individual sentences, without having to deal
with cross-contamination. Although in theory, the length of the sequence
shouldn’t make any difference, since BERT was explicitly trained on se-
quences of up to 512 tokens.

2. Another possibility is that the document-level layers actually learned some
relations between sentence embeddings, but it’s not reflected in the GLUE
scores. A reason for that could be that the fine-tuning approach needs some
tweaks to make it work for sentence-level inputs. Nevertheless, the plots
serve as yet another proof that the compression works, and therefore the
sentence embeddings contain all of the information needed to do language
modeling with it.

Of course, it could also be a combination of both above-mentioned factors.

Model Median Mean Std.
BERTBASE 9.16 12.75 11.56
THF-10-2-4 8.47 10.96 12.15
DistilBERT 15.15 18.4 15.84
THF-6-2-4 9.56 12.54 14.83

Table 4.6: Statistics for the perplexities of the models shown in the plots in figure
4.1 and 4.2. The (10-2-4) configuration has a hidden dimension of 1024, while
the (6-2-4) configuration has a hidden dimension of size 768.

4. Experiments on Language Modeling 26

Figure 4.1: Masked perplexity for BERTBASE and THF-10-2-4 with a hidden
dimension of 1024. All of the buckets have the same number of text samples.

Figure 4.2: Masked perplexity for DistilBERT and THF-6-2-4 with a hidden
dimension of 768. All of the buckets have the same number of text samples.

4. Experiments on Language Modeling 27

4.3.1 Packed vs. Non-packed

To get an idea of how a non-packed version of THF could perform if it would work
on downstream tasks, we plot the perplexity scores of the THF-6-2-4 configuration
with the only difference that for one model we supply a packed sequence whereas
for the other we use individual sentences as input. 4.3 shows the differences very
clearly. While the scores for the first bucket are identical (since these sequences
all consist of only one sentence), we notice that the longer the sequences get,
the larger the differences are. That applies to both the median as well as the
variance. Note that the same model is used. It’s only the shape of the data that’s
different.

Figure 4.3: Perplexity scores for a THF-6-2-4 model. Purple are the scores for
the packed input, green are the scores for the unpacked input.

4.4 The impact of more document-level layers on per-
plexity

Do more document-level encoder layers have an impact on language modeling
performance? In this section, we compare two THF models with the same con-
figuration with the only difference that one model has only 2 document-level
encoders, while the other has 4 document-level encoders. The hypothesis is that

4. Experiments on Language Modeling 28

with more document-level encoders, the model can better capture relationships
between sentences. If this is the case, it would provide further evidence that
the document-level encoder learned something about relationships between sen-
tences.
Figure 4.4 shows the perplexities for two models with the same data setup as
described in 4.3. It shows that for every bucket, the model with more document-
level encoders has a lower median as well as a lower standard deviation.
Table 4.7 shows the statistics over all buckets. The detailed statistics can be
found in appendix B.

Model Median Mean Std.
THF-8-2-4 8.96 11.32 10.53
THF-8-4-4 7.88 10.24 10.92

Table 4.7: Overall statistics of the two THF models.

Comparing the values in table 4.7 with the values in table 4.6, we see an
interesting fact. Namely, the THF configuration with 10 sentence-level encoders
but only 2 document-level encoders is in between the (8-2-4) and (8-4-4) config-
urations when looking at the perplexity scores. As can be seen in table 4.8, the
(8-4-4) configuration has the same number of parameters as the (10-2-4) config-
uration. This supports the hypothesis that more document-level layers help with
language modeling.

4. Experiments on Language Modeling 29

Figure 4.4: Masked perplexity for THF-8-2-4 and THF-8-4-4 with a hidden di-
mension of 1024. All of the buckets have the same number of text samples.

4. Experiments on Language Modeling 30

4.5 Model sizes

For the sake of completeness, we also report the size of the models in the number
of parameters. We make a distinction between the number of parameters used
for pre-training and inference.

Model dim
Parameters
for pre-training
(in millions)

Parameters
for inference
(in millions)

BERTBASE-Orig 768 110 110
DistilBERT 768 66 66
Cramming-8 768 71 71
BERT-6 768 67 67
THF-12-4-2 1024 192 174
THF-8-2-2 1024 138 121
THF-10-2-4 1024 174 139
THF-6-2-4 1024 138 104
THF-8-2-4 1024 156 121
THF-dist-8-2-4 1024 156 121
THF-6-2-4 1024 138 104
THF-8-4-4 1024 174 139
THF-6-2-4 768 138 104

Table 4.8: Model sizes for different BERT and THF configurations.

Chapter 5

Speed experiments

In this section, we report and analyze the speed of the different sizes of THF
models compared to the BERT architecture. We focus on inference, hence for
THF the decoder blocks are not taken into account.
We split the results of the speed measurements into two sections. One section is
for the packed version, which was used for the GLUE scores. The other section
describes the results of the non-packed version.

5.1 Packed sequence

5.1.1 speed comparison of the whole architectures

Theoretical performance

To measure the theoretical performance of the models, the calflops library [44] is
used, which supports calculations of parameters, FLOPS & MACs for PyTorch-
based models. The results can be found in table 5.1.

31

5. Speed experiments 32

Model dim batch-size # tokens GFLOPS GMACs
THF-12-4-4 1024 1 128 30.71 15.34
THF-12-4-4 1024 128 16384 3930 1960
THF-8-2-2 1024 1 128 20.46 10.22
THF-8-2-2 1024 128 16384 2620 1310
THF-10-2-4 1024 1 128 25.56 12.77
THF-10-2-4 1024 128 16384 3270 1630
THF-6-2-4 1024 1 128 15.35 7.67
THF-6-2-4 1024 128 16384 1970 981.94
THF-6-2-4 768 1 128 10.0 5.0
THF-6-2-4 768 128 16384 1280 639.56
Baselines
BERTBase 768 1 128 22.36 11.17
BERTBase 768 128 16384 2860 1430
BERT-6 768 1 128 11.18 5.59
BERT-6 768 128 16384 1430 715.19
Cramming-8 768 1 128 13.3 6.64
Cramming-8 768 128 16384 1700 850.5

Table 5.1: Theoretical number of Giga-FLOPS and Giga-MACs for different
model configurations and batch sizes. BERT-6 is the 6-layer BERT model of the
“Well-read students” paper. Bold denotes the lowest number of operations for
batch size 128, violet denotes the lowest number of operations for batch size 1.

Findings:

• Comparing the smallest THF model (6-2-4) to the 8-layer BERT, we see
that the whole model uses roughly 25% less operations for GFLOPS &
GMACs than the 8-layer BERT for batch-sizes 1 as well as 128.

• Even with a larger hidden dimension (1024), the (6-2-4) model is still 20%
more efficient than the 8-layer BERT with a hidden dimension of 768.

• Comparing the (6-2-4)-models with dimensions 768 and 1024, we see that
the smaller hidden dimensions make a difference of about 35%.

Notice that the number of FLOPS is roughly two times the number of MACs
for all measurements. Hence, if there’s nothing noteworthy between the two, we
only report FLOPS from here on out. This stems from the fact that for MACs,
Multiply-Accumulate operations are counted as one, whereas for FLOPS that’s
two operations.

5. Speed experiments 33

Empirical inference speed

The results of the speed measurements can be found in table 5.2.

• Overall, the BERT models are faster when processing only 1 sample, even
though the GFLOPS and GMACs are lower. For a batch size of 128, the
THF models are faster. Hence, the fastest model for batch size 1 is the
8-layer BERT, which is faster than the (6-2-4) configuration of THF.

• On the other hand, the fastest model for batch size 128 is the (6-2-4)
configuration of THF with embedding size 768.

• Figure 5.1 shows that the 8-layer BERT model is only faster for batch sizes
smaller than 8. While the inference speed for both models grows linearly,
as the batch size gets larger the difference between the THF model and
the BERT model gets bigger. One hypothesis for this behavior is that the
THF model does have an overhead caused by the reshaping and padding
operations. So the efficiency gains only kick in when the batch size grows.

Figure 5.1: Inference speed for difference batch sizes.

5. Speed experiments 34

Model dim batch
size tokens

median
inference
time per
batch (ms)

avg.
inference
time per
batch (ms)

std.
dev.

avg.
tokens
per
second

THF-12-4-4 1024 1 128 8.23 8.12 0.84 15552
THF-12-4-4 1024 128 16384 162.3 162.26 0.48 100976
THF-8-2-2 1024 1 128 5.28 5.38 0.73 23813
THF-8-2-2 1024 128 16384 109.76 109.69 0.35 149368
THF-10-2-4 1024 1 128 6.26 6.39 0.72 20045
THF-10-2-4 1024 128 16384 136.37 136.35 0.43 120162
THF-6-2-4 1024 1 128 4.28 4.36 0.55 29331
THF-6-2-4 1024 128 16384 81.14 81.09 0.54 201924
THF-6-2-4 768 1 128 4.25 4.38 0.71 29224
THF-6-2-4 768 128 16384 60.46 60.45 0.07 270984
Baselines
BERTBase 768 1 128 6.95 7.1 0.58 17428
BERTBase 768 128 16384 137.77 137.76 0.59 118930
BERT-6 768 1 128 4.07 4.03 0.22 31415
BERT-6 768 128 16384 81.64 81.31 2.14 200691
Cramming-8 768 1 128 3.81 3.74 0.39 33596
Cramming-8 768 128 16384 79.28 79.25 0.09 206666
Cramming-10 1024 1 128 4.52 4.5 0.08 28296
Cramming-10 1024 128 16384 134.52 134.49 0.43 121792
Cramming-12 1024 1 128 5.36 5.31 0.24 23900
Cramming-12 1024 128 16384 161.48 161.57 0.59 101463

Table 5.2: Measured inference times for different model configurations and batch
sizes. For each configuration, the average speed of 100 samples was taken. The
inference was run on a single GeForce RTX 3090 GPU.
Cramming-x denotes a BERT model with x layers trained with the Crammed-
BERT framework. Bold denotes the lowest inference time for batch size 128,
violet denotes the lowest inference time for batch size 1.

5.1.2 Document level block vs. BERT encoder block

While the above sections discuss the performance of the models as a whole, in this
section we want to compare the transformer blocks in isolation. To that end, we
compare the speed of just one BERT encoder to the speed of one document-level
encoder.

5. Speed experiments 35

Model dim MACs (%)
of one layer

FLOPS (%)
of one layer MFLOPS total

BERTBase 768 8.33 8.32
BERT-8-Cram 768 12.5 12.48 1660
THF-12-4-4 1024 0.06493 0.06488 19.93
THF-8-4-4 1024 0.09727 0.0972 19.93
THF-6-2-4 768 0.12985 0.12976 12.99

Table 5.3: Total and relative amount of Mega-MACs (MMACs) and Mega-
FLOPS (MFLOPS) of a BERT layer compared to different configurations of a
single THF layer.

Theoretical performance

Table 5.3 shows the theoretical performance of THF document layers and BERT
encoder layers. We see that the total number of MACs and FLOPS is only
influenced by the hidden dimension of the model.
While one encoder layer of BERT makes up roughly 1

n (n = number of layers)
operations for a BERT model, the document encoder layers are in the range of
one-tenth of a percent. The large difference in performance can also be seen in
the total number of operations. That’s not surprising since in the THF model,
only one embedding is used for a sequence compared to 128 embeddings in BERT.
The results for all configurations can be found in table C.3.

Empirical performance

As can already be seen in table 5.2, the efficiency gains of the THF model appear
for larger batch sizes. It becomes even more apparent when comparing just one
document encoder layer to one BERT layer, as depicted in figure 5.2 (denoted as
THF 1-128). While the runtime for BERT layers grows linearly in the number
of samples, the runtime of the document layer is (almost) constant.
This makes sense when we have a look at the shape of the data that is processed by
both layers. For an input shape (batch size, sequence length, hidden dimension),
the BERT layer has to process batches of size (batch size, 128, 768), while the
body layer only has to handle batches of size (batch size, 1, 768). Here, the second
dimension corresponds to the sequence length. Since the attention mechanism is
the part that needs the most compute and is also dependent on the length of the
input, this explains the difference in run times.
Let’s have a closer look at the reason why the document-level encoders seem
to be able to process the inputs in almost constant time: Let n be the length
of an arbitrary input sequence. As we know, the complexity of the attention
mechanism is O(n2). Now, if the input length can somehow be compressed by a

5. Speed experiments 36

factor of m, the attention mechanism operating on the compressed representation
would lead to O((n

m)2) = O(n2

m2). In our case, m is given by the average size of
all sentences in the sequence. For a given sequence m is constant, hence it does
not change the complexity class. But the denominator still grows quadratically.

A simplified example which illustrates this point: Let’s assume an
input length of 128, which consists of four sentences with varying lengths. A
standard BERT layer has to apply attention to 128 tokens, which would result in
16384 operations. In contrast, a doc-level encoder only has to apply attention to
a sequence of input length four, which results in 16 operations. This emphasizes
the fact that the efficiency of these layers is directly dependent on the length of
the sentences. Also, since in our case n does not grow very large, it can make
the impression that the document-level layers can handle the input lengths in
constant time, even though it’s still in the quadratic complexity class.

5. Speed experiments 37

Figure 5.2: Runtime of one THF document layer vs. one BERT layer for batch
sizes 1, 32, 64 & 128. To keep it comparable, the measurements of both models
were done within the Crammed-BERT framework. (1-128) stands for the version
with one input sentence with a length of 128 tokens, (2-64) stands for 2 input
sentences with a length of 64 each, etc.

5.2 Non-packed sequences

Along with the results of the packed version of THF, we also report the speed
measurements of THF models which operate on individual sentences and com-
pare them to their BERT counterparts. Table 5.2 shows the theoretical as well
as the empirical speed comparisons for selected THF configurations and their
corresponding baselines for batch size 1. By corresponding baseline, we mean
that the number of sentence-level encoders and doc-level encoders added is either
equal or almost equal to the total number of BERT layers. Table 5.2 shows the

5. Speed experiments 38

same but for batch size 128.
Since the goal of this evaluation is to compare sequence lengths of 512, we compare
it to traditional BERT models, as the Crammed-BERT version is only trained
on sequence lengths up to 128 tokens. This also highlights a strength of the THF
approach. The individual sentences are capped at 128 tokens. But this is not a
disadvantage, because sentences are rarely longer than 128 tokens, and processing
longer sequences is done by splitting up the input into sentences, which cannot
be done with traditional BERT approaches.

The results show that it does not matter how exactly the inputs are split up.
It’s very robust to differences in input shapes. Whether the input consists of
many shorter sequences or a few longer sequences, the differences are marginal.
It again becomes apparent that the advantages of the THF architecture come to
light with larger batch sizes where efficiency gains of up to 45% were measured
for the THF-6-2-4 vs. the 6-layer BERT (even though the THF needs 8 layers
for a forward pass in this case). The full results with more THF configurations
can be found in appendix C.

Figure 5.2 shows how the unpacked version compares to the packed version as
well as to the BERT layers. Since the comparison is done within the Crammed-
BERT framework, the focus is on sequence lengths of up to 128 tokens. Hence,
we’ve compared input shapes of one sentence of length 128, two sentences of each
length 64, and four sentences of length 32. Consequently, all versions process
sequences of length 128. Additionally, to show how efficient these layers are,
we’ve added one forward pass which processes 4 sentences, each of length 128.
This might seem unfair since in that case 512 tokens are being processed. But
we see that it is only slightly slower than the other THF options and a lot faster
than the BERT layer (which in this case is also only processing 128 tokens at a
time).

5. Speed experiments 39

Model Sequence
length

number of
sentences GFLOPS

Median
inference
time per
Batch(ms)

Std.
Tokens
per
second

THF-10-2-4 128 4 102.23 6.81 1.09 72262
THF-10-2-4 32 16 102.71 6.8 1.03 73037
THF-6-2-4
(768 dim.) 128 4 40 4.64 0.81 107000

THF-6-2-4
(768 dim.) 32 16 40.31 4.9 0.8 101743

THF-6-2-4 128 4 61.4 4.68 0.76 106604
THF-6-2-4 32 16 61.88 4.61 0.82 107576
Baselines
BERTBASE 512 - 96.72 7.52 0.27 66774
BERT-6 512 - 48.36 4.29 1.21 108442

Table 5.4: Speed measurements for selected THF configurations and the baselines
for batch-size 1. All of the THF models have a hidden dimension of 1024 unless
stated otherwise. The baseline’s hidden dimension is 768.

Model Sequence
Length

number of
sentences TFLOPS

Median
inference
per
Batch (ms)

std.
Tokens
per
second

THF-10-2-4 128 4 6.54 265.20 1.25 123447
THF-10-2-4 32 16 6.57 258.46 1.29 126851
THF-6-2-4
(768 dim.) 128 4 2.56 112.31 0.47 291676

THF-6-2-4
(768 dim.) 32 16 2.58 109.13 0.27 300244

THF-6-2-4 128 4 3.93 157.58 0.37 207906
THF-6-2-4 32 16 3.96 154.53 0.47 212003
Baselines
BERTBASE 512 - 6.19 348.12 1.94 94052
BERT-6 512 - 3.10 198.79 0.82 164840

Table 5.5: Speed measurements for selected THF configurations and the baselines
for batch-size 128.

Chapter 6

Conclusion and Outlook

This thesis introduces a transformer-based language model - trained on the
masked token prediction task - that can operate on dense sentence represen-
tations. We were able to show that it’s possible to compress the meaning of
whole sentences into dense embeddings of the size 768 or 1024 and not only re-
construct it but to do language modeling with it. The approach is implemented
in the Crammed-BERT framework, making it efficient to pre-train.

The model is evaluated on multiple different tasks. First and foremost on the
GLUE benchmark, on which it achieves scores close to those of BERT, despite
operating on embeddings that are up to 128 times smaller than the ones BERT
is operating on.
We also did an extensive evaluation of the efficiency of the model regarding
FLOPS and MACs. Along with the evaluation of the efficiency of the model
as a whole, we’ve also evaluated and compared the speed of the document-level
layers to the speed of traditional BERT layers, finding speed gains in the order
of magnitudes. We were also able to show that the architecture excels on larger
batch sizes, achieving a speedup of up to 45% compared to traditional BERT
architectures. All of the efficiency evaluations were done theoretically as well as
empirically.

Although the attention on a sentence level did not work for the downstream
GLUE tasks, we were able to show that for longer sequences (consisting of mul-
tiple sentences), the perplexity scores were lower than the ones from BERT or
DistilBERT. Subsequently, we were also able to show that more document-level
encoders help with language modeling (i.e. lower perplexity). This hints at the
fact that the attention mechanism on the document level did learn something
about the relationships of sentences, opening doors for future work which could
lead to large improvements in the language model’s abilities to process longer
sequences.

40

6. Conclusion and Outlook 41

6.1 Limitations and future work

Sentence-level attention. The biggest impact on the NLP community could
be had if the attention mechanism over sentence embeddings worked. The pos-
sibility of having a BERT-sized model that could attend over 64, 128, or even
256 sentences, each with a maximum length of 128, would mean that the con-
text size of such models could get as large as 32768 tokens. This would be on
par with current state-of-the-art large language models like Mixtral, for example.
Under the assumption that the sentence embeddings do capture all of the needed
information, a transformer block should be able to handle such input lengths
without any problem (this would be identical to an input length of 256 tokens,
which transformer models can handle with ease). These models could then be
evaluated on NLP tasks that contain longer sequences. Like the SCROLLS [45]
benchmark for example.

Autoregressive models. Current LLMs are all decoder-only language mod-
els, which are very well-suited for text generation. This is where the architecture
described in this thesis has a disadvantage since it is an encoder-only architec-
ture, like BERT. Using the compression-based approach for text generation tasks
would most certainly need some work to adapt the architecture. Mostly because
it’s not straightforward to generate text from only a sentence embedding. The
decoder layers would most likely need to be involved in some way during inference
and fine-tuning.

Evaluate sentence embeddings. As described in section 2.2.2, there exists
a whole field of research with the goal of getting good sentence representations.
Since it was not the main focus of this thesis, the compressed sentence represen-
tations were not evaluated on any tasks. Nevertheless, it would be interesting to
see how the sentence embeddings perform on such tasks. This could potentially
have an impact on fields like text indexing or retrieval-based applications.

Push the boundaries. Although we’ve trained and evaluated a lot of dif-
ferent configurations of the THF model, there’s still more to be explored. One
could push the boundaries and try to make models as small as possible to see
how small the models can be made while still having a good performance on
downstream tasks. Furthermore, scaling up the models even more would show
where the upper limit of compressed sentence embeddings would be.

Improve the bottleneck. Most of the models in this thesis were trained
by using the hidden representation of a sequence as the bottleneck. For longer
bottlenecks, the first n hidden representations are concatenated. That’s a rather
naive approach, which probably could be improved by concatenating every n-th
embedding for example.

Improve the data loading for pre-training. The data preprocessing
described in section 3.2 has some disadvantages, which make the data handling

6. Conclusion and Outlook 42

somewhat inflexible. The fact that for each batch only documents with the same
number of sentences are processed means that either the whole corpus has to be
stored that way (already sentencized) or parts of the corpus have to be loaded
into memory (more than just a batch) to construct the next batch, which adds an
overhead to the data preprocessing (or data loading, depending on whether it’s
done on-the-fly or as a preprocessing step before training). The defined constraint
to make better use of the VRAM (3.2) suffers from the same drawback. For larger
datasets, the handling of the data could become a challenge.

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [On-
line]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[2] A. Radford and K. Narasimhan, “Improving language understanding
by generative pre-training,” in Improving Language Understanding
by Generative Pre-Training, 2018. [Online]. Available: https://api.
semanticscholar.org/CorpusID:49313245

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are few-shot learners,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
1877–1901. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[4] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-
mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus,
D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi,
D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat,
A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,
B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck,
J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with
pathways,” 2022.

43

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Bibliography 44

[5] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer,” 2017.

[6] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford,
D. S. Chaplot, D. de las Casas, E. B. Hanna, F. Bressand, G. Lengyel,
G. Bour, G. Lample, L. R. Lavaud, L. Saulnier, M.-A. Lachaux, P. Stock,
S. Subramanian, S. Yang, S. Antoniak, T. L. Scao, T. Gervet, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed, “Mixtral of experts,” 2024.

[7] A. Mitra, L. D. Corro, S. Mahajan, A. Codas, C. Simoes, S. Agarwal,
X. Chen, A. Razdaibiedina, E. Jones, K. Aggarwal, H. Palangi, G. Zheng,
C. Rosset, H. Khanpour, and A. Awadallah, “Orca 2: Teaching small lan-
guage models how to reason,” 2023.

[8] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
T. Linzen, G. Chrupała, and A. Alishahi, Eds. Brussels, Belgium:
Association for Computational Linguistics, Nov. 2018, pp. 353–355.
[Online]. Available: https://aclanthology.org/W18-5446

[9] W. Foundation. Wikimedia downloads. [Online]. Available: https:
//dumps.wikimedia.org

[10] OpenAI, :, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila,
I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian,
J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bog-
donoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks,
M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann, B. Carey, C. Carl-
son, R. Carmichael, B. Chan, C. Chang, F. Chantzis, D. Chen, S. Chen,
R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W. Chung,
D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch,
D. Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti,
T. Eloundou, D. Farhi, L. Fedus, N. Felix, S. P. Fishman, J. Forte, I. Ful-
ford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh,
R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross,
S. S. Gu, Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Hei-
decke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu,
S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang,
H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser,
A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W.
Kim, C. Kim, Y. Kim, H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo,
Łukasz Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic, G. Krueger,

https://aclanthology.org/W18-5446
https://dumps.wikimedia.org
https://dumps.wikimedia.org

Bibliography 45

V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li,
R. Lim, M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju,
K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Martin, K. Mayer,
A. Mayne, B. McGrew, S. M. McKinney, C. McLeavey, P. McMillan, J. Mc-
Neil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin,
V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély,
A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh, L. Ouyang,
C. O’Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantuliano, G. Parascan-
dolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng, A. Perelman,
F. de Avila Belbute Peres, M. Petrov, H. P. de Oliveira Pinto, Michael,
Pokorny, M. Pokrass, V. Pong, T. Powell, A. Power, B. Power, E. Proehl,
R. Puri, A. Radford, J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rim-
bach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli, T. Sanders,
S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam,
K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler,
M. Simens, J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Stau-
dacher, F. P. Such, N. Summers, I. Sutskever, J. Tang, N. Tezak, M. Thomp-
son, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek,
J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J.
Wang, A. Wang, B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda,
P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wol-
rich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo,
K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao,
T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph, “Gpt-4 technical report,” 2023.

[11] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J. baptiste
Alayrac, R. Soricut, A. Lazaridou, O. Firat, J. Schrittwieser, I. Antonoglou,
R. Anil, S. Borgeaud, A. Dai, K. Millican, E. Dyer, M. Glaese, T. Sot-
tiaux, B. Lee, F. Viola, M. Reynolds, Y. Xu, J. Molloy, J. Chen, M. Is-
ard, P. Barham, T. Hennigan, R. McIlroy, M. Johnson, J. Schalkwyk,
E. Collins, E. Rutherford, E. Moreira, K. Ayoub, M. Goel, C. Meyer,
G. Thornton, Z. Yang, H. Michalewski, Z. Abbas, N. Schucher, A. Anand,
R. Ives, J. Keeling, K. Lenc, S. Haykal, S. Shakeri, P. Shyam, A. Chowd-
hery, R. Ring, S. Spencer, E. Sezener, L. Vilnis, O. Chang, N. Morioka,
G. Tucker, C. Zheng, O. Woodman, N. Attaluri, T. Kocisky, E. Eltyshev,
X. Chen, T. Chung, V. Selo, S. Brahma, P. Georgiev, A. Slone, Z. Zhu,
J. Lottes, S. Qiao, B. Caine, S. Riedel, A. Tomala, M. Chadwick, J. Love,
P. Choy, S. Mittal, N. Houlsby, Y. Tang, M. Lamm, L. Bai, Q. Zhang,
L. He, Y. Cheng, P. Humphreys, Y. Li, S. Brin, A. Cassirer, Y. Miao,
L. Zilka, T. Tobin, K. Xu, L. Proleev, D. Sohn, A. Magni, L. A. Hendricks,
I. Gao, S. Ontañón, O. Bunyan, N. Byrd, A. Sharma, B. Zhang, M. Pinto,
R. Sinha, H. Mehta, D. Jia, S. Caelles, A. Webson, A. Morris, B. Roelofs,
Y. Ding, R. Strudel, X. Xiong, M. Ritter, M. Dehghani, R. Chaabouni,
A. Karmarkar, G. Lai, F. Mentzer, B. Xu, Y. Li, Y. Zhang, T. L. Paine,

Bibliography 46

A. Goldin, B. Neyshabur, K. Baumli, A. Levskaya, M. Laskin, W. Jia, J. W.
Rae, K. Xiao, A. He, S. Giordano, L. Yagati, J.-B. Lespiau, P. Natsev,
S. Ganapathy, F. Liu, D. Martins, N. Chen, Y. Xu, M. Barnes, R. May,
A. Vezer, J. Oh, K. Franko, S. Bridgers, R. Zhao, B. Wu, B. Mustafa,
S. Sechrist, E. Parisotto, T. S. Pillai, C. Larkin, C. Gu, C. Sorokin,
M. Krikun, A. Guseynov, J. Landon, R. Datta, A. Pritzel, P. Thacker,
F. Yang, K. Hui, A. Hauth, C.-K. Yeh, D. Barker, J. Mao-Jones, S. Austin,
H. Sheahan, P. Schuh, J. Svensson, R. Jain, V. Ramasesh, A. Briukhov, D.-
W. Chung, T. von Glehn, C. Butterfield, P. Jhakra, M. Wiethoff, J. Frye,
J. Grimstad, B. Changpinyo, C. L. Lan, A. Bortsova, Y. Wu, P. Voigt-
laender, T. Sainath, C. Smith, W. Hawkins, K. Cao, J. Besley, S. Srini-
vasan, M. Omernick, C. Gaffney, G. Surita, R. Burnell, B. Damoc, J. Ahn,
A. Brock, M. Pajarskas, A. Petrushkina, S. Noury, L. Blanco, K. Swersky,
A. Ahuja, T. Avrahami, V. Misra, R. de Liedekerke, M. Iinuma, A. Polozov,
S. York, G. van den Driessche, P. Michel, J. Chiu, R. Blevins, Z. Gleicher,
A. Recasens, A. Rrustemi, E. Gribovskaya, A. Roy, W. Gworek, S. Arnold,
L. Lee, J. Lee-Thorp, M. Maggioni, E. Piqueras, K. Badola, S. Vikram,
L. Gonzalez, A. Baddepudi, E. Senter, J. Devlin, J. Qin, M. Azzam, M. Tre-
bacz, M. Polacek, K. Krishnakumar, S. yiin Chang, M. Tung, I. Penchev,
R. Joshi, K. Olszewska, C. Muir, M. Wirth, A. J. Hartman, J. Newlan,
S. Kashem, V. Bolina, E. Dabir, J. van Amersfoort, Z. Ahmed, J. Cobon-
Kerr, A. Kamath, A. M. Hrafnkelsson, L. Hou, I. Mackinnon, A. Frechette,
E. Noland, X. Si, E. Taropa, D. Li, P. Crone, A. Gulati, S. Cevey, J. Adler,
A. Ma, D. Silver, S. Tokumine, R. Powell, S. Lee, M. Chang, S. Hassan,
D. Mincu, A. Yang, N. Levine, J. Brennan, M. Wang, S. Hodkinson, J. Zhao,
J. Lipschultz, A. Pope, M. B. Chang, C. Li, L. E. Shafey, M. Paganini,
S. Douglas, B. Bohnet, F. Pardo, S. Odoom, M. Rosca, C. N. dos Santos,
K. Soparkar, A. Guez, T. Hudson, S. Hansen, C. Asawaroengchai, R. Ad-
danki, T. Yu, W. Stokowiec, M. Khan, J. Gilmer, J. Lee, C. G. Bostock,
K. Rong, J. Caton, P. Pejman, F. Pavetic, G. Brown, V. Sharma, M. Lučić,
R. Samuel, J. Djolonga, A. Mandhane, L. L. Sjösund, E. Buchatskaya,
E. White, N. Clay, J. Jiang, H. Lim, R. Hemsley, J. Labanowski, N. D.
Cao, D. Steiner, S. H. Hashemi, J. Austin, A. Gergely, T. Blyth, J. Stanton,
K. Shivakumar, A. Siddhant, A. Andreassen, C. Araya, N. Sethi, R. Shiv-
anna, S. Hand, A. Bapna, A. Khodaei, A. Miech, G. Tanzer, A. Swing,
S. Thakoor, Z. Pan, Z. Nado, S. Winkler, D. Yu, M. Saleh, L. Maggiore,
I. Barr, M. Giang, T. Kagohara, I. Danihelka, A. Marathe, V. Feinberg,
M. Elhawaty, N. Ghelani, D. Horgan, H. Miller, L. Walker, R. Tanburn,
M. Tariq, D. Shrivastava, F. Xia, C.-C. Chiu, Z. Ashwood, K. Baatarsukh,
S. Samangooei, F. Alcober, A. Stjerngren, P. Komarek, K. Tsihlas, A. Bo-
ral, R. Comanescu, J. Chen, R. Liu, D. Bloxwich, C. Chen, Y. Sun, F. Feng,
M. Mauger, X. Dotiwalla, V. Hellendoorn, M. Sharman, I. Zheng, K. Hari-
dasan, G. Barth-Maron, C. Swanson, D. Rogozińska, A. Andreev, P. K.
Rubenstein, R. Sang, D. Hurt, G. Elsayed, R. Wang, D. Lacey, A. Ilić,

Bibliography 47

Y. Zhao, L. Aroyo, C. Iwuanyanwu, V. Nikolaev, B. Lakshminarayanan,
S. Jazayeri, R. L. Kaufman, M. Varadarajan, C. Tekur, D. Fritz, M. Khal-
man, D. Reitter, K. Dasgupta, S. Sarcar, T. Ornduff, J. Snaider, F. Huot,
J. Jia, R. Kemp, N. Trdin, A. Vijayakumar, L. Kim, C. Angermueller, L. Lao,
T. Liu, H. Zhang, D. Engel, S. Greene, A. White, J. Austin, L. Taylor,
S. Ashraf, D. Liu, M. Georgaki, I. Cai, Y. Kulizhskaya, S. Goenka, B. Saeta,
K. Vodrahalli, C. Frank, D. de Cesare, B. Robenek, H. Richardson, M. Al-
nahlawi, C. Yew, P. Ponnapalli, M. Tagliasacchi, A. Korchemniy, Y. Kim,
D. Li, B. Rosgen, Z. Ashwood, K. Levin, J. Wiesner, P. Banzal, P. Srini-
vasan, H. Yu, Çağlar Ünlü, D. Reid, Z. Tung, D. Finchelstein, R. Kumar,
A. Elisseeff, J. Huang, M. Zhang, R. Zhu, R. Aguilar, M. Giménez, J. Xia,
O. Dousse, W. Gierke, S. H. Yeganeh, D. Yates, K. Jalan, L. Li, E. Latorre-
Chimoto, D. D. Nguyen, K. Durden, P. Kallakuri, Y. Liu, M. Johnson,
T. Tsai, A. Talbert, J. Liu, A. Neitz, C. Elkind, M. Selvi, M. Jasare-
vic, L. B. Soares, A. Cui, P. Wang, A. W. Wang, X. Ye, K. Kallarackal,
L. Loher, H. Lam, J. Broder, D. Holtmann-Rice, N. Martin, B. Ramad-
hana, D. Toyama, M. Shukla, S. Basu, A. Mohan, N. Fernando, N. Fiedel,
K. Paterson, H. Li, A. Garg, J. Park, D. Choi, D. Wu, S. Singh, Z. Zhang,
A. Globerson, L. Yu, J. Carpenter, F. de Chaumont Quitry, C. Radebaugh,
C.-C. Lin, A. Tudor, P. Shroff, D. Garmon, D. Du, N. Vats, H. Lu, S. Iqbal,
A. Yakubovich, N. Tripuraneni, J. Manyika, H. Qureshi, N. Hua, C. Ngani,
M. A. Raad, H. Forbes, A. Bulanova, J. Stanway, M. Sundararajan, V. Un-
gureanu, C. Bishop, Y. Li, B. Venkatraman, B. Li, C. Thornton, S. Scellato,
N. Gupta, Y. Wang, I. Tenney, X. Wu, A. Shenoy, G. Carvajal, D. G. Wright,
B. Bariach, Z. Xiao, P. Hawkins, S. Dalmia, C. Farabet, P. Valenzuela,
Q. Yuan, C. Welty, A. Agarwal, M. Chen, W. Kim, B. Hulse, N. Dukkipati,
A. Paszke, A. Bolt, E. Davoodi, K. Choo, J. Beattie, J. Prendki, H. Vashisht,
R. Santamaria-Fernandez, L. C. Cobo, J. Wilkiewicz, D. Madras, A. Elqursh,
G. Uy, K. Ramirez, M. Harvey, T. Liechty, H. Zen, J. Seibert, C. H. Hu,
M. Elhawaty, A. Khorlin, M. Le, A. Aharoni, M. Li, L. Wang, S. Kumar,
A. Lince, N. Casagrande, J. Hoover, D. E. Badawy, D. Soergel, D. Vnukov,
M. Miecnikowski, J. Simsa, A. Koop, P. Kumar, T. Sellam, D. Vlasic,
S. Daruki, N. Shabat, J. Zhang, G. Su, J. Zhang, J. Liu, Y. Sun, E. Palmer,
A. Ghaffarkhah, X. Xiong, V. Cotruta, M. Fink, L. Dixon, A. Sreevatsa,
A. Goedeckemeyer, A. Dimitriev, M. Jafari, R. Crocker, N. FitzGerald,
A. Kumar, S. Ghemawat, I. Philips, F. Liu, Y. Liang, R. Sterneck, A. Re-
pina, M. Wu, L. Knight, M. Georgiev, H. Lee, H. Askham, A. Chakladar,
A. Louis, C. Crous, H. Cate, D. Petrova, M. Quinn, D. Owusu-Afriyie,
A. Singhal, N. Wei, S. Kim, D. Vincent, M. Nasr, C. A. Choquette-Choo,
R. Tojo, S. Lu, D. de Las Casas, Y. Cheng, T. Bolukbasi, K. Lee, S. Fatehi,
R. Ananthanarayanan, M. Patel, C. Kaed, J. Li, J. Sygnowski, S. R. Belle,
Z. Chen, J. Konzelmann, S. Põder, R. Garg, V. Koverkathu, A. Brown,
C. Dyer, R. Liu, A. Nova, J. Xu, S. Petrov, D. Hassabis, K. Kavukcuoglu,
J. Dean, and O. Vinyals, “Gemini 1.5: Unlocking multimodal understanding

Bibliography 48

across millions of tokens of context,” 2024.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[13] T. Ding, T. Chen, H. Zhu, J. Jiang, Y. Zhong, J. Zhou, G. Wang, Z. Zhu,
I. Zharkov, and L. Liang, “The efficiency spectrum of large language models:
An algorithmic survey,” 2023.

[14] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015.

[15] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter,” 2020.

[16] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert: a
compact task-agnostic bert for resource-limited devices,” 2020.

[17] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students learn
better: On the importance of pre-training compact models,” 2019.

[18] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3982–3992.
[Online]. Available: https://aclanthology.org/D19-1410

[19] K. Wang, N. Reimers, and I. Gurevych, “TSDAE: Using transformer-based
sequential denoising auto-encoderfor unsupervised sentence embedding
learning,” in Findings of the Association for Computational Linguistics:
EMNLP 2021, M.-F. Moens, X. Huang, L. Specia, and S. W.-
t. Yih, Eds. Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 671–688. [Online]. Available:
https://aclanthology.org/2021.findings-emnlp.59

[20] I. Montero, N. Pappas, and N. A. Smith, “Sentence bottleneck autoencoders
from transformer language models,” 2021.

[21] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pre-
training approach,” 2019.

https://aclanthology.org/N19-1423
https://aclanthology.org/D19-1410
https://aclanthology.org/2021.findings-emnlp.59

Bibliography 49

[22] H. Lee, D. A. Hudson, K. Lee, and C. D. Manning, “SLM: Learning a
discourse language representation with sentence unshuffling,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1551–1562.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.120

[23] D. Ippolito, D. Grangier, D. Eck, and C. Callison-Burch, “Toward better
storylines with sentence-level language models,” 2020.

[24] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast
and memory-efficient exact attention with io-awareness,” 2022.

[25] Z. Dai, G. Lai, Y. Yang, and Q. Le, “Funnel-transformer: Filtering out
sequential redundancy for efficient language processing,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 4271–4282. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2020/file/2cd2915e69546904e4e5d4a2ac9e1652-Paper.pdf

[26] P. Nawrot, S. Tworkowski, M. Tyrolski, L. Kaiser, Y. Wu, C. Szegedy,
and H. Michalewski, “Hierarchical transformers are more efficient
language models,” in Findings of the Association for Computational
Linguistics: NAACL 2022, M. Carpuat, M.-C. de Marneffe, and
I. V. Meza Ruiz, Eds. Seattle, United States: Association for
Computational Linguistics, Jul. 2022, pp. 1559–1571. [Online]. Available:
https://aclanthology.org/2022.findings-naacl.117

[27] Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer with long-short
range attention,” 2020.

[28] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, K. Knight,
A. Nenkova, and O. Rambow, Eds. San Diego, California: Association for
Computational Linguistics, Jun. 2016, pp. 1480–1489. [Online]. Available:
https://aclanthology.org/N16-1174

[29] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), A. Moschitti, B. Pang, and W. Daelemans, Eds. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1724–1734.
[Online]. Available: https://aclanthology.org/D14-1179

https://aclanthology.org/2020.emnlp-main.120
https://proceedings.neurips.cc/paper_files/paper/2020/file/2cd2915e69546904e4e5d4a2ac9e1652-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2cd2915e69546904e4e5d4a2ac9e1652-Paper.pdf
https://aclanthology.org/2022.findings-naacl.117
https://aclanthology.org/N16-1174
https://aclanthology.org/D14-1179

Bibliography 50

[30] L. Miculicich, D. Ram, N. Pappas, and J. Henderson, “Document-level neural
machine translation with hierarchical attention networks,” in Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing,
E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds. Brussels,
Belgium: Association for Computational Linguistics, Oct.-Nov. 2018, pp.
2947–2954. [Online]. Available: https://aclanthology.org/D18-1325

[31] X. Zhang, F. Wei, and M. Zhou, “HIBERT: Document level pre-training
of hierarchical bidirectional transformers for document summarization,” in
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, A. Korhonen, D. Traum, and L. Màrquez, Eds. Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 5059–5069.
[Online]. Available: https://aclanthology.org/P19-1499

[32] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[33] T. Rohde, X. Wu, and Y. Liu, “Hierarchical learning for generation with
long source sequences,” 2021.

[34] F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker, “Perplexity—a measure
of the difficulty of speech recognition tasks,” The Journal of the Acoustical
Society of America, vol. 62, no. S1, pp. S63–S63, 1977.

[35] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked
language model scoring,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, D. Jurafsky, J. Chai,
N. Schluter, and J. Tetreault, Eds. Online: Association for Computational
Linguistics, Jul. 2020, pp. 2699–2712. [Online]. Available: https:
//aclanthology.org/2020.acl-main.240

[36] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler, “Aligning books and movies: Towards story-like visual explana-
tions by watching movies and reading books,” 2015.

[37] J. Geiping and T. Goldstein, “Cramming: Training a language model on a
single gpu in one day,” 2022.

[38] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.",
2009.

[39] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural
networks using large learning rates,” 2018.

[40] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2019.

https://aclanthology.org/D18-1325
https://aclanthology.org/P19-1499
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2020.acl-main.240
https://aclanthology.org/2020.acl-main.240

Bibliography 51

[41] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“Tinybert: Distilling bert for natural language understanding,” 2020.

[42] A. Gokaslan and V. Cohen, “Openwebtext corpus,” http://Skylion007.
github.io/OpenWebTextCorpus, 2019.

[43] M. M. Krell, M. Kosec, S. P. Perez, and A. Fitzgibbon, “Efficient sequence
packing without cross-contamination: Accelerating large language models
without impacting performance,” 2022.

[44] xiaoju ye. (2023) calflops: a flops and params calculate tool for
neural networks in pytorch framework. [Online]. Available: https:
//github.com/MrYxJ/calculate-flops.pytorch

[45] U. Shaham, E. Segal, M. Ivgi, A. Efrat, O. Yoran, A. Haviv, A. Gupta,
W. Xiong, M. Geva, J. Berant, and O. Levy, “Scrolls: Standardized compar-
ison over long language sequences,” 2022.

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/MrYxJ/calculate-flops.pytorch
https://github.com/MrYxJ/calculate-flops.pytorch

Appendix A

Perplexity plots

Figure A.1: Masked perplexity for BERTLARGE and THF-10-2-4 with a hidden
dimension of 1024.

A-1

Perplexity plots A-2

Figure A.2: Masked perplexity for the 6-layer BERT variant of the "well-read
sutdents" paper and THF-10-2-4 with a hidden dimension of 1024.

Appendix B

Detailed perplexity results

B.1 Perplexities per bucket for THF-8-2-4

bucket mean std min 50% max
0-15 31.90 36.35 1.16 15.59 123.35
16-31 14.54 12.19 2.84 9.91 43.91
32-47 11.26 5.85 4.88 9.51 22.74
48-63 12.51 5.62 3.90 10.09 22.92
64-79 11.16 4.48 3.17 10.14 21.05
80-95 10.28 3.35 5.88 10.55 20.32
96-111 13.33 8.31 5.82 9.94 39.64
112-127 10.19 4.31 5.39 8.58 24.24
128-143 14.43 16.07 5.18 8.80 79.31
144-159 11.08 6.49 3.13 8.76 28.12
160-175 9.92 4.40 5.45 8.91 21.71
176-191 11.12 4.69 5.84 9.55 23.43
192-207 13.37 6.43 6.92 11.12 33.62
208-223 10.68 3.74 3.64 10.47 18.04
224-239 8.80 2.62 4.75 8.70 14.66
240-255 9.19 2.55 5.07 9.08 14.10
256-271 8.63 2.76 4.76 7.68 17.10
272-287 9.46 3.53 5.25 8.32 17.38
288-303 9.56 3.81 3.83 8.83 21.60
304-319 9.54 3.11 5.24 8.33 16.83
320-335 12.67 19.72 5.26 8.52 102.56
336-351 8.38 4.15 5.18 7.17 23.73

B-1

Detailed perplexity results B-2

Table continued from previous page.

bucket mean std min 50% max
336-351 8.38 4.15 5.18 7.17 23.73
352-367 9.96 3.55 4.78 9.42 21.05
368-383 8.78 2.45 4.34 8.78 13.91
384-399 8.90 2.33 5.19 8.79 15.12
400-415 7.56 1.59 5.24 7.24 11.23
416-431 10.06 7.79 4.62 7.96 44.63
432-447 10.92 5.71 4.86 8.75 25.71
448-463 9.10 2.76 5.79 8.49 16.81
464-479 8.05 1.59 5.98 7.91 11.78
480-495 5.76 0.47 5.43 5.76 6.09

Table B.1: Statistics for the perplexity scores for each bucket of the 8-2-4 config-
uration of THF.

Detailed perplexity results B-3

B.2 Perplexities per bucket for THF-8-4-4

bucket mean std min 50% max
0-15 32.59 41.49 1.23 13.28 184.52
16-31 15.53 18.70 2.50 8.85 73.56
32-47 9.74 5.75 3.57 7.61 26.33
48-63 10.75 4.91 4.10 9.92 22.27
64-79 10.49 4.21 3.37 9.81 19.71
80-95 9.18 3.08 4.35 8.59 16.85
96-111 12.05 7.23 5.33 9.61 33.25
112-127 9.23 4.30 5.00 7.50 22.51
128-143 12.26 12.75 4.20 8.75 63.10
144-159 9.93 6.06 2.89 8.08 25.29
160-175 9.12 3.99 4.79 8.52 19.53
176-191 10.10 3.86 5.18 8.92 19.43
192-207 12.14 6.12 6.30 9.93 32.70
208-223 9.55 3.45 3.54 8.99 15.88
224-239 7.89 2.43 4.26 7.79 14.49
240-255 8.26 2.26 4.74 8.24 12.86
256-271 7.60 2.41 4.30 6.61 15.51
272-287 8.33 3.14 4.74 7.42 15.97
288-303 8.36 3.30 3.11 7.42 18.94
304-319 8.09 2.32 4.85 7.05 13.42
320-335 10.10 12.60 4.82 7.42 67.24
336-351 7.32 3.62 4.95 6.33 21.03
352-367 8.73 2.83 4.28 8.44 16.67
368-383 7.69 2.06 4.05 7.91 11.98
384-399 7.91 2.05 4.91 7.82 12.95
400-415 6.70 1.23 4.74 6.50 9.12
416-431 8.82 6.78 4.16 7.20 38.97
432-447 9.74 4.94 4.50 7.62 21.41
448-463 8.07 2.50 5.04 7.30 14.74
464-479 7.14 1.16 5.56 7.00 9.86
480-495 5.11 0.12 5.03 5.11 5.20

Table B.2: Statistics for the perplexity scores for each bucket of the 8-4-4 config-
uration of THF.

Appendix C

Full speed measurements

Model Sequence
length

number of
sentences GFLOPS

Median
inference
time per
Batch(ms)

Std.
Tokens
per
second

THF-12-4-4 4 128 122.803 8.66 0.4 58392
THF-12-4-4 32 16 123.76 8.79 1.07 58451
THF-10-2-4 4 128 102.23 6.81 1.09 72262
THF-10-2-4 32 16 102.71 6.8 1.03 73037
THF-6-2-4
(768 dim.) 4 128 40 4.64 0.81 107000

THF-6-2-4
(768 dim.) 32 16 40.31 4.9 0.8 101743

THF-6-2-4
(1024 dim.) 4 128 61.4 4.68 0.76 106604

THF-6-2-4
(1024 dim.) 32 16 61.88 4.61 0.82 107576

THF-8-2-4 4 128 81.82 5.73 0.99 86367
THF-8-2-4 32 16 82.3 5.75 0.79 87088
Baselines
Bert-Base 512 - 96.72 7.52 0.27 66774
Bert-6 512 - 48.36 4.29 1.21 108442

Table C.1: Speed measurements for all THF configurations and the baselines for
batch-size 1. All of the THF models have a hidden dimension of 1024, unless
stated otherwise. The baselines’ hidden dimension is 768.

C-1

Full speed measurements C-2

Model Sequence
Length

number of
sentences TFLOPS

Median
inference
per
Batch (ms)

std.
Tokens
per
second

THF-12-4-4 128 4 7.86 316.32 1.67 103519
THF-12-4-4 32 16 7.92 312.46 1.64 104878
THF-10-2-4 128 4 6.54 265.20 1.25 123447
THF-10-2-4 32 16 6.57 258.46 1.29 126851
THF-6-2-4
(768 dim.) 128 4 2.56 112.31 0.47 291676

THF-6-2-4
(768 dim.) 32 16 2.58 109.13 0.27 300244

THF-6-2-4 128 4 3.93 157.58 0.37 207906
THF-6-2-4 32 16 3.96 154.53 0.47 212003
THF-8-2-4 128 4 5.24 209.17 0.92 156693
THF-8-2-4 32 16 5.27 203.77 0.81 160808
Baselines
Bert-Base 512 - 6.19 348.12 1.94 94052
Bert-6 512 - 3.10 198.79 0.82 164840

Table C.2: Speed measurements for all THF configurations and the baselines for
batch-size 128. All of the THF models have a hidden dimension of 1024, unless
stated otherwise. The baselines’ hidden dimension is 768.

Model dim MACs (%)
of one layer

FLOPS (%)
of one layer MFLOPS total

BERTBase 768 8.33 8.32
BERT-8-Cram 768 12.5 12.48 1660
THF-12-4-4 1024 0.06493 0.06488 19.93
THF-8-2-2 1024 0.09746 0.09738 19.93
THF-10-2-4 1024 0.078 0.07794 19.93
THF-6-2-4 1024 0.12985 0.12976 19.93
THF-8-2-4 1024 0.09746 0.09738 19.93
THF-6-2-4 1024 0.12985 0.12976 19.93
THF-8-4-4 1024 0.09727 0.0972 19.93
THF-6-2-4 768 0.12985 0.12976 12.99

Table C.3: Total and relative amount of Mega-MACs (MMACs) and Mega-
FLOPS (MFLOPS) of a BERT layers compared to different configurations of
single THF layers.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Language Modeling
	1.2 Thesis overview

	2 Related Work
	2.1 Efficient Language Modeling
	2.2 Compression-based approaches
	2.2.1 Distillation for language models
	2.2.2 Sentence compression
	2.2.3 Sentence-level NLP
	2.2.4 Efficient transformer architectures
	2.2.5 Hierarchical representation of language

	2.3 Evaluation of Language models
	2.3.1 GLUE Benchmark
	2.3.2 Evaluation of computational resources
	2.3.3 Perplexity for masked language models

	2.4 Training Data & Implementation

	3 Approach
	3.1 Architecture
	3.1.1 Fine-tuning & Inference
	3.1.2 How can the standard transformer blocks handle the 3D data?

	3.2 Data preprocessing
	3.3 Pre-training details

	4 Experiments on Language Modeling
	4.1 Attention over sentence embeddings
	4.1.1 Masking sentences
	4.1.2 Unshuffling of sentences

	4.2 GLUE
	4.2.1 Findings

	4.3 Masked Perplexity
	4.3.1 Packed vs. Non-packed

	4.4 The impact of more document-level layers on perplexity
	4.5 Model sizes

	5 Speed experiments
	5.1 Packed sequence
	5.1.1 speed comparison of the whole architectures
	5.1.2 Document level block vs. BERT encoder block

	5.2 Non-packed sequences

	6 Conclusion and Outlook
	6.1 Limitations and future work

	Bibliography
	A Perplexity plots
	B Detailed perplexity results
	B.1 Perplexities per bucket for THF-8-2-4
	B.2 Perplexities per bucket for THF-8-4-4

	C Full speed measurements

