
Distributed

 Computing

Data driven anomaly detection for rails
using in-service railway vehicles

Bachelor’s Thesis

Felix Beckers

fbeckers@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Andreas Plesner

Prof. Dr. Roger Wattenhofer

July 24, 2024

Acknowledgements

I want to thank Andreas Plesner for being my supervisor and for his invaluable
help and guidance while working on this project. I want to thank Prof. Dr.
Roger Wattenhofer for giving me the opportunity to write this thesis. I am also
grateful for the access to the computer cluster and the computing resources of
the Distributed Computing Group.

i

Abstract

This project evaluates machine learning (ML) driven methods of anomaly detec-
tion for rails. It is analysed to what extent rail irregularities can be predicted
based on the dynamics of different trains using convolutional neural networks
(CNNs). The overall structure consists of the data generation for rails, the train
dynamics simulation, followed by the training and subsequent testing and assess-
ment of the ML models used. More precisely, the project tries to find an answer
to the question to what level a CNN that has been trained with the dynamics of
a reference train, can predict the rail condition based on the dynamics of a new
train that is defined by slightly different parameters.

Although the model training output is inferior to what was demonstrated
in previous work, suitably trained CNNs are capable of predicting the state of
the rails from a new and unknown train’s dynamics to the same precision if
the parameter adjustment is small. Tests using trains having large parameter
modifications show an increase in the prediction error.

Two enhancement strategies are analysed. Generalised training uses accumu-
lated dynamics from multiple trains as training data and results in a small overall
improvement in the predictive capability compared to the standard case. Fine-
tuning with varying amounts of training data shows that a pre-trained model can
adapt to the dynamics of a new train easily, even to those of a train having big
parameter changes, but indicates the presence of model overfitting.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Background . 1

1.2 Project structure . 1

1.3 Theoretical problem . 2

1.4 Related work . 3

2 Track data 4

2.1 Overview . 4

2.2 Track description . 4

2.3 Vector autoregression model . 5

2.4 Implementation details . 6

3 Train dynamics 8

3.1 Overview . 8

3.2 Train description . 8

3.3 The reference train . 12

3.4 The train variations . 12

3.5 Implementation details . 13

4 Machine learning 14

4.1 Overview . 14

4.2 Motivating example . 14

4.3 Data batches . 16

4.3.1 Batch generation optimisation 16

4.3.2 Seed split . 17

iii

Contents iv

4.4 Convolutional neural networks . 17

4.5 Training . 18

4.6 Testing . 21

4.7 Improvements . 24

4.7.1 Generalised training . 24

4.7.2 Fine-tuning . 27

4.8 Prediction plots . 31

5 Conclusion and future work 36

5.1 Conclusion . 36

5.2 Future work . 37

Bibliography 38

Chapter 1

Introduction

1.1 Background

The railway network infrastructure constitutes the basis of one of the biggest sec-
tors of public transportation. Switzerland has one of the best railway networks
worldwide [1] and the Swiss Federal Railways (SBB) operate on tracks having a
total length of 3,266 km [2]. The rails are the roadbed for trains. Railway vehicles
are heavily used because there are different types and they have advantages over
buses, planes and ships. There are for example normal passenger trains, high-
speed trains, night trains with sleeping opportunities and freight trains. These
vehicles travel long distances and carry many passengers or a large amount of
freight. They are environmentally friendly, cost-effective and most importantly,
safe. One of the reasons for the high safety level is the nature of its locomo-
tion. The vehicles are subject to a rolling movement on a pair of specifically
designed rails. Therefore, and due to varying weather conditions, the chassis of
the train, including the springs and dampeners, and the wheels experience wear
and tear. The rails are subject to deterioration too, which leads to deforma-
tions as time passes. These rail deformations, also called irregularities, can cause
trains to shake and in extreme cases to derail. Thus, they need to be detected
and eventually repaired.

1.2 Project structure

This project is divided into multiple parts. Chapter 1 provides a comprehen-
sive introduction while Chapter 2 describes the track data that is needed for the
simulation of the train dynamics. Chapter 3 analyses the actual simulation of
railway vehicles on a synthetic track and outputs the train dynamics calculated
by solving a set of ordinary differential equations (ODEs). Moreover, this sim-
ulation is done for multiple trains, each of which is defined by slightly different
parameters. In Chapter 4, the train dynamics are used to train convolutional
neural networks (CNNs) that are able to predict the track irregularities. Upon
having a suitably trained CNN, it is then evaluated on new and unknown trains

1

1. Introduction 2

to assess the robustness of the predictive capabilities to a parameter change in the
train specification. In the final part, some optimisation strategies are discussed.

1.3 Theoretical problem

This project begins by analysing the feasibility of predicting rail irregularities
based on train dynamics. Therefore, the railway vehicle system is conceptualised
as a transfer function H, mapping track irregularities to vehicle dynamics. The
calculation of the train dynamics as described in Chapter 3 can be abstracted by
the drawing in Figure 1.1. The system H loads the generated track information
described in Chapter 2, defines a vehicle based on a set of parameters, adds more
information like the wheel and rail profile which are not further explained, and
yields the calculated dynamics.

Figure 1.1: The system H loads rail irregularities as input and outputs train
dynamics. The output depends on additional parameters, such as the wheel and
rail profile and the train specification. This figure was taken from [3].

Chapter 4 aims to approximate the inverse mapping H−1 that retrieves the
rail irregularities from the train dynamics of a particular train. Consequently,
this inverse mapping changes from train specification to train specification.

Challenges arise due to the non-injective nature of the mapping, as mentioned
in [3, 4], suggesting that multiple irregularities could yield identical dynamic re-
sponses, complicating the inverse solution. Despite these challenges, the presence
of noise in real-world data enables the construction of a useful approximation of
the inverse mapping, especially when leveraging data-driven methods that can
autonomously learn the relevant features.

1. Introduction 3

1.4 Related work

Lasse Engbo Christiansen described in his master’s thesis [4] a mathematical
model of a bogie and explores the connection between its lateral motion and the
lateral irregularities of a track. The model uses real wheel and rail profiles and
includes vertical degrees of freedom to make the model realistic. This model is
used in Chapter 3 to simulate a train running over a track by outputting its wheel
displacements and dynamics.

Andreas Plesner explored in his master’s thesis [3] data-driven machine learn-
ing methods to predict track disturbances from the dynamics of in-service railway
vehicles. His vehicle model is implemented in Julia, benefiting from built-in ODE
solvers. He uses CNNs to predict the irregularities of the rails. Furthermore, in
a semester project [5], he compared the usage of observed accelerations to the
usage of observed positions and velocities in combination with CNNs to predict
the track disturbances. It turns out that using observed position and velocity
data provides better results.

Detecting and predicting rail irregularities is not the only goal in the context
of anomaly detection of trains running over a track. One can also try to identify
anomalies in the springs in the chassis of a train vehicle. Lin Xiao approached
this problem in her bachelor’s thesis [6] by using CNNs with long short-term
memory (LSTM) layers.

Chapter 2

Track data

2.1 Overview

Since the motivation for this project is of theoretical nature, there is no real track
data available. Consequently, this data needs to be generated. This generated
data should have the same statistical properties as the data originating from a real
railway track in order to minimise the gap between the theoretical concept and
a possible practical application. To achieve the required level of authenticity, a
vector autoregression (VAR) model is applied to a small data set of around 20,000
samples which represents a real track segment. It is ensured the synthetic track
is sufficiently long, hence providing enough unique data for the train simulation.
The mentioned real track information and the code skeleton were provided. The
data generation was performed using Matlab [7], version 23 (R2023b).

2.2 Track description

In the real world, a railway track consists of a pair of parallel steel rails mounted
on wooden or concrete ties. These ties are placed perpendicularly at regular in-
tervals along the track and are embedded in ballast. An abstraction is necessary
for the implementation in computer programs, enabling it to perform calcula-
tions. Therefore, the rails are modelled by seven metrics, namely the longitu-
dinal position (in metres), the curvature (in radians/metre), the inclination (in
radians) as well as the lateral and vertical positions of the left and right rail (in
metres). When mapping the rails onto a standard three-dimensional coordinate
system, the longitudinal axis is designated as the x-direction, the lateral as the
y-direction and the vertical as the z-direction. The curvature represents the rate
at which the rails deviate in the xy plane while the inclination is defined as the
angle formed by the height difference of the left and right rail. For simplicity
reasons, the simulated trains in this project drive with a constant velocity over a
straight track which has no inclination. The velocity is therefore set to 120 km

h ,
the curvature to 0 rad

m and the inclination to 0 rad. This thesis’ focus lies on the

4

2. Track data 5

rails’ deviations from their nominal position which are depicted in Figure 2.1 for
clarity. Note that the generated track is actually straight, despite what is shown
in the illustration.

Figure 2.1: The sketch illustrates the lateral rail irregularities from a top view
perspective and the vertical rail irregularities as two single curves describing the
elevation profile. This figure was taken from [3].

Given this sequential and ordered model of the rails with constant spacing,
it can be viewed as a multivariate time series. This enables the use of statistical
models such as VAR models to infer knowledge from the underlying data. The
four-dimensional data points representing the displacements in the yz plane can
therefore be calculated by such a model.

2.3 Vector autoregression model

A vector autoregression (VAR) model is a statistical model used to capture the
linear dependencies in time series data. This enables the generation of a new time
series data set having the same statistical properties as the original data. Specifi-
cally, in a model of order p, the current sample t depends on a linear combination
of the previously seen p samples and some additional normally distributed noise
[8]. In the multivariate case, this process is described by equation 2.1 where y

2. Track data 6

is the k-dimensional time series vector, Ai is a time-invariant k by k coefficient
matrix and e is a k-dimensional noise vector.

yt = A1yt−1 +A2yt−2 + · · ·+Apyt−p + et (2.1)

2.4 Implementation details

As already mentioned, the rails are defined by seven metrics. Every position
on the rails is defined by its coordinates in the xyz space. Since the railway
track consists of two single parallel rails, the resulting unique coordinate points
are five-dimensional. These metrics are depicted in Table 2.1. The generated
track segment comprises 106 data points, each separated by 0.16 m in positive x
direction. This leads to a total distance of 160 km.

x Longitudinal position
yleft Lateral displacement of the left rail
yright Lateral displacement of the right rail
zleft Vertical displacement of the left rail
zright Vertical displacement of the right rail

Table 2.1: Important metrics of the rails

The VAR model has an order of 13, meaning the previous 13 data points are
used for the iterative generation of new points in the time series. First, the process
starts by estimating the model, which involves determining the coefficients of its
matrices using the real track data set. Then, it simulates a new multivariate time
series consisting of the lateral and vertical irregularities of the rails, namely yleft,
yright, zleft, and zright for linearly increasing x.

Once the irregularities are generated, they are post-processed. This is con-
ducted by scaling all four dimensions independently to attain global lateral dis-
placement maxima of 12 mm and global vertical displacement maxima of 8 mm.
The scaled and non-scaled irregularities of a 100-metre-long slice of the track are
shown in Figure 2.2.

Instead of generating an even larger track segment, eight different track seg-
ments, each comprising 106 samples and 160 km of length, are generated by set-
ting a different seed. This leads to a repertoire of eight track data files, amounting
to a total of 8 · 106 samples and describing 1,280 km of track length.

The order of the VAR model was selected based on a study of the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). Both
criteria are used to assess the quality of a statistical model [9]. Moreover, it is
assumed that the generated data accurately reflects real track data, with sim-
ilar distribution and statistical properties. The distribution and quality of the

2. Track data 7

Figure 2.2: Rail irregularities, scaled and non-scaled, shown along a 100-metre-
long track segment

generated irregularities can be assessed by conducting a power spectrum density
analysis, as it is demonstrated in [5]. However, both of these studies are omitted
due to the scope limitations of this project.

Chapter 3

Train dynamics

3.1 Overview

With the availability of synthetic track segments, the next step is to focus on
the simulation of the train’s dynamics. Since the generated train dynamics data
is used for machine learning model training in the latter part of the project,
it is essential to generate a substantial amount of training data to ensure ro-
bust model performance. The simulation program is a C++ program called
‘code_sal_impulse’ and was developed as part of the research presented in [4].
The compilation and execution of said program was run on CPU nodes on the
computer cluster of the Distributed Computing Group.

3.2 Train description

The train vehicle is composed of a car body and two bogie frames. Every bogie
has a front and a rear wheel set which connect the vehicle to the rails. These
components are connected by springs and dampeners. The set of springs con-
necting the bogie frame and the wheel set is called primary suspension while
the secondary suspension constitutes the springs and dampeners on the bogie
level that support the car body. As a visual aid, a sketch of the train vehicle
is drawn in Figure 3.1. The vehicle is modelled as a rigid body that is subject
to the translation and rotation motions listed in Table 3.1. In the simulation,
only the leading bogie frame is considered for efficiency reasons. The location
of the springs and dampeners is depicted in Figure 3.2 where the springs and
dampeners are labeled with ki and Dj , respectively.

8

3. Train dynamics 9

Figure 3.1: Train vehicle sketch showing how a carbody and its bogies are centred
in the xyz coordinate system including the relative motions. This figure was taken
from [5].

Relative motions Symbol Notation
Translation in direction of travel X Longitudinal
Translation in transverse direction, parallel to the
track plane

Y Lateral

Translation perpendicular to the track plane Z Vertical
Rotation about a longitudinal axis φ Roll
Rotation about a transverse axis, parallel to the
track plane

χ Pitch

Rotation about an axis perpendicular to the track
plane

ψ Yaw

Table 3.1: Relative motions. This table was adapted from [5].

3. Train dynamics 10

Figure 3.2: The left sketch shows the bogie from a top view perspective. The right
sketch shows the bogie from a front view perspective. The primary suspension
system consists of the springs k1, k2 and k3 while the secondary suspension system
includes the springs k4, k5, k6 and dampeners D1 and D2. These figures were
taken from [3].

The mathematical model of the train vehicle employs the so-called Cooper-
rider’s bogie. This means the springs and dampeners are considered linear and
obey to Hooke’s Law. The locomotion of a train can be described by the analy-
sis of all internal and external forces, especially the wheel-rail interactions. The
acceleration is found using Newton-Euler equations and, in this way, also the
position and velocity by integration. The train’s dynamics are then simulated
by numerically solving a system of ordinary differential equations (ODEs). The
definition of the ODEs is more thoroughly explained in [3, 4]. The final dynamics
consist of 30 metrics describing among other the motions brought up in Table
3.1. The dynamics are listed as y1−30 in Table 3.2.

3. Train dynamics 11

y1 Front wheel set lateral position
y2 Front wheel set lateral velocity
y3 Front wheel set yaw angle
y4 Front wheel set yaw circular velocity
y5 Rear wheel set lateral position
y6 Rear wheel set lateral velocity
y7 Rear wheel set yaw angle
y8 Rear wheel set yaw circular velocity
y9 Bogie frame lateral position
y10 Bogie frame lateral velocity
y11 Bogie frame yaw angle
y12 Bogie frame yaw circular velocity
y13 Bogie frame roll angle
y14 Bogie frame roll circular velocity
y15 Car body roll angle
y16 Car body roll circular velocity
y17 Front wheel set vertical position
y18 Front wheel set vertical velocity
y19 Rear wheel set vertical position
y20 Rear wheel set vertical velocity
y21 Front wheel set roll angle
y22 Front wheel set roll circular velocity
y23 Rear wheel set roll angle
y24 Rear wheel set roll circular velocity
y25 Bogie frame vertical position
y26 Bogie frame vertical velocity
y27 Bogie frame pitch angle
y28 Bogie frame pitch circular velocity
y29 Rolling constraint β1 (front wheel set)
y30 Rolling constraint β2 (rear wheel set)
y31 Distance driven

Table 3.2: Train dynamics as generated by the simulation program. This table
was adapted from [3] and the source code of the program.

3. Train dynamics 12

3.3 The reference train

From a physical perspective, every train vehicle in the real world is unique and
has therefore a different driving behaviour. The driving conduct depends on
the exerting forces from the environment and the vehicle components, as well as
on the masses and moments of inertia of the bogie elements. Overall, a train is
modelled as a set of 24 different parameters. The important parameters regarding
the springs and dampeners, as well as the corresponding initialisation values of
the reference train train0, are listed in Table 3.3. The origin of the values and
more parameter information can be found in [4].

k1 = 1823 kN/m k5 = 333.3 kN/m
k2 = 3646 kN/m k6 = 2710 kN/m
k3 = 3646 kN/m D1 = 20 kNs/m
k4 = 182.3 kN/m D2 = 29.2 kNs/m

Table 3.3: String and dampening constants

3.4 The train variations

Since this project focuses on the strings and dampeners of the bogie frame, mul-
tiple train instances with slightly different parameter initialisations are needed.
These train instances can then be compared. Therefore, six variants of the ref-
erence train are created. train1−4 have a single spring parameter increased or
decreased by 5 %. train5−6 have all six spring constants and the two dampening
coefficients reduced and augmented by 5 %, respectively. As a result, train1−4

constitute the group of the trains with small parameter changes and train5−6

adhere to the trains with big parameter alterations. The exact parameter adjust-
ments are shown in Table 3.4. Given the reference train, this leads to a collection
of seven distinct trains.

Train instance Parameter change
train0 N/A
train1 k1 → k1 · 0.95
train2 k1 → k1 · 1.05
train3 k2 → k2 · 0.95
train4 k2 → k2 · 1.05
train5 k1−6, D1−2 → k1−6 · 0.95, D1−2 · 0.95
train6 k1−6, D1−2 → k1−6 · 1.05, D1−2 · 1.05

Table 3.4: Train parameter changes

3. Train dynamics 13

3.5 Implementation details

All seven trains are simulated on the previously generated eight synthetic track
segments. This gives a job count of 56. The segments are numerated from seed1

through seed8. The simulation program inputs the respective track data files.
The simulation output includes on the one hand the 30-dimensional dynamics
data and on the other hand the eight lateral and vertical displacements of the
left and right front and rear wheels. It contains additional information, which is
not pertinent to this project. Every single train is scheduled to run for 32 km
while outputting the dynamics and irregularities at a frequency of 200 Hz [10].
The sampling interval and number of samples are given by equations 3.1 and
3.2. As the simulation commences at 50 m, the scheduled work leads to 191,700
samples with a density of 6 data points per metre.

sampling interval =
velocity

sampling frequency
(3.1)

number of samples =
track length − 50 m
sampling interval

(3.2)

However, train simulation stops can occur when there is a difference between
the wheel and the rail that is greater or equal to 17 mm. This is interpreted as a
derailment. As a matter of fact, 23 out of the 56 simulations did not complete,
amounting to 59 % of successful simulations. In comparison, the total simulation
work sums up to 8,419,203 data samples which results in 78.4 % of the scheduled
work. This does not imply that 21.6 % of the scheduled simulation data is useless,
instead, it was never generated.

Chapter 4

Machine learning

4.1 Overview

This chapter explains the experimental procedure around the machine learning
models used. First of all, machine learning is categorised into three different ar-
eas, each having its own purposes and use cases. These areas are called supervised
learning, unsupervised learning and reinforcement learning. The underlying prob-
lem of predicting rail irregularities lies in the supervised learning setting. This
generally means that a model is trained on labeled data which is then used to
predict the labels of new, previously unseen data.

Convolutional neural networks are introduced and applied to the dynamics
data generated in Chapter 3. More precisely, there are two differently sized
models which are trained on the dynamics of some train and tested on some
other train’s dynamics. The model outputs are compared to assess if the size and
complexity of the model influence the prediction precision and to what extent
a model is even capable of predicting the irregularities based on another train’s
dynamics due to a parameter change.

The software in this part is completely implemented in Python, version 3.11.
The code skeleton was made available. The primary libraries include NumPy,
Pandas, Matplotlib, Scikit-learn and PyTorch [11]. Model training was conducted
using CUDA [12] on GPU nodes within the computer cluster of the Distributed
Computing Group.

4.2 Motivating example

Before introducing the more complex machine learning models, the linear re-
gression setting is presented first. To recall, the simulation data provides the
30-dimensional train dynamics data serving as input for the linear regression
model. The model output is the set of the lateral and vertical displacements of
the left and right front and rear wheels.

14

4. Machine learning 15

The model implements the ordinary least squares linear regression. It is fitted
on the dynamics with the corresponding eight-dimensional labels from train0 on
track seed1. The same model is then used to predict the labels of its training data.
This means the model predicts the labels of the data that is used to estimate its
coefficients. As an illustration, a 500-sample-long part of the model’s prediction,
starting at position 90,000 for no particular reason, is plotted against the true
labels in Figure 4.1. The four plots show the lateral and vertical displacements
of the front wheels only. The rear wheel plots are omitted because they display
similar characteristics. It can be seen that the linear model works acceptably well
in predicting the vertical irregularities of the rails. However, it is not capable of
predicting the lateral values at all. The error statistics show that the mean
absolute error is around 1.8 mm for the lateral labels and around 0.8 mm for the
vertical labels.

Figure 4.1: Linear regression prediction showing the displacements along a 500-
sample-long track segment

Moreover, for the prediction to be useful, the precision needs to be increased
up to a mean error of the order of 0.1 mm. This benchmark was already used in
[3]. Considering the weakness of learning the lateral irregularities, another ma-
chine model architecture, capable of extracting the lateral behaviour, is needed.
This is where CNNs demonstrate their utility. As mentioned in Chapter 1.4,
CNNs have been proven to be able to predict the vertical as well as the lateral
irregularities of the rails.

4. Machine learning 16

4.3 Data batches

Before delving into CNNs, the data pre-processing steps are outlined first. In
general, the available data is divided into batches of equal length. This optimises
the memory efficiency as well as the gradient calculation when using for example
the stochastic gradient descent technique. This is also useful for batch processing
and enables parallelism. The structure of the collection of training data files
generated in this project leads to two noteworthy design decisions. The first
decision details the partitioning of a single data file into batches while the second
decision explains the allocation of the resulting batches for training, validation
and testing of the machine learning models.

4.3.1 Batch generation optimisation

First and foremost, the opening 2 km of the train dynamics are affected by a
transient. They are therefore ignored when splitting the data into segments [5].

Next, the data can be split in two distinct ways. Consider therefore a data
set of 100 samples numbered x1, x2, . . . , x100 with labels y1, y2, . . . , y100 and
a segment length of 10. The naive way is to split the data x1−10, x11−20, . . . ,
x91−100 with labels y1−10, y11−20, . . . , y91−100. This batch generation method
can however be optimised for CNNs to obtain more batches from the same data.
Due to the nature of a convolution, a reduction of the input size, there are fewer
labels than samples in a batch. For a reduction of 4, this means x1−10 would only
map to a subset of y1−10, namely y3−8. Instead of the next segment mapping
x11−20 to y13−18, the segment interval can be shifted to the left by 4 to seamlessly
connect the y values. The segments would then include x7−17 and y9−14. In other
words, the data segment split is done by sliding the reduced selection window for
y over the labels and selecting the corresponding x values to form a batch. The
two approaches are summarised in Table 4.1 where the CNN has a dimension
reduction of 4 and the basic neural network (NN) represents the counterpart
without convolution.

In conclusion, the generation of batches from a given dataset depends on
the type of neural network and convolution used. The number of segments is
given by equation 4.1 in the non-convolutional case and by equation 4.2 in the
convolutional case.

number of segments =
⌊

number of samples
segment length

⌋
(4.1)

number of segments =
⌊

number of samples − reduction
segment length − reduction

⌋
(4.2)

4. Machine learning 17

NN CNN

Data segments

(x1−10, y1−10) (x1−10, y3−8)
(x11−21, y11−21) (x7−17, y9−14)

.
(x91−100, y91−100) (x91−100, y93−98)

Number of segments 10 16

Table 4.1: The data split of 100 samples, using a segment length of 10, is shown
for a non-convolutional neural network (NN) and a convolutional neural network
(CNN) with a reduction of 4.

4.3.2 Seed split

As described in Chapter 3, for every train variation there is data available from
eight different seeds. These eight seeds are split conceptually into a training, a
validation and a test data pool to guarantee a model is not validated nor tested
on data it has used for training. Since the required volume of training data is
larger than the volume for validation and testing, the seeds are split according
to Table 4.2. In summary, this means all batches originating from the dynamics
data files that have been simulated using track segments defined by seed1−5 are
used for training.

Training pool Validation pool Testing pool
Seeds 1, 2, 3, 4, 5 6, 7 8

Table 4.2: Seed split

All files that contain fewer than 50,000 samples are not considered for pro-
viding data batches [10]. For this reason, 7 out of 56 files are ignored.

4.4 Convolutional neural networks

CNNs represent a subclass of deep neural networks and are often used for image
processing. They are the main tool in this part of the project. They have multiple
hidden layers, each applying a convolution and a non-linear activation function.

There are two different neural networks used throughout this part of the
project. They are called Model 1 and Model 2 and only differ in size and kernel
lengths. Therefore, they have a different number of learnable parameters resulting
in distinct learning behaviours. The design specifics are explained below.

First of all, the neural networks’ input layer has 30 channels that correspond
to the 30 train dynamics’ metrics. The output layer has eight channels, corre-
sponding to the displacements of the wheels. Next, the two models have three

4. Machine learning 18

and four hidden layers, respectively. The hidden layers apply a one-dimensional
convolution, followed by the ReLu activation function. The kernel size of the first
hidden layer was chosen such as to detect wavelengths of around 100 m. With a
spacing of 1

6 m between every data point, this gives a kernel size of 601 samples.
The last network layer’s convolutions of both Model 1 and Model 2 have a kernel
length of 3. Note that kernel size and kernel length are used interchangeably be-
cause the convolution is applied in one dimension only, the longitudinal direction
of the rails to be specific. The exact differences between the two architectures
are described in Table 4.3 where the list notation describes the features of the
hidden layers in order. A CNN has additional stride and padding parameters.
Since the neural network should give predictions for every sample, the stride is 1
and the padding equals 0.

Since the largest kernel length equals 801, the size of a training batch needs
to be significantly greater. The segment size is set to 12,000 samples which
represents a track segment length of 2 km. Moreover, training a neural network
involves an optimiser and a loss function. The Adam optimiser and the mean
squared error (MSE) loss function are selected as they are widely recognised
and well-suited to the problem context of this project. The model is trained for
exactly 3,000 epochs. Additionally, a learning rate scheduler is used to decrease
the optimiser’s learning rate with increasing number of epochs. The scheduler
kicks off with a learning rate of 10−4 and reduces it by a factor of 0.33, meaning
multiplying it by 0.33, every 750 epochs. The models use a batch size of 1
which means that stochastic gradient descent (SGD) is employed for updating
the model parameters. Finally, the model is validated every 10 epochs. All
mentioned parameters are inspired by [5, 10] and hand-tuned by trial and error.

Model 1 Model 2
Number of hidden layers 3 4
Number of channels in hidden layers [16, 48, 32] [256, 256, 64, 32]
Convolution kernel lengths [601, 7, 7] [801, 9, 7, 7]

Table 4.3: Model differences for Model 1 and Model 2. The list notation describes
the hidden layers in order. This means Model 1’s first of three hidden layers has
16 channels and uses a convolution of kernel length 601.

4.5 Training

From now on, in the phrase ‘the model is trained on the dynamics of traini and
tested on the dynamics of trainj ’, the subphrase ‘the dynamics of’ is omitted to
enhance readability and improve the flow of the text.

The model training is conducted as described in Chapter 4.4. Model 1 and
Model 2 are both trained and validated on the same trains, so as to compare

4. Machine learning 19

their respective training performances.

As previously mentioned, Model training is conducted on GPU nodes of the
computer cluster. Using Model 1, training takes about 30 minutes and using
Model 2, the duration ranges from 1 to 4 hours, depending on the node’s pro-
cessing power.

Both models are trained with the dynamics data of every single one of the
seven trains. The focus lies on the models that are trained with the reference
train. The training losses of all 14 cases are listed in Table 4.4. A row in the table
represents the final training loss when the model is trained with the according
train. Additionally, the training and validation loss curves of Model 1 and Model
2, trained on train0 for 3,000 epochs, are plotted in Figures 4.2 and 4.3. Both
plots serve as a proxy for all models trained with a single train because the
respective convergence patterns resemble each other.

On the one side, the training loss of Model 1 reduces to roughly 2·10−6 m2 and
has a validation loss of approximately 3 · 10−6 m2. The model’s learning process
plateaus very quickly from epoch 250 onwards. The learning rate adjustment
points at epochs 750 and 1,500 can be identified because the variance of the
loss peaks decreases. On the other side, Model 2 training performs better and
attains a training loss of roughly 4 · 10−7 m2 while having a validation loss of
approximately 5 ·10−6 m2. The training loss gradually decreases until it starts to
plateau at epoch 1,500. It is important to notice that in this case, the validation
loss is significantly larger than the attained training loss. Again, the locations of
the learning rate updates can be identified. Contrary to what happens during the
training of Model 1, the validation loss decreases in the beginning to a minimum
of around 4·10−6 m2 at epoch 250 when it starts to increase again up to a value of
approximately 5 ·10−6 m2. To conclude, there is no noticeable difference between
the usage of the dynamics of train0−6 for model training.

Model 1 Training loss [m2]
train0 1.90 · 10−6

train1 1.81 · 10−6

train2 1.94 · 10−6

train3 1.94 · 10−6

train4 2.00 · 10−6

train5 1.94 · 10−6

train6 1.87 · 10−6

Model 2 Training loss [m2]
train0 3.89 · 10−7

train1 4.37 · 10−7

train2 4.08 · 10−7

train3 3.74 · 10−7

train4 4.31 · 10−7

train5 3.92 · 10−7

train6 3.58 · 10−7

Table 4.4: Training losses are shown for Model 1 and Model 2, each trained with
the dynamics of a single train. The row indicates which train’s dynamics are
used for model training and the resulting training loss.

4. Machine learning 20

Figure 4.2: Training and validation losses are shown for Model 1, trained on
train0, in relation to the epochs.

Figure 4.3: Training and validation losses are shown for Model 2, trained on
train0, in relation to the epochs.

Unfortunately, the levels of the training and validation losses of the neural
networks do not meet the precision of the models attained in prior work [3, 5].
The training and validation loss mismatch of the Model 2 models signifies that
the model is overfitting the training data which means it cannot make valuable
predictions on new data. This is a serious problem because the model should

4. Machine learning 21

be able to predict the rail irregularities precisely. Therefore, the future decisions
and conclusions are based on the exact numbers instead of the precision of the
prediction that can be visualised in plots, while always referring to this problem.

4.6 Testing

After training 14 different models, they are evaluated. Model 1 and Model 2
are again tested on the same trains to be able to compare the prediction perfor-
mances.

The evaluation is done by testing the model trained with the reference train,
with every other train individually. This is the main result of this project, as it
shows if and how well a model can predict the irregularities of the rails given the
dynamics of another train. Then, the constellation is reversed, meaning all models
trained with train1−6 individually are tested on train0. This step verifies that
the predictive capability is of the same level as the other way round. Finally, all
models trained with traini are evaluated on traini to verify that the models have
effectively learned to map their own dynamics to irregularities. All test outcomes
are depicted in Table 4.5 where the row indicates the model from Chapter 4.5
that is tested on a train’s dynamics, which is in turn given by the column. For
example, the entry in row train4 and column train0 provides the mean errors of
the prediction of the displacements from train0 of the model trained with train4.

Based on the results, it is clear that the model trained with train0 is able
to predict the irregularities based on train1−4. The precision is of the exact
same quality as the prediction of the displacements from train0. However, the
model does not predict the displacements based on train5−6 as precisely. Looking
at the reversed constellation, the outcomes is mirrored. This means all models
trained with train1−4 predict the displacements from train0 as precisely as their
own. Again, the models trained with train5−6 experience an error increase when
predicting the displacements from train0, although the mean vertical error is not
as elevated. The diagonal values prove that the models learn the mapping from
train dynamics to irregularities best for the train dynamics they are trained with,
putting into perspective the fact that all error outcomes are nearly identical for
all models trained and tested with train0−4 and only models using train5−6 have
cross-train prediction difficulties. All observations made count for Model 1 and
Model 2. To be precise, for Model 1, the mean lateral error is roughly 1.72 mm
and the mean vertical error is approximately 0.58 mm. For Model 2, the mean
lateral error is roughly 2.12 mm and the mean vertical error is approximately 0.61
mm. This means Model 2 performs worse, as there is a relatively large drop in
the lateral precision and a tiny increase in the mean vertical error. Furthermore,
it is important to notice that for Model 1, the error increase in the cross-train
prediction of the displacements from train5−6 is much larger in the vertical than
in the lateral direction. The prediction results average 2.35 mm in the lateral and

4. Machine learning 22

2.20 mm in the vertical direction. For Model 2, the prediction results average
3.49 mm in the lateral and 1.62 mm in the vertical direction. This does not hold
true for the prediction of the displacements from train0 using a model trained
with train5−6 nor for the same tests using Model 2.

As an illustration of the observations made above, the predictions from Model
1 and Model 2 with training data being the dynamics of train0 using test data
derived from train0 and train6 are plotted in Figures 4.8, 4.9, 4.10 and 4.11,
respectively. The figures are moved to Chapter 4.8 to enhance the comparative
analysis. Setting the predictions for train0 and train6 using either model side by
side, it can be observed that the latter predictions fluctuate more.

The conclusions of the test results need to be approached with care because, as
already explained, the models overfit during training and attain a worse training
error than the models used in prior work [3, 5]. However, it seems evident that
the models using train0’s dynamics as training data can predict the irregularities
from train1−4 as precisely as from their own training data, but are not capable
of predicting the irregularities from train5−6 because of their large parameter
changes.

4. Machine learning 23

Model 1 train0 train1 train2 train3 train4 train5 train6

train0
1.69 1.68 1.67 1.70 1.68 2.31 2.39
0.58 0.57 0.57 0.59 0.56 2.37 2.03

train1
1.76 1.76 — — — — —
0.59 0.58 — — — — —

train2
1.70 — 1.69 — — — —
0.56 — 0.56 — — — —

train3
1.75 — — 1.75 — — —
0.60 — — 0.60 — — —

train4
1.77 — — — 1.73 — —
0.58 — — — 0.56 — —

train5
2.41 — — — — 1.73 —
0.94 — — — — 0.62 —

train6
2.11 — — — — — 1.75
0.81 — — — — — 0.59

Model 2 train0 train1 train2 train3 train4 train5 train6

train0
2.10 2.09 2.11 2.14 2.14 2.95 4.03
0.61 0.60 0.61 0.62 0.59 1.64 1.59

train1
2.15 2.11 — — — — —
0.61 0.61 — — — — —

train2
2.12 — 2.12 — — — —
0.60 — 0.60 — — — —

train3
2.16 — — 2.17 — — —
0.65 — — 0.64 — — —

train4
2.08 — — — 2.11 — —
0.62 — — — 0.62 — —

train5
2.43 — — — — 2.19 —
1.38 — — — — 0.64 —

train6
2.78 — — — — — 2.13
1.64 — — — — — 0.64

Table 4.5: Evaluations are shown for Model 1 and Model 2, each trained with the
dynamics of a single train. The row indicates which train’s dynamics are used
for model training while the column indicates which train’s dynamics are used
for testing. The upper (white) and lower (gray) values correspond to the mean
lateral and vertical errors, respectively. Units are in millimetres. Note that ‘—’
marks the absence of a value.

4. Machine learning 24

4.7 Improvements

There are two methods presented that could improve the prediction of the rail
irregularities. The first method uses the idea that the model learns the mapping
from train dynamics to irregularities in a broader way by using training data
consisting of the dynamics of multiple trains. In this way, the model could learn
a mapping that generalises more trains with diverse parameter changes. Another
idea is to fine-tune the models that are pre-trained in Chapter 4.5 to adapt to
the influence of the parameter change in the train specification.

4.7.1 Generalised training

The settings for model training are exactly the same as before.

The two models Model 1 and Model 2 are used again. This time, they are
trained with a larger training set, consisting of all of the train dynamics data from
multiple trains. It was chosen to train the models twice, once using the combined
data from train0−2 which is called train0,1,2 and once using the data from train0−2

and train5−6 which is in turn called train0,1,2,5,6. The training losses of the
resulting four models are listed in Table 4.6. Again, a row in the table represents
the final training loss when the model is trained with the accumulated dynamics
from the according trains. Exemplary plots of the training and validation loss
curves of Model 1 and Model 2 trained on train0,1,2,5,6 can be seen in Figures
4.4 and 4.5. The learning progress portrayed in the plot resembles the learning
behaviour of the other two models trained using the dynamics of train0,1,2.

Both Model 1 instances attain training loss minima of 1.92 · 10−6 m2 and
1.95 · 10−6 m2, respectively. Their validation losses are of the same level, con-
verging to 2 · 10−6 m2. This means both Model 1 instances are comparable to
the Model 1 instances explained in Chapter 4.5, only having a slight increase in
training loss of 3.5·10−8 m2 on average and a small, but noticeable decrease in val-
idation loss. Model 2 instances however perform not as well as their predecessors,
only attaining a training loss of 6.32 · 10−7 m2 and 7.72 · 10−7 m2, respectively.
Their validation losses are again around 4 ·10−6 m2 and hence significantly larger
than the training loss. It is worth noticing that the training loss variance peaks
are not as large as those in Chapter 4.5 as there is 3 to 5 times more training
data available, leading to a better gradient estimation. The learning rate update
points can again be identified at epoch 750.

4. Machine learning 25

Model 1 Training loss [m2]
Recap train0 1.90 · 10−6

train0,1,2 1.92 · 10−6

train0,1,2,5,6 1.95 · 10−6

Model 2 Training loss [m2]
Recap train0 3.89 · 10−7

train0,1,2 6.32 · 10−7

train0,1,2,5,6 7.72 · 10−7

Table 4.6: Training losses are shown for Model 1 and Model 2, each trained with
the dynamics of multiple trains. The row indicates which trains’ dynamics are
used for model training and the resulting training loss. ‘Recap’ means restate-
ment of the results from Table 4.4 in Chapter 4.5.

Figure 4.4: Training and validation losses are shown for Model 1, trained on
train0,1,2,5,6, in relation to the epochs.

Figure 4.5: Training and validation losses are shown for Model 2, trained on
train0,1,2,5,6, in relation to the epochs.

4. Machine learning 26

To analyse if the prediction quality changes in any way, the four models are
tested on all seven trains. This leads to a total of 28 tests. The final mean lateral
and vertical errors can be seen in Table 4.7 where the row defines the train whose
dynamics are used as training data and the column defines the train the model
is tested on.

In general, both Model 1 and Model 2 instances perform better than the
models trained with a single train’s dynamics. Moreover, the models trained
with train0,1,2,5,6 outperform the model trained with train0,1,2. The former not
only decrease the mean errors for train5−6 compared to the latter considerably
because those train’s dynamics are new part of the training data, but it reduces
the mean errors of all predictions by 0.07 mm in lateral and 0.01 mm in vertical
direction on average in the Model 1 case. The Model 2 instances confirm this
observation. However, there is no difference in the prediction precision from
train3−4 compared to those from train0−2. It is also clear that Model 1 instances
are superior to Model 2 instances because their mean lateral errors are around
0.35 mm smaller, although their mean vertical errors are identical, which was not
the case with single-train dynamics training.

The visualisation of the prediction of Model 1 and Model 2, trained with
train0,1,2,5,6 using train3 can be seen in Figures 4.12 and 4.13. train3 plays the
role of the unknown train and is used to test the models on a new parameter com-
bination. The figures are again moved to Chapter 4.8 to enhance the comparative
analysis.

4. Machine learning 27

Model 1 train0 train1 train2 train3 train4 train5 train6

Recap train0
1.69 1.68 1.67 1.70 1.68 2.31 2.39
0.58 0.57 0.57 0.59 0.56 2.37 2.03

train0,1,2
1.56 1.55 1.56 1.58 1.56 2.06 2.29
0.54 0.53 0.53 0.54 0.52 0.89 1.39

train0,1,2,5,6
1.49 1.49 1.48 1.50 1.49 1.50 1.49
0.53 0.52 0.52 0.53 0.51 0.54 0.53

Model 2 train0 train1 train2 train3 train4 train5 train6

Recap train0
2.10 2.09 2.11 2.13 2.14 2.95 4.03
0.61 0.60 0.61 0.62 0.59 1.64 1.59

train0,1,2
1.92 1.89 1.90 1.93 1.96 2.31 2.33
0.54 0.53 0.54 0.55 0.52 1.51 1.49

train0,1,2,5,6
1.82 1.81 1.83 1.85 1.82 1.86 1.83
0.52 0.52 0.53 0.53 0.51 0.54 0.54

Table 4.7: Evaluations are shown for Model 1 and Model 2, each trained with the
dynamics of multiple trains. The row indicates which train’s dynamics are used
for model training while the column indicates which train’s dynamics are used
for testing. The upper (white) and lower (gray) values correspond to the mean
lateral and vertical errors, respectively. Units are in millimetres. ‘Recap’ means
restatement of the results from Table 4.5 in Chapter 4.6.

4.7.2 Fine-tuning

The setting for model fine-tuning is similar to the setting for normal model train-
ing but includes some minor changes. The differences are that model training
is continued with different data, the number of epochs is fixed at 100 instead of
3,000 and the learning rate scheduler updates the learning rate after 50 epochs
instead of 750. This means there is only one such update.

To evaluate the fine-tuning strategy, the trade-off between the amount of
training data used for fine-tuning the model and the resulting prediction preci-
sion is analysed. Therefore, Model 1 and Model 2, both trained with train0, are
considered the pre-trained models. These are then fine-tuned to train1−6 accord-
ing to the training parameter adjustments already mentioned, three times, each
with a different volume of training data. Each model is trained once with only 1
random data batch, once with exactly 10 data batches and another time with all
available data batches. The number of available dynamics data batches ranges
between 50 and 70 which describes an increase by a factor of 5 to 7 compared to
the 10-batch scenario. The training losses of the resulting 36 model fine-tuning
constellations are listed in Table 4.8. To recall, the pre-trained model used train0

for training, the row only indicates the train chosen for fine-tuning. The training
and validation loss curves for Model 1 and Model 2, both pre-trained with train0

4. Machine learning 28

and fine-tuned with train1 using 10 batches, are plotted in Figures 4.6 and 4.7,
respectively.

First, it is evident that the training loss strictly relates to the amount of
training data used. For Model 1, the average training loss of the fine-tuning step
is 1.19 ·10−6 m2 using 1 batch, 1.89 ·10−6 m2 using 10 batches and 2.17 ·10−6 m2

using all available batches. Model 2 fine-tuning experiences the same conceptual
loss increase and confirms the observation. The validation loss for both model
architectures remains at the same level at approximately 3 · 10−6 m2. Taking
a closer look, the Model 1 models using 1 batch for fine-tuning beat the pre-
training loss by a huge margin while Model 2 models using 1 batch for fine-tuning
only match their corresponding pre-training loss. All this is a clear indication
of overfitting and poor generalisation, as one batch does not contain enough
information to make the model learn a good general mapping from train dynamics
to wheel displacements.

Model 1 Recap pre-training 1 batch 10 batches all batches
train1 1.81 · 10−6 1.15 · 10−6 1.69 · 10−6 2.10 · 10−6

train2 1.94 · 10−6 1.17 · 10−6 2.00 · 10−6 2.17 · 10−6

train3 1.94 · 10−6 1.24 · 10−6 1.97 · 10−6 2.18 · 10−6

train4 2.00 · 10−6 1.26 · 10−6 1.94 · 10−6 2.31 · 10−6

train5 1.94 · 10−6 1.22 · 10−6 1.86 · 10−6 2.18 · 10−6

train6 1.87 · 10−6 1.09 · 10−6 1.85 · 10−6 2.14 · 10−6

Model 2 Recap pre-training 1 batch 10 batches all batches
train1 4.37 · 10−7 3.89 · 10−7 7.93 · 10−7 1.19 · 10−6

train2 4.08 · 10−7 3.78 · 10−7 8.97 · 10−7 1.34 · 10−6

train3 3.74 · 10−7 4.20 · 10−7 9.18 · 10−7 1.49 · 10−6

train4 4.31 · 10−7 4.03 · 10−7 9.59 · 10−7 1.39 · 10−6

train5 3.92 · 10−7 4.00 · 10−7 9.24 · 10−7 1.38 · 10−6

train6 3.58 · 10−7 4.12 · 10−7 8.28 · 10−7 1.27 · 10−6

Table 4.8: Training losses are shown for Model 1 and Model 2, each pre-trained
with the dynamics of train0 and fine-tuned with the dynamics of a single train
using various amounts of data. The row indicates which train’s dynamics are
used for model fine-tuning and the resulting training losses. Units are in square
meter. ‘Recap’ means restatement of the results from Table 4.4 in Chapter 4.5.

4. Machine learning 29

Figure 4.6: Training and validation losses are shown for Model 1, trained on
train0, fine-tuned on train1 using 10 data batches, in relation to the epochs.

Figure 4.7: Training and validation losses are shown for Model 2, trained on
train0, fine-tuned on train1 using 10 data batches, in relation to the epochs.

Finally, the fine-tuned models are evaluated. All of them are tested on the
same train’s dynamics they have used for fine-tuning. This means a model fine-
tuned with traini is also tested on traini. With the pre-trained models being
Model 1 and Model 2 trained with train0, they are both fine-tuned on the other
6 trains using 1, 10 and all available data batches. This leads to 36 different

4. Machine learning 30

testing scenarios. The outcome and the errors are all listed in Table 4.9.

There are two universal trends in the analysis of the error statistics. First,
there is an error decrease when increasing the amount of training data for fine-
tuning. This shows that more data helps the model learn a better mapping from
train dynamics to wheel displacements and keeps the model from overfitting a
fraction of the data. Overall, if all available batches are used for fine-tuning, the
final prediction errors beat the errors after the pre-training stage. This obser-
vation is noticed for both Model 1 and Model 2, while Model 2 instances show
a larger mean error drop compared to the Model 1 instances. Second, the fine-
tuned models having the Model 1 architecture perform better in predicting the
irregularities. Their mean lateral errors are roughly 0.2 mm lower than those of
their Model 2 equivalents and the mean vertical errors are on the same level. Fi-
nally, it is important to mention that, after fine-tuning to train5−6, the respective
mean lateral and vertical errors drop to the same level as those after fine-tuning
to the other trains. This counts for both Model 1 and Model 2. This leads to the
conclusion that the fine-tuning method helps to overcome the cross-train predic-
tion weakness for trains having large parameter changes and generally improves
the prediction precision.

The visualisation of the predictions of Model 1 and Model 2, pre-trained using
train0 and fine-tuned using 10 batches of train1, can be seen in Figures 4.14 and
4.15. The figures are again moved to Chapter 4.8 to enhance the comparative
analysis.

4. Machine learning 31

Model 1 Recap pre-training 1 batch 10 batches all batches

train1
1.68 1.86 1.75 1.65
0.57 0.66 0.60 0.58

train2
1.67 1.82 1.72 1.63
0.57 0.63 0.60 0.58

train3
1.70 1.86 1.77 1.65
0.59 0.61 0.65 0.61

train4
1.68 1.84 1.75 1.66
0.56 0.68 0.62 0.59

train5
2.31 2.02 1.76 1.68
2.37 0.67 0.63 0.60

train6
2.39 2.05 1.83 1.66
2.03 0.91 0.62 0.60

Model 2 Recap pre-training 1 batch 10 batches all batches

train1
2.09 2.20 1.96 1.85
0.60 1.00 0.62 0.56

train2
2.11 2.12 1.98 1.87
0.61 0.64 0.59 0.55

train3
2.13 2.10 2.02 1.86
0.62 0.65 0.62 0.56

train4
2.14 2.10 1.95 1.88
0.59 0.64 0.57 0.54

train5
2.95 2.53 2.05 1.97
1.64 1.39 0.64 0.60

train6
4.03 3.72 2.03 1.83
1.59 1.05 0.67 0.59

Table 4.9: Evaluations are shown for Model 1 and Model 2, each pre-trained
with the dynamics of train0 and fine-tuned with the dynamics of a single train.
The row indicates which train’s dynamics are used for model fine-tuning and
testing while the column indicates the amount of training data used. The upper
(white) and lower (gray) values correspond to the mean lateral and vertical errors,
respectively. Units are in millimetres. ‘Recap’ means restatement of the results
from Table 4.5 in Chapter 4.6.

4.8 Prediction plots

All prediction figures mentioned in Chapters 4.6 and 4.7 are listed below. Every
figure includes four plots, namely the displacements of the front wheels of a bogie.
The rear wheels are omitted because they show the same characteristics. The
plots visualise a 500-sample-long interval of the track starting at position 40,000
of track segment seed8. The choice regarding seed8 is detailed in Chapter 4.3.2.

4. Machine learning 32

Figure 4.8: Model 1 trained on train0 and tested on train0

Figure 4.9: Model 1 trained on train0 and tested on train6

4. Machine learning 33

Figure 4.10: Model 2 trained on train0 and tested on train0

Figure 4.11: Model 2 trained on train0 and tested on train6

4. Machine learning 34

Figure 4.12: Model 1 trained on train0,1,2,5,6 and tested on train3

Figure 4.13: Model 2 trained on train0,1,2,5,6 and tested on train3

4. Machine learning 35

Figure 4.14: Model 1 trained on train0, fine-tuned on train1 and tested on train1

Figure 4.15: Model 2 trained on train0, fine-tuned on train1 and tested on train1

Chapter 5

Conclusion and future work

5.1 Conclusion

To sum up, the evaluation of the models trained with the dynamics of a single
train shows that they are capable of predicting the rail irregularities based on
the dynamics of another train if the parameter change is small. This means the
models trained with the dynamics of the reference train are able to predict the
displacements from the dynamics of train1−4 as precisely as from their own, but
not as exact as from the dynamics of train5−6. To recall, train1−4 have a single
parameter modified by 5 % while train5−6 have eight parameters varied by 5 %
each.

The two optimisation strategies presented are generalised training and fine-
tuning. On the one side, generalised training uses more training data and helps to
increase the prediction precision, thus reducing the mean errors by a small amount
overall. The model trained with the dynamics of train0,1,2 manages to predict
the irregularities from the dynamics of train3−4 precisely, but still struggles to
do so from the dynamics of train5−6, though there is an improvement compared
to models trained on individual train dynamics. On the other side, in the fine-
tuning scenario, the overfitting property of the models can again be observed
when analysing the trade-off between the amount of training data and training
duration in the fine-tuning setting. Fine-tuning using one data batch attains
the lowest training loss and the highest prediction error while fine-tuning using
all available data batches reaches the highest training loss and leads to the best
prediction errors. Overall, fine-tuning demonstrates an enhancement, effectively
reducing both the training loss and prediction errors to the level attained by
pre-training and even below, when using the dynamics of train5−6.

Last but not least, it needs to be mentioned that model training does not
attain the same level that was reached in previous work. Model overfitting is
observed as the more complex Model 2 has a much smaller training loss compared
to its validation loss. This is not the case for Model 1. Therefore, the resulting
predictive capability is weak and does not provide a strong basis to draw accurate
conclusions.

36

5. Conclusion and future work 37

5.2 Future work

In a further step, the same set-up of generalised training and fine-tuning can be
used to analyse more thoroughly the differences in the cross-train predictions. It is
worth exploring whether there is a better starting point for model fine-tuning than
the local minimum achieved after the classical model training, typically at the end
of 3,000 epochs. Identifying an optimal starting point could enhance fine-tuning
performance, potentially at the expense of some pre-training performance.

Bibliography

[1] World Economic Forum, “The travel & tourism competitiveness report
2019,” Accessed: 2024-07-24. [Online]. Available: https://www.weforum.
org/publications/the-travel-tourism-competitiveness-report-2019

[2] SBB, “Infrastructures report,” Accessed: 2024-07-24. [Online]. Available:
https://reporting.sbb.ch/en/infrastructures

[3] A. Plesner, “Using data-driven state-of-the-art machine learning and confor-
mal prediction for track irregularities from observed dynamics of in-service
railway vehicles,” Master’s thesis, Technical University of Denmark, 2022.

[4] L. E. Christiansen, “The dynamics of a railway vehicle on a disturbed track,”
Master’s thesis, Technical University of Denmark, 2001. [Online]. Available:
https://backend.orbit.dtu.dk/ws/portalfiles/portal/126118469/thesis.pdf

[5] A. Plesner, “Estimating track irregularities from railway vehicle dynamics
using deep learning,” 2021.

[6] L. Xiao, “Using data-driven state-of-the-art machine learning and confor-
mal prediction for track irregularities from observed dynamics of in-service
railway vehicles,” 2024.

[7] MathWorks, “Matlab,” Accessed: 2024-07-24. [Online]. Available: https:
//www.mathworks.com/products/matlab.html

[8] Z. Eric and W. Jiahui, Vector Autoregressive Models for Multivariate
Time Series. Springer New York, 2003. [Online]. Available: https:
//doi.org/10.1007/978-0-387-21763-5_11

[9] MathWorks, “Information criteria for model selection,” Accessed:
2024-07-24. [Online]. Available: https://ch.mathworks.com/help/econ/
information-criteria.html

[10] A. Plesner, “Personal communication,” 2024.

[11] PyTorch Developers, “PyTorch,” Accessed: 2024-07-24. [Online]. Available:
https://pytorch.org/

[12] NVIDIA Corporation, “CUDA,” Accessed: 2024-07-24. [Online]. Available:
https://developer.nvidia.com/cuda-zone

38

https://www.weforum.org/publications/the-travel-tourism-competitiveness-report-2019
https://www.weforum.org/publications/the-travel-tourism-competitiveness-report-2019
https://reporting.sbb.ch/en/infrastructures
https://backend.orbit.dtu.dk/ws/portalfiles/portal/126118469/thesis.pdf
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1007/978-0-387-21763-5_11
https://doi.org/10.1007/978-0-387-21763-5_11
https://ch.mathworks.com/help/econ/information-criteria.html
https://ch.mathworks.com/help/econ/information-criteria.html
https://pytorch.org/
https://developer.nvidia.com/cuda-zone

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Background
	1.2 Project structure
	1.3 Theoretical problem
	1.4 Related work

	2 Track data
	2.1 Overview
	2.2 Track description
	2.3 Vector autoregression model
	2.4 Implementation details

	3 Train dynamics
	3.1 Overview
	3.2 Train description
	3.3 The reference train
	3.4 The train variations
	3.5 Implementation details

	4 Machine learning
	4.1 Overview
	4.2 Motivating example
	4.3 Data batches
	4.3.1 Batch generation optimisation
	4.3.2 Seed split

	4.4 Convolutional neural networks
	4.5 Training
	4.6 Testing
	4.7 Improvements
	4.7.1 Generalised training
	4.7.2 Fine-tuning

	4.8 Prediction plots

	5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work

	Bibliography

