
Distributed

 Computing

Exploit Detection in the Evolution of
DApps

Master’s Thesis

Jean Marc Müller

muelleje@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Benjamin Estermann, Prof. Dr. Ye Wang

Prof. Dr. Roger Wattenhofer

August 30, 2024

Acknowledgements

The author would like to thank Benjamin Estermann and Ye Wang for the very
pleasant cooperation during the research of this thesis, their insight in interpret-
ing results, their support in solving problems and the careful proofreading of this
report.

ii

Abstract

The rapid proliferation of Decentralized Finance (DeFi) on the Ethereum blockchain
has introduced significant vulnerabilities in smart contracts, leading to an in-
crease in exploit transactions that result in substantial financial losses, totalling
3.24 billion USD from DeFi related incidents between April 2018 and April 2022.
This study investigates the detection of such exploit transactions on vulnera-
ble smart contracts. It aims to reproduce, validate and extend the DEFIER
approach, initially proposed by Su et al. In this process we gain fundamental
insight into the evolution of Decentralized Applications (DApps), but also en-
counter substantial obstacles. The dataset from Su et al. covers the years 2016
to 2018. We find that the more recent exploits in the data by Zhou et al. from
2018 to 2022 are conducted via multiple intermediary smart contracts; highlight-
ing the fact that the structure of DApps has grown more complex, and attacks
have adapted to exploit vulnerabilities not only in a DApp’s main smart con-
tract, but also those called internally. Furthermore, the amount of data DEFIER
collects for analysis of an incident on average has grown 20-fold, emphasizing
the vast increase in transaction volume and consequently adoption of blockchain
technology. Significant challenges arise in the context of transaction clustering,
and the DEFIER model appears inadequate in adapting to this new setting.
Eventually, it raises the question, if the concepts on which DEFIER is based are
still valid today.

iii

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Ethereum and Smart Contracts 2

2.2 Decentralized Applications and Vulnerabilities 3

2.3 The Four-Stage Attack Lifecycle 3

2.4 DEFIER . 5

2.4.1 Preprocessing . 5

2.4.2 Sequence-based Classification 7

2.4.3 New Attack Discoveries 8

2.5 A Modern Dataset . 8

3 Data Collection 10

3.1 Technical Method . 10

3.1.1 Dataset and Incident Sorting 10

3.1.2 DApp Transaction Scraping 11

3.1.3 Semantically-Similar Transaction Scraping 12

3.2 Findings . 14

3.2.1 A Recursive Process . 14

3.2.2 Statistics on Collected Data 16

4 Clustering 21

4.1 Technical Method . 21

4.1.1 k-means Clustering . 21

4.1.2 Silhouette Analysis . 22

iv

Contents v

4.1.3 Elbow Method . 23

4.1.4 Evaluation Metric . 24

4.1.5 Statistical Implications for Data Collection 25

4.2 Results . 26

4.2.1 InverseFinance . 26

4.2.2 SushiSwap . 28

4.2.3 Akropolis . 31

4.2.4 CreamFinance . 34

5 Conclusion 38

5.1 Summary . 38

5.1.1 Data Collection . 38

5.1.2 Clustering . 39

5.2 Going Forward . 40

Bibliography 42

A Plots for k-means Clustering Results A-1

Chapter 1

Introduction

This study is an investigation into the detection of exploit transactions on vulner-
able smart contracts of DeFi Dapps. In the research of existing work, to extend
and build upon, the 2021 paper by Su et al. called ’Evil Under the Sun: Under-
standing and Discovering Attacks on Ethereum Decentralized Applications’ [1]
is discovered. It presents an approach for automated attack detection, termed
DEFIER, which is base on the concept that such attacks may vary in their spe-
cific implementation, but generally undergo a four-stage lifecycle of preparation,
exploitation, propagation and completion. The paper reports promising results,
however, it is based on an older dataset of transactions between 2016 and 2018.
Consequently, before attempting to refine or improve this model, it must be val-
idated on a modern dataset. For this purpose we use the dataset from the 2023
paper ’SoK: Decentralized Finance (DeFi) Attacks’ by Zhou et al. [2] containing
DeFi exploit incidents between 2018 and 2022.

1

Chapter 2

Background

2.1 Ethereum and Smart Contracts

The Ethereum blockchain, a decentralized open-source peer-to-peer network, is
the second largest blockchain after Bitcoin by market capitalization [3]. While
Bitcoin was primarily designed as a digital currency, Ethereum fundamentally dif-
ferentiates itself from that by functioning as both a distributed computing system
and an operating system with scripting capabilities. For this purpose it supports
two types of accounts; Externally Owned Accounts (EOAs), which are controlled
by users or external servers through private keys, and Contract Accounts, which
are governed by smart contracts. These are essentially programs than run and
reside on the Ethereum blockchain and facilitate automated agreements without
intermediaries. [4, 1].

Ethereum tracks the state of every account and records changes resulting from
transactions. A transaction is a signed data package that transfers value or data
between accounts. There are three types of transactions, Ether transfers, con-
tract calls, and contract creations. Contract creation transactions deploy smart
contracts by including bytecode in the transaction, which contains the creation
code, runtime code, and swarm code. These contracts are then executed by
the Ethereum Virtual Machine (EVM), during which a contract can communi-
cate with EOAs and other contracts. Each transaction produces a receipt that
records the transaction’s outcome, including involved account addresses and ex-
ecution status. These are written onto Ethereum’s cryptographically secured
ledger, with every node on the network maintaining a copy [4, 1].

More detailed information than just the transaction’s outcome can be obtained
through tracing APIs that generate EVM traces, also known as transaction ex-
ecution traces. By re-executing transactions using the historical state of the
blockchain, they provide a record of the sequence of operations made during the
transaction, such as external contract calls or internal function calls [5, 1].

2

2. Background 3

2.2 Decentralized Applications and Vulnerabilities

Decentralized applications (DApps) are public applications that run on peer-to-
peer networks such as Ethereum. They use smart contracts as their backend,
which encode the core logic of the application and manage critical data, while
users interact with the frontend through decentralized or centralized interfaces.
Unlike traditional applications hosted on centralized servers, the fact that DApps
operate on the blockchain makes them transparent and resistant to censorship.
Having their code publicly viewable means that anyone can ensure the DApp will
execute the way it claims. However, it also gives rise to the opportunity to find
vulnerabilities, flaws in the code, which can be exploited, leading to significant
financial losses [4, 1].

This poses a problem in particular for DApps in the Decentralized Finance (DeFi)
space, where the peak total value locked (TVL) across all blockchains has sur-
passed 253 billion USD in December 2021, with 145 billion USD (57% TVL)
on the Ethereum blockchain. These protocols for exchanges, lending, cross-chain
bridging, etc. have grown rapidly since the beginning of 2020. Unfortunately, the
complexity and interconnectivity of these systems have expanded the attack sur-
face, contributing to a total loss of 3.24 billion USD from DeFi related incidents
between April 2018 and April 2022 [2].

Consequently it would be extremely beneficial for all honest actors as well as the
projects maintaining DApps, to have a reliable way of detecting such adversarial
transactions which exploit vulnerabilities in smart contracts. In the best case this
detection would happen while the transaction is still in the Ethereum memory
pool, waiting for execution, so it can be prevented. The next best scenario
would be to detect an exploit immediately after execution in order to invoke
an emergency halt of the DApp to stop the exploit from being repeated. A
very promising approach for automated attack detection is found in the 2021
paper ’Evil Under the Sun: Understanding and Discovering Attacks on Ethereum
Decentralized Applications’ by Su et al.[1] (henceforth referred to as ’Evil Under
the Sun’). Their approach is termed ’DEFIER’ and is derived from a detailed
study on the structure of such attacks. The detection is based on similarities in
transaction execution traces rather than simple transaction parameters such as
’Ether sent’, ’Transaction Fee’, etc. The next two Sections 2.3 and 2.4 give a
detailed explanation on the approach.

2.3 The Four-Stage Attack Lifecycle

In ’Evil Under the Sun’ the authors manually reconstruct and analyse 42 DApp
attack incidents on 25 victim Dapps from technical blogs, news posts and annual
security reports from blockchain security companies. They find that all these
attacks, although varying in specific implementation, follow the same general

2. Background 4

pattern, which they term the ’four-stage attack lifecycle’. This pattern consists
of four sequential stages, namely the attack preparation, exploitation, attack
propagation and mission completion. Figure 2.1 visualizes this sequence [1].

Figure 2.1: Visualization of a four-stage attack lifecycle: 1-4 depict the attack
preparation stage, a-c depict the exploitation stage, i-iii depict the attack prop-
agation stage and I-III depict the mission completion stage [1].

Attack Preparation Stage

Before actually launching an attack on the vulnerable smart contract of a DApp
via an exploit contract (2), exploit developers begin by testing and refining their
exploit code over multiple transaction (1). In further preparation, money man-
agers transfer the funds necessary to execute the attack, such as gas fees and
other possible costs, into the exploit contract (3). In an effort to conceal their
EOAs these funds are channelled through money mules (4) [1].

Exploitation Stage

In the main exploitation stage the exploit contract is called by one or multiple
attack operators from different EOAs (a). The exploit contract then executes the
attack on the vulnerable smart contract of the victim DApp (b) and gains the
corresponding profit (c) [1].

Attack Propagation Stage

In the propagation stage the attacker aims to exploit further DApps that exhibit
the same or a similar vulnerability in their smart contract. To this end they either

2. Background 5

reuse or adapt the original exploit contract through updates. Then they proceed
in the same fashion as in the exploitation stage, where the exploit contract is
called by attack operators (i) to execute the attack on the other DApp or DApps
(ii) and gain further profit (iii) [1].

Mission Completion Stage

Finally, in the mission completion stage ’selfdestruct’ is called on the exploit
contract by one of the attack operators (I) and consequently the entire attack
profit stored in the contract are withdrawn to that EOA (II). From there the
profit is transferred to an exchange server in order to be withdrawn (III). Once
again it is channelled through multiple money mules in an effort to obscure the
origin of the funds [1].

2.4 DEFIER

Based on the insights of the four-stage attack lifecycle described in the previous
Section 2.3 Su et al. create a methodology termed DEFIER to identify new
attacks, including zero-day attacks on new victim DApps. It is based on the
concept that even though specific operations may vary, for attacks targeting
different vulnerabilities, the sequential procedure of the lifecycle including high-
level behaviour per attack stage remains the same. DEFIER aims to learn these
patterns from transactions and their execution traces to identify new exploits
and determine their attack stage. It consists of two components, Preprocessing
and Sequence-based Classification [1].

2.4.1 Preprocessing

Preprocessing identifies transactions directly or indirectly related to a DApp and
clusters them based on their execution traces and invocation times [1].

Data Collection

The data collection starts with scraping all DApp transactions, that means all
transactions interacting with the target DApp directly, or indirectly via an in-
termediary smart contract; more precisely, all normal and internal transactions
that have the target DApp’s vulnerable smart contract in their ’to’ field [1]. We
refer to these transactions as level 0, visualized in Figure 2.2.

However, the goal is to discover all EOAs’ operations and intents towards the
target DApp, and specifically the intent to reuse an attack vector on a different
DApp, i.e. propagation stage, cannot be found by only considering transactions

2. Background 6

that interact with the target DApp. Therefore, in a second step all semantically-
similar transactions are scraped. First, starting from the previously collected
DApp transactions, all unique EOAs that have initiated a normal transaction
on level 0 are gathered. Next, all unique smart contracts that have initiated an
internal transaction on level 0 are considered, and all unique EOAs that have in-
teracted with these smart contracts are added to the set. Specifically, that means
all unique EOAs that have initiated a normal transaction with the corresponding
smart contract in the ’to’ field. We refer to these transactions and EOAs as level
1. The gathering of this EOA set is visualized in Figure 2.2. For each EOA in
this set all of its so far scraped transactions on level 0 and level 1 are considered,
and every transaction from that same EOA that lies within ± 1 day of one of
the already scraped transactions is scraped preliminary, but only kept if it does
not exceed a similarity threshold of 3. In particular, given a scraped transaction
txscraped and another transaction txprelim from the same EOA that lies within ±
1 day of txscraped, then txprelim is only kept if the distance between transaction
graphs (TG) is less than 3 [1].

Figure 2.2: Visualization of the gathering of the set of unique EOAs. First all
normal and internal transactions that have the Target DApp’s vulnerable smart
contract in their ’to’ field are scraped. These constitute transactions on level 0,
also referred to as the DApp transactions. All unique EOAs that have initiated
a normal level 0 transaction are added to the set. Then for each smart contract,
that has initiated an internal level 0 transaction, all normal transactions are
scraped. These constitute transactions on level 1. All unique EOAs that have
initiated a normal level 1 transaction are added to the set.

The TG distance D(g1, g2) between two transaction graphs g1 and g2 is a measure
of structural similarity and closeness of execution time. It is based on graph

2. Background 7

representations of the transactions’ execution traces and is defined as follows:

D(g1, g2) = α min[o1,ok]∈O(g1,g2)

k∑
i=1

c(oi) + β∆t (2.1)

where O(g1, g2) represents the set of necessary graph edits, i.e. insertions, dele-
tions or substitutions of vertices or edges, to transform g1 into g2, and c(oi) gives
the cost for edit oi. ∆t is the time difference of execution in units of hours and
α and β are weights. This implementation sets the values as α = 0.9, β = 0.1
and c() = 1 [1].

Clustering

As described in Section 2.3 the operational intent during one of the stages of an
attack lifecycle is usually reflected in a sequence of multiple transactions from
different EOAs. To capture this, all scraped normal transactions are clustered
according to the similarity of their execution trace graphs as well as their tempo-
ral proximity. Accordingly, this constitutes a between-graph clustering problem
which is solved via a k-means algorithm based on the TG distance as defined in
Equation 2.1. This results in multiple clusters with some representing one of the
stages of the attack lifecycle, and many others that are unrelated to any sort of
attack [1].

2.4.2 Sequence-based Classification

Sequence-based Classification reconstructs potential attack footprints by mod-
elling transaction sequences as vectors and classifies them to determine whether
they are part of an attack, and if so, identify the stage of the exploit [1].

Sequence Representation

The basis for this classification is the sequence representation which is created
in the following way. First, all transactions within a cluster are ordered by their
timestamp to turn the transaction cluster into a transaction sequence. Next, the
transaction sequence is transformed into a vector sequence, where each element is
a graph embedding of the execution trace graph of the corresponding transaction.
For every element, in order to highlight the EOA’s intent and filter out irrelevant
transaction operations an attention mechanism is applied which assigns weights
to different parts of the transaction as well as an embedding representation of
the EOA and the DApp, and combines them into a new vector. The weights
are learned by a long short term memory (LSTM) model. Finally, all combined
vectors are fed into another bidirectional LSTM neural network, which is trained

2. Background 8

on a labeled dataset with the classifier, to capture relationships and dependencies
across time and output a final single vector to represent the entire sequence [1].

Sequence Classification

The output vectors from the bidirectional LSTM model, representing entire trans-
action sequences, are classified by a multilayer percetpron (MLP) classifier that
predicts the probability that a sequence corresponds to a certain attack stage.
The entire classification module is trained together on a labeled dataset through
stochastic gradient descent [1].

2.4.3 New Attack Discoveries

Su et al. collect the smart contract addresses corresponding to 104 potential
target DApps and inspect them with their DEFIER model. The preprocessing
results in 342’224 transaction clusters, 100’081 of which are labeled with an attack
stage and belong to 85 victim DApps. Randomly selected 4% of these clusters
are checked manually, and they find that 3’671 of those 4’003 clusters are indeed
related to attack incidents, including 75 zero-day victim DApps [1].

2.5 A Modern Dataset

As described in the previous Section 2.4.3 the results of the DEFIER model on
unseen data make the approach appear very promising and a good starting point
for further investigation. The main caveat in this context is that the unseen data
as well as the training data, from which also the insights of the four-stage attack
lifecycle stem, only include transactions covering the years 2016 to 2018 [1].

In the context of the very rapid progress in the entire blockchain space, it can
be argued that this data is quite out of date in the year 2024. Ethereum’s first
production-ready version, called Homestead, launched in March 2016 and DeFi
was still a new and emerging concept in 2018 [6].

Consequently, the first step in any investigation in this direction is to validate
the effectiveness of the DEFIER model on a more modern dataset. For this
purpose we consider the attack dataset on DeFi DApps from the 2023 paper ’SoK:
Decentralized Finance (DeFi) Attacks’ by Zhou et al. [2] (henceforth referred to
as ’SoK’). This includes data on exploit incidents from April 2018 to April 2022
[2].

The ’Evil Under the Sun’ paper provides a google drive link1 at which the anno-
tated dataset as well as an implementation of DEFIER is supposed to be available.

1https://drive.google.com/drive/folders
/1cdD1gHNbWIS228QXmeUReougSL_k1kvf?usp=sharing

https://drive.google.com/drive/folders/1cdD1gHNbWIS228QXmeUReougSL_k1kvf?usp=sharing
https://drive.google.com/drive/folders/1cdD1gHNbWIS228QXmeUReougSL_k1kvf?usp=sharing

2. Background 9

However, the link only leads to an empty folder. Also, the first and second author
of the paper are contacted by email, unfortunately however, without response.
Therefore, an implementation of DEFIER must be reverse engineered from its
description in the paper.

Chapter 3

Data Collection

This chapter focuses on the data collection process, which is the first step in
reproducing the DEFIER approach. First, the technical method is explained,
detailing how individual task are achieved and also highlighting differences to
the method explained in the ’Evil Under the Sun’ paper. Afterwards, some
unexpected findings are presented and discussed.

3.1 Technical Method

3.1.1 Dataset and Incident Sorting

In total, the ’SoK’ dataset includes 200 attack incidents on DeFi DApps spanning
a period from April 2018 to April 2022 [2]. However, this dataset actually in-
cludes incidents on the Ethereum blockchain as well as the Binance Smart Chain
(BSC). After excluding the 96 BSC related incidents, that leaves 104 incidents
on Ethereum.

Since these incident are collected from differnet sources, such as academic papers,
audit reports and real-world incidents [2], they exhibit a variety of incident causes
and sometimes are missing crucial information for further processing. Therefore,
14 incidents are excluded, because they mostly consist of a description, but do not
state the actual address of the DApp’s vulnerable smart contract. Additionally,
since the focus of this study are attack incidents that result from vulnerabilities
in smart contracts, further 28 incidents are excluded as they are resulting from
other causes, such as compromised private keys or operator backdoors.

Lastly, there are 6 incidents that each involve more than one vulnerable smart
contract. This constitutes an additional layer of complexity which the original
DEFIER approach is not designed to handle. Therefore, they are also excluded
and left as a problem to address, once a working reproduction of the approach
is achieved, and a baseline on the new dataset is found. This leaves 56 incidents
from the Ethereum blockchain under investigation.

The dataset is structured in the form of individual .json files, one for each incident.

10

3. Data Collection 11

For every incident the block number and the address of the DApp’s vulnerable
smart contract are extracted, as well as the known adversarial EOAs (one or
multiple) and known adversarial transactions, i.e. attack transactions.

3.1.2 DApp Transaction Scraping

This section describes the scraping of the DApp transactions as defined in Section
2.4.1, namely, the normal transactions, i.e. direct interactions with the vulnerable
smart contract, and the internal transactions, i.e. interactions via an interme-
diary smart contract. These constitute transactions on level 0, as depicted in
Figure 2.2.

Normal Transaction Scraping

Normal transactions by definition originate from EOAs (’from’ field). They are
scraped via the Etherscan API [7], namely the ’txlist’ action with a specified
Ethereum address, that returns a list of the normal transactions in which the
specified address is involved. When this is called on a contract address, such as
a DApp’s vulnerable smart contract, it consequently returns only transactions
where that contract address appears in the ’to’ field. Therefore, they constitute
all direct interactions between an EOA and the vulnerable smart contract. This
is the same API as the one used in ’Evil Under the Sun’ [1].

The only problem arising in this context is the fact that a single API call can only
return a maximum of 10’000 transactions. Since there are contract addresses with
more than 10’000 associated normal transactions, the first approach to a solution
is to simply keep making API calls on these contract addresses with an increasing
value for the ’offset’ parameter until all transactions are fetched. However, it
is discovered that there are many occasions, especially when scraping normal
transactions in the context of semantically-similar transactions, as described in
the following section, where the contract address in question has many hundred
thousand or even millions of associated normal transactions.

Therefore, to keep the data load from exceeding manageable levels, we make by
default two API calls for every contract address. The first one sets the block
number associated with the incident as the ’startblock’ parameter and ’sort’ to
ascending, thereby fetching up to 10’000 transactions (if available) including and
after the incident block. The second call sets the block number as ’endblock’
and ’sort’ to descending, thereby fetching up to 10’000 transactions (if available)
including and before the incident block.

3. Data Collection 12

Internal Transaction Scraping

Internal transactions by definition originate from contract accounts (’from’ field).
In the ’Evil Under the Sun’ paper these are also scraped via the Etherscan API
[7, 1], now with the ’txlistinternal’ action, again with a specified Ethereum ad-
dress. This action returns a list of the internal transactions in which the specified
address is involved. When this is called on a contract address, such as the DApps
vulnerable smart contract, it consequently returns both, transactions where that
contract address appears in the ’to’ field as well as those where it appears in the
’from’ field. The latter are disregarded, and the remaining transactions consti-
tute all interactions, where a smart contract functions as an intermediary for the
interaction of an EOA with the vulnerable smart contract.

We tried to use the Etherscan API, but encountered the following problem.
It only fetches high-level internal transactions, however, more complex internal
transactions that occur as part of multi-step contract interactions are neglected.
These more complex internal transactions are those that are only shown on the
Etherscan website for a contract address under the ’Internal Transactions’ tab
when ’Advanced Mode’ is activated [8].

The effective problem arises for certain known adversarial transactions that are
located on level 1, as depicted in Figure 2.2, meaning they are found by scraping
normal transactions for smart contracts that are previously scraped on level 0.
Some of these known adversarial transactions are only found from those complex
internal transactions. Therefore, it is essential that they are included in the
scraping of internal transactions on level 0.

We solved this problem by using the Blockscout API [9] instead, namely the
’txlistinternal’ action, which essentially functions in the same way as the Ether-
scan API, but includes the complex internal transactions in its response.

The Blockscout API also only returns a maximum of 10’000 transactions per
API call. Consequently, it is treated the same way as the Etherscan API and by
default there are two API calls made per contract address, where the first fetches
up to 10’000 transactions after and the second one up to 10’000 transactions
before the block number of the incident.

3.1.3 Semantically-Similar Transaction Scraping

This section describes the scarping of semantically-similar transactions as defined
in Section 2.4.1. First the transactions through which EOAs have indirectly
interacted with the DApp, via an intermediary smart contract, are scraped. These
constitute transactions on level 1, as depicted in Figure 2.2. Then, for all EOAs
that have initiated transactions on level 0 or level 1, additional transactions with
similar transaction execution traces or executed in close temporal proximity are
gathered.

3. Data Collection 13

EOAs of Indirect Interaction

To scrape the transactions of EOAs that have indirectly interacted with the
DApp, the smart contracts that have initiated the internal transactions on level
0 are considered. For each of these smart contracts their normal transactions are
scraped as described in the previous Section 3.1.2.

Specifically, for each smart contract that has interacted with the target DApp
via an internal transaction, this fetches all normal transactions, originating from
an EOA, that have interacted with that smart contract. Consequently, these
are all transactions initiated by an EOA which used that smart contract as an
intermediary to interact with the target DApp, as well as all other transactions
where an EOA interacted with that smart contract for any other reason. These
transaction constitute the normal transaction on level 1.

Additional Transactions

The additional transactions scraped at this stage essentially provide the basis for
detecting the propagation stage of the attack lifecycle, as defined in Section 2.3.
To find transactions that are potentially part of the propagation stage, the idea
is to consider all EOAs that have initiated normal transactions on level 0 or level
1, i.e. all EOAs that might be involved in the original attack.

To this end, all normal transactions on level 0 and level 1 are considered. For
each transaction the ’from’ EOA and block number is extracted, and all normal
transactions from the same EOA within the block number ± 6640 are scraped.
This corresponds to an interval of ± 1 day from the original transaction as spec-
ified in the ’Evil Under the Sun’ paper [1]. However, only those transactions
are kept, that have a TG distance, as defined in Equation 2.1, to the original
transaction of less or equal to 3, again as specified in the paper [1].

In order to calculate the TG distances between the original transaction and every
single additional transaction, the transaction execution traces for all these trans-
actions have to be scraped first. This is done via the Infura API [10], namely the
’trace_transaction’ method, which returns for an individual transaction a list of
the traces in the order called by the transaction.

For every transaction the list of its traces is then stored as a directed graph in
a NetworkX object [11]. Next, these graph representations of transactions are
pair-wise fed to the ’GraphEditDistance.compare()’ function of the GMatch4py
library, with all edit costs set to 1, in order to calculate the graph edit distance
between the pair of graphs [12]. Afterwards, the TG distance is calculated as the
weighted sum of the graph edit distance and invocation time difference according
to Equation 2.1.

These proceedings follow the outline in the ’Evil Under the Sun’ paper, includ-

3. Data Collection 14

ing the used libraries [1]. The only major difference is the API used for the
transaction trace scraping. The paper uses the Bloxy API [13] for that purpose.
However, since no API key for the Bloxy API could be obtained, the Infura API
is used instead.

The calculation of this large number of TG distances is a very time consuming
process, mainly due to the fact that a correspondingly large number of transaction
execution traces needs to be scrape. Unfortunately, rather than being able to
scrape in bulk like for the normal and internal transactions, this can only be
done for each transaction individually, which in turn necessitates a large number
of API calls.

3.2 Findings

3.2.1 A Recursive Process

During the data collection process we made an unexpected discovery, specifically
in the part before scraping the additional transactions, as described in the previ-
ous Section 3.1.3. In the ’Evil Under the Sun’ paper the adversarial transactions,
i.e. attack transactions, as initiated by an EOA are reported to be found either
on level 0, i.e. direct interaction with the target DApp, or on level 1, i.e. inter-
acting with the target DApp via an intermediary smart contract, as described in
Section 2.3 in the main exploitation stage [1].

As mentioned previously in Section 3.1.1 our incidents under investigation from
the ’SoK’ dataset include corresponding known adversarial transactions. These
adversarial transactions are tracked during the data collection process and at
each level, when scraping the level’s normal transactions, we check whether the
adversarial transactions are among them. What we find is that the majority of
incidents have their adversarial transactions actually located at level 2 with some
even beyond that (more details follow in the next Section 3.2.2). This means that
there is more than one intermediary smart contract between the attacking EOA
and the targeted vulnerable smart contract.

On an operational level, this does not necessarily complicate the data collec-
tion, however, it does make the process recursive. Specifically, if the adversarial
transaction is found on level 0 or level 1 as in ’Evil Under the Sun’, this means
there are two API calls to scrape the normal transactions from the target DApp
and two API calls to scrape the internal transactions from the target DApp, as
described in Section 3.1.2. Afterwards, we loop over all unique smart contracts
that have initiated internal transactions on level 0, with two API calls for each to
scrape their normal transactions. This gives us all normal transactions on level
0 and level 1. On the other hand if the adversarial transaction is located on level
2, that means not only do we need to loop over the unique smart contracts again

3. Data Collection 15

with two API calls each to also scrape their internal transactions as well, but
for every one of those smart contracts we receive another corresponding set of
unique smart contracts from their internal transactions. We then need to loop
over every smart contract in all of these sets to find their normal transactions.
This process is visualized in Figure 3.1.

Figure 3.1: Visualization of the recursive process of data collection for incidents
with adversarial transactions located on level 2 or higher. First all normal and
internal transactions of the target DApp’s vulnerable smart contract are scraped.
These transactions constitute level 0, also referred to as the DApp transactions.
Then, we loop over all unique smart contracts that have initiated internal trans-
actions on level 0 and scrape all their normal and internal transactions. These
transactions constitute level 1. After that, the process becomes recursive, as for
every smart contract found on level 0 we receive another set of internal transac-
tions on level 1 initiated by a corresponding set of unique smart contracts. We
then need to loop over every smart contract in all of these sets to scrape their
normal and internal transactions, which will then constitute level 2. This will
consequently leads to an exponential growth with increasing level, both in the
number of necessary API calls as well as the total number of scraped transac-
tions.

3. Data Collection 16

If we assume an average number of associated normal and internal transactions for
a smart contract, this process constitutes an exponential growth with increasing
levels, both in the number of necessary API calls as well as the sheer number of
scraped transactions. Consequently, for incidents with adversarial transactions
located on level 2 or higher, the data collection process becomes extremely time
consuming. First, because the number of API calls grows exponentially with
every level, but after the adversarial transactions are found, there is still the
next step of scraping the additional transactions. As described in the previous
Section 3.1.3, in that step we need to loop over every normal transaction across
all levels, where that number of normal transactions has also grown exponentially
with every level. Additionally, in that loop we receive another preliminary set
of normal transactions for every transaction in the loop, and then need to loop
over every preliminary transaction in all of these sets to individually scrape all
corresponding transaction execution traces in order to calculate the TG distances
and decide whether a preliminary transaction is kept as an additional transaction
or disregarded.

Furthermore, on a qualitative level, this discovery also gives interesting insight
into the evolution of DApps, specifically in regards to their structure and com-
plexity. While all victim DApps in the incidents from the ’Evil Under the Sun’
dataset exhibit a vulnerability in their main smart contract, which is the smart
contract that other accounts directly interact with, when interacting with the
DApp. These findings on the more recent ’SoK’ dataset show that the structure
of interacting smart contracts that constitute a DApp has since grown more com-
plex; to such a degree, that the majority of incidents in the new dataset actually
exploit vulnerabilities in smart contracts that are not the main interaction point
of the DApp, but are called by the DApp internally.

3.2.2 Statistics on Collected Data

Tables 3.1 and 3.2 give an overview of the number of normal transactions for each
exploit incident, i.e. those used for clustering in Section 4, that are collected up
to and including level 2. It also includes the incident block number, number
of adversarial EOAs and adversarial transactions, as well as the level on which
these are located. The two sections on the right represent the reduced numbers of
transactions, as described in Section 4.1.5. Essentially, it is a systematic reduction
that only keeps the transactions that are executed within ± 4 weeks and ± 2 weeks
of the incident block. Furthermore, the numbers stated in the table represent
the number of scraped transactions at the stage of data collection described in
Section 3.1.3, before they are extended with the additional transactions. For
incidents with their adversarial transactions found on level 0 or level 1, there is
no need for further scraping on higher levels. This is represented with an ’x’ in
their ’level 2’ column. Also, the incidents used for clustering in Section 4 are
marked in magenta in the ’Vulnerable Smart Contract’ column. In the following

3. Data Collection 17

we highlight a few noteworthy points.

First, in regards to the adversarial transactions. As mentioned before, in the ’Evil
Under the Sun’ dataset all adversarial transactions are located on level 0 or level
1 [1]. In contrast to that we find that in the ’SoK’ dataset only a single incident
has its adversarial transactions on level 0, with 16 further incident that have
theirs on level 1, leaving the majority of incidents, i.e. 39, with their adversarial
transactions on level 2 or higher. For ease of readability the incidents in the tables
are colour-coded according to the level of their adversarial transactions. Level 0
and level 1, i.e. the status quo form ’Evil Under the Sun’ are green, level 2, where
most incidents from ’SoK’ have their adversarial transactions located, are orange,
and the incidents with even higher levels are red. This shift discovered in the
modern dataset means that for 69.6% of incidents the vulnerable smart contract
that is exploited, is not the main smart contract of the DApp with which other
accounts interact, but it is one that the DApp calls internally. This, as well as the
fact that only one attack executes an exploit directly without an intermediary
smart contract, shows that the complexity of DApps has greatly evolved between
the period of the ’Evil Under the Sun’ dataset, i.e. 2016 to 2018, and to the
period of the ’SoK’ dataset, i.e. 2018 to 2022.

Another point to highlight is the vastly larger number of transactions that are
collected. The averages over both tables, i.e. all investigated incidents, is found
in Table 3.2. We find the sum of the average number of scraped transactions
on level 0 and level 1 for the ’SoK’ dataset gives 122’300.4. Unfortunately, we
cannot make a direct comparison to the ’Evil Under the Sun’ dataset, as they
do not quote this number. Nevertheless, in the context of running DEFIER
on unseen data, they state that for 104 DApps, their preprocessing results in
2’350’779 transactions [1], which translates to an average of 22’603.6 transactions
per incident. Comparing these two averages, we already find an increase by a
factor of 5.41. However, we need to take into consideration that their number
already includes the extension by the additional transactions, as described in
Section 3.1.3, while table 3.2 represents the number of transactions before that
extension. From the incidents that we consider for clustering in Section 4, we
observe that this extension on average constitutes a factor of 3.74. Consequently,
taking that into account we find that the number of transactions, that need to
be scraped in order to execute the DEFIER model, has increased on average by
20-fold. For one thing, this makes the entire DEFIER approach computationally
more expensive as well as more time consuming during the data collection stage.
The total size of the collected data is 102 GB. Apart from that though, it also
shows that the amount of traffic, i.e. the amount of executed transactions on the
Ethereum blockchain, has massively increased since the period of 2016 to 2018.

Lastly, we want to mention a discovery on the ’SoK’ dataset related to the inci-
dent with its vulnerable smart contract with address at 0x876b...1dc8, marked
in blue in Table 3.2. For this incident normal transactions are scraped up to

3. Data Collection 18

and including level 4, but its adversarial transactions are not found among them,
therefore their level is quoted as ’⩾ 5’. However, what appears strange is that in
the two columns on the right of the table, where the reduced number of transac-
tions are shown, it says there are none. This indicates that among the collected
transactions for the incident there are none that were executed within ± 4 weeks
of the incident block. This does not make any sense, because if there are no
transactions involving the vulnerable smart contract executed at and around the
incident block, then there was no incident. Therefore, we suspect there is a
mistake in the data concerning that incident.

1Unfortunately, the file containing the level 2 transactions of this incident is missing at the time of
submission. It is being re-scraped and will be provided with the rest of the data and the python code.

3. Data Collection 19

(b
lo

ck
±

4
w

ee
ks

)
(b

lo
ck

±
2

w
ee

ks
)

V
ul

ne
ra

bl
e

A
dv

er
sa

ri
al

N
um

be
r

of
tx

’s
at

N
um

be
r

of
tx

’s
at

N
um

be
r

of
tx

’s
at

B
lo

ck
N

o
Sm

ar
t

C
on

tr
ac

t
E

O
A

s
tx

’s
le

ve
l

le
ve

l0
le

ve
l1

le
ve

l2
le

ve
l0

le
ve

l1
le

ve
l2

le
ve

l0
le

ve
l1

le
ve

l2
10

89
83

07
0x

74
bc

...
1f

d6
7

17
⩾

3
5’

94
7

10
9

42
’4

29
5’

92
9

10
4

15
’3

76
5’

80
3

10
3

7’
73

4
13

41
79

49
0x

5b
d6

...
de

e4
1

2
⩾

3
1

7’
92

0
26

8’
41

2
0

28
7

6’
89

5
0

22
1

79
0

13
78

64
02

0x
14

e6
...

e4
bd

1
28

2
93

7
3’

67
2

45
’2

17
44

6
69

0
4’

05
8

15
5

43
0

4’
05

1
11

24
26

35
0x

1c
ec

...
20

04
1

17
2

1
3’

02
4

77
4

1
39

8
27

0
0

16
9

14
3

10
35

58
07

0x
0e

51
...

36
82

1
1

1
3’

00
8

54
5’

95
9

x
2’

82
8

28
8’

62
6

x
1’

16
1

26
2’

44
2

x
12

51
41

05
0x

7b
3b

...
c6

ca
1

1
⩾

3
18

3’
15

5
36

7’
54

8
18

2’
55

3
32

’0
54

18
2’

18
0

8’
88

4
12

86
53

34
0x

35
c6

...
78

10
1

2
2

10
’0

00
57

20
’0

71
10

’0
00

43
56

0
21

56
13

53
79

22
0x

29
14

...
e8

07
1

2
1

13
1

3’
09

3
x

68
60

8
x

38
34

1
x

12
84

97
87

0x
a8

00
...

19
0d

1
5

1
0

12
’9

04
x

0
8’

23
6

x
0

4’
67

1
x

11
01

24
66

0x
60

6e
...

89
62

1
1

2
68

5
13

5’
78

6
3’

01
5’

87
5

0
49

’9
13

82
0’

43
9

0
45

’1
71

56
0’

68
7

13
22

15
65

0x
ac

bd
...

e7
47

1
1

1
2’

43
3

2’
29

3
x

34
17

3
x

10
33

x
11

30
31

23
0x

68
47

...
52

10
1

1
2

38
3

54
’7

30
76

8’
59

4
26

5
7’

06
9

78
’8

60
55

3’
91

9
32

’3
70

11
84

66
05

0x
33

bf
...

8a
27

1
9

1
2

4’
06

8
69

’1
78

2
2’

16
1

31
’0

15
2

1’
93

9
25

’6
36

11
47

33
30

0x
ae

46
...

c8
cf

1
1

2
28

3
32

19
5

28
3

32
19

3
28

0
32

19
2

13
69

59
70

0x
53

77
...

ba
2c

1
2

2
25

3
10

’2
87

41
6’

98
0

25
3

72
6

69
’2

71
24

3
70

8
25

’3
88

10
59

24
28

0x
95

1d
...

bf
e2

1
3

2
55

10
’5

17
21

’8
43

55
97

9
1’

52
9

55
54

5
87

4
11

81
78

52
0x

3e
c4

...
8a

f0
1

6
2

15
2

1’
55

8
12

5’
83

7
13

6
64

8
84

’3
44

12
1

33
2

81
’9

31
11

54
12

19
0x

e0
b9

...
ae

d5
2

13
⩾

3
10

’0
00

1’
61

3
10

’0
30

7’
76

1
48

3
1

2’
80

5
25

6
0

13
84

89
83

0x
c9

f2
...

14
ef

1
2

⩾
5

1’
73

2
43

9
11

’3
97

27
7

77
40

5
14

5
41

30
9

13
11

83
20

0x
55

db
...

38
30

1
1

2
2

1’
21

0
63

’0
18

0
32

2
20

9
0

69
10

3
14

60
27

90
0x

c1
e0

...
24

c5
1

1
⩾

3
20

’0
00

39
’2

81
2’

09
9’

53
4

10
’0

28
20

’2
40

54
1’

09
3

10
’0

28
20

’1
63

45
1’

91
9

10
79

03
37

0x
88

09
...

4d
61

1
1

1
2’

20
3

28
0’

18
9

x
2’

07
4

18
7’

16
5

x
2’

01
9

16
7’

51
6

x
14

02
84

74
0x

6b
7a

...
15

22
4

99
2

20
’0

00
65

’7
20

3’
11

8’
64

3
20

’0
00

3’
76

3
75

4’
08

9
20

’0
00

2’
32

8
55

6’
88

5
98

99
73

6
0x

0e
ee

...
f5

ea
1

46
1

9’
41

0
2’

30
3

x
3’

14
7

39
0

x
1’

55
6

27
9

x
11

20
56

48
0x

83
3e

...
74

3d
1

1
1

7
80

9
x

7
48

1
x

4
11

5
x

13
71

50
26

0x
66

e7
...

ee
63

1
1

⩾
4

1
1’

22
9

40
’4

86
1

71
0

40
’1

68
1

58
9

40
’1

29
13

59
11

23
0x

4e
3f

...
9d

2b
1

21
⩾

3
20

’0
00

74
7’

44
7

6’
28

6’
30

7
14

’9
59

16
8’

59
5

67
0’

09
1

6’
67

9
15

8’
37

3
51

6’
50

7
11

94
05

04
0x

17
e8

...
ca

5f
1

9
1

12
’2

34
46

9’
70

3
x

7’
09

9
13

’6
57

x
3’

27
1

7’
17

2
x

10
72

32
90

0x
0e

6f
...

4a
30

1
2

2
6’

62
9

2’
80

1
15

1’
58

0
6’

62
9

1’
08

9
18

’3
85

6’
62

8
90

3
15

’9
86

Table 3.1: Statistics on the collected normal transactions per exploit incident up
to and including level 2 - Part I. Including number of adversarial EOAs, adver-
sarial transactions and level on which the adversarial transactions are located.

3. Data Collection 20

(b
lo

ck
±

4
w

ee
ks

)
(b

lo
ck

±
2

w
ee

ks
)

V
ul

ne
ra

bl
e

A
dv

er
sa

ri
al

N
um

be
r

of
tx

’s
at

N
um

be
r

of
tx

’s
at

N
um

be
r

of
tx

’s
at

B
lo

ck
N

o
Sm

ar
t

C
on

tr
ac

t
E

O
A

s
tx

’s
le

ve
l

le
ve

l0
le

ve
l1

le
ve

l2
le

ve
l0

le
ve

l1
le

ve
l2

le
ve

l0
le

ve
l1

le
ve

l2
12

17
11

55
0x

e7
f4

...
58

e6
5

98
2

3’
40

4
10

’6
42

10
’2

46
3’

35
8

9’
65

8
13

3’
33

0
9’

44
0

0
14

68
43

07
0x

88
cc

...
8b

17
2

3
2

1
80

2
12

3’
87

4
0

57
3’

61
4

0
35

21
1

12
68

84
68

0x
a2

31
...

7e
f5

1
3

2
4

3’
11

2
57

2’
72

8
3

62
15

’2
64

3
53

61
3

14
18

28
02

0x
87

6b
...

1d
c8

1
11

9
⩾

5
27

20
’0

38
4’

21
5

0
0

0
0

0
0

11
12

94
74

0x
f0

35
...

ed
be

1
30

1
6’

97
6

82
’5

10
x

1’
63

1
32

’3
77

x
1’

35
1

27
’0

96
x

11
72

00
50

0x
e1

1f
...

df
50

1
6

0
65

5
33

’0
72

x
14

5
12

’1
16

x
13

3
5’

83
8

x
14

68
46

86
0x

fb
d8

...
05

4c
1

7
1

36
20

’2
48

x
9

14
’6

52
x

6
9’

73
6

x
14

00
60

14
0x

88
e6

...
56

40
1

4
⩾

2
91

75
2’

71
5

3’
53

1’
48

6
7

13
7’

94
9

37
4’

51
5

7
12

2’
96

2
28

7’
50

5
12

99
58

95
0x

92
9c

...
49

d6
1

2
2

2
3’

57
1

25
’8

28
2

2’
35

8
4’

33
5

2
1’

94
4

2’
92

0
98

93
29

5
0x

32
12

...
89

23
1

1
⩾

3
10

’0
00

19
9’

71
3

62
1’

45
5

1’
02

9
0

81
3

18
6

0
14

46
90

82
0x

46
22

...
21

b8
1

1
1

25
3’

03
1

x
1

22
1

x
0

14
5

x
14

17
58

30
0x

31
57

...
e7

58
1

97
⩾

5
14

1’
66

0
1’

32
8’

80
2

3
17

7’
85

8
3

16
3’

44
9

11
81

73
90

0x
0e

fb
...

1c
0b

1
1

2
28

1
15

1
40

’0
16

28
0

76
2’

88
4

28
0

75
1’

32
0

14
50

63
58

0x
39

b1
...

db
15

1
2

1
0

41
1

x
0

29
4

x
0

28
5

x
11

90
37

83
0x

9d
ae

...
f2

f9
1

3
2

64
23

0
48

2’
00

3
64

76
10

8’
02

8
36

45
87

’8
67

11
25

66
73

0x
dd

d7
...

11
01

1
1

2
1

2’
21

6
10

9’
52

4
1

85
9

77
’8

00
1

58
4

60
’7

85
10

36
85

60
0x

75
57

...
1d

8b
1

1
2

73
10

’7
79

82
’5

20
72

10
’7

38
13

’3
91

71
10

’1
89

1’
84

8
12

39
40

06
0x

67
b6

...
9c

7a
1

18
5

1
12

’6
39

25
4’

84
1

x
3’

92
3

20
6’

02
0

x
2’

47
5

18
5’

45
0

x
94

84
68

8
0x

77
f9

...
81

bc
1

1
2

10
’7

82
25

4’
53

4
1’

98
2’

87
3

7’
35

7
12

4’
95

5
57

9’
93

9
5’

06
7

11
1’

82
5

40
5’

17
3

11
79

21
84

0x
ac

d4
...

f9
52

1
11

1
12

’4
37

37
8’

20
5

x
1’

75
0

11
3’

26
8

x
86

7
98

’1
38

x
14

46
53

57
0x

e9
52

...
16

59
1

4
2

34
6

10
’6

56
22

7’
12

2
41

2
3’

50
5

28
2

2’
47

6
13

22
90

01
0x

da
c1

...
1e

c7
1

1
⩾

2
19

’9
74

1’
92

8’
64

3
?1

19
’9

74
31

6’
02

1
?1

19
’9

74
27

2’
10

0
?1

11
34

52
51

0x
66

84
...

a6
4f

1
34

1
1’

69
7

20
’1

45
x

1’
03

9
13

’4
21

x
56

2
7’

48
4

x
10

85
27

22
0x

de
74

...
9b

25
1

9
2

1
4’

32
2

15
1’

99
0

1
1’

89
4

25
’3

39
1

1’
47

1
19

’9
47

95
04

62
7

0x
81

8e
...

b7
55

1
1

⩾
3

20
’0

00
18

0’
85

7
3’

85
3’

38
2

20
’0

00
27

’7
29

52
1’

09
2

20
’0

00
24

’4
86

37
7’

49
4

14
42

06
87

0x
5a

9f
...

6e
d1

1
1

2
2’

01
5

30
’0

65
48

8’
50

6
62

5
89

3
43

’1
45

33
6

38
24

’6
39

11
27

22
55

0x
32

8d
...

54
24

1
1

⩾
3

1
1’

69
2

1’
18

6
1

91
9

15
4

1
64

4
63

T
ot

al
A
ve

ra
ge

1.
3

16
.7

4’
07

2.
4

11
8’

22
8.

0
78

8’
42

9.
2

2’
75

0.
8

31
’9

26
.4

13
0’

25
4.

7
2’

07
9.

0
28

’0
59

.4
94

’9
18

.0

Table 3.2: Statistics on the collected normal transactions per exploit incident up
to and including level 2 - Part II. Including number of adversarial EOAs, adver-
sarial transactions and level on which the adversarial transactions are located.
This is a continuation of Table 3.1 and gives the total averages over both tables.

Chapter 4

Clustering

This chapter focuses on the transaction clustering process which is the next step
in reproducing the DEFIER model. First, the technical method is explained,
particularly how a fundamental problem, which is not actually in the ’Evil Under
the Sun’ paper, is approached and the resulting consequences. This is followed
by some implications from the results in the previous Section 3.2.2. Afterwards,
the clustering results for four of the exploit incidents are presented.

4.1 Technical Method

4.1.1 k-means Clustering

As discussed in Section 2.4.1 the operational intent of one or multiple EOAs
generally consists of a sequence of transactions. In an effort to capture such an
intent the normal transactions across all levels relevant to an exploit incident are
clustered according to their similarity in execution trace as well as invocation
time. This between-graph clustering problem is solved via a k-means algorithm
[1]. The implementation is as follows.

Since the clustering shall be based on TG distances as defined in Equation 2.1,
we first need to create a distance matrix that holds the pair-wise TG distances
between all involved transactions. This is done in a similar fashion as in Sec-
tion 3.1.3 in the context of the additional transactions. First, the execution
traces are converted into directed graph objects from the NetworkX library [11].
Then, the pair-wise graph edit distances are computed via the ’GraphEditDis-
tance.compare()’ function from the GMatch4py library [12], with all graph edit
costs set to zero. This way we create a graph edit distance matrix. Next, we
calculate the pair-wise time differences in the unit of hours from the transaction’s
timestamps that are given in Unix time, which results in a time difference matrix.
Finally, we calculate the weighted sum of these two matrices to get a combined
TG distance matrix for all pair-wise combinations.

This combined distance matrix is then fed to the scikit-learn k-means algorithm

21

4. Clustering 22

[14], which groups transactions into clusters by minimizing the within-cluster
variance. The only input variable that is missing at this point is k, the number
of clusters. Unfortunately, the ’Evil Under the Sun’ paper does not specify how
they determine the number of clusters for a particular incident. This presents
a fundamental problem, because the k-means algorithm critically depends on a
predetermined number of clusters. Since no obvious analytical solution presents
itself, we decide to approach the problem empirically via Silhouette Analysis and
the Elbow Method.

These methods are illustrated in the following two Sections 4.1.2 and 4.1.3 on
the ’InverseFinance’ incident with corresponding target contract address
0x39b1df026010b5aea781f90542ee19e900f2db15. This incident has 2 known
adversarial transactions that are located on level 1. It has 0 normal transactions
on level 0 and 411 on level 1. After scraping the additional transactions, as
described in Section 3.1.3, this results in 976 transactions to be clustered.

4.1.2 Silhouette Analysis

Silhouette Analysis [15] can be used to determine a suitable number of clusters
by providing a metric for how well data points fit within their assigned clusters.
It calculates a silhouette score for each point, which depends on the mean intra-
cluster distance, i.e. a measure of cohesion, as well as the mean nearest-cluster
distance, i.e. a measure of separation. The silhouette score ranges from -1 to
+1, where a score close to +1 indicates that the point is well clustered, i.e. close
to its own cluster and far from others, while a score near 0 suggests it is on the
boundary between clusters, and a negative score indicates it is more similar to a
different cluster. The overall silhouette score for a clustering is the average over
all data points, with higher scores indicating better defined clusters.

This is implemented by performing k-means clustering over a wide range of clus-
ter numbers, then calculating the silhouette score for each clustering via the
’silhouette_score’ function from the scikit-learn library [15], and finally plotting
silhouette score against cluster number for evaluation.

Figure 4.1 shows a bar plot of the silhouette scores for the ’InverseFinance’ in-
cident for a range of 2 to 200 clusters. We find a maximum score of 0.89 for 16
cluster, which is on the lower end of the spectrum and surrounded by a plateau
of high values. There is also another local maximum of 0.85 for 153 clusters.
This number might be more promising considering its neighbourhood. It consti-
tutes the peak of a steady rise in score from around 75 clusters up to 150, and
is followed by a steep falloff afterwards. In any case, both numbers should be
considered.

4. Clustering 23

0 25 50 75 100 125 150 175 200
Number of Clusters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Si

lh
ou

et
te

 S
co

re

16 @ 0.89
153 @ 0.85

Figure 4.1: Silhouette Scores for ’InverseFinance’ incident with corresponding
target contract address 0x39b1df026010b5aea781f90542ee19e900f2db15 in a
range from 2 to 200 clusters. The global maximum is 0.89 for 16 clusters with
another local maximum at 0.85 for 153 clusters.

4.1.3 Elbow Method

In order to not rely on a single empirical metric for determining the number of
cluster, additionally to the Silhouette Analysis the Elbow Method is considered.

The Elbow Method [16] is a technique used to determine the optimal number of
clusters by balancing enough clusters to capture the structure and avoiding too
many which might lead to overfitting. It is based on the inertia, i.e. within-cluster
sum of squared errors, which is an intrinsic measure of the k-means algorithm on
how well data points are clustered. As the number of clusters increases inertia
decreases, because the data points are more finely clustered. This rate of decrease
typically levels off at a sharp point, which is termed the ’elbow’. That trade-off
point constitutes the optimal number of clusters.

This is implemented similarly to the Silhouette Analysis, by performing k-means
clustering over a wide range of cluster numbers. The inertia for each clustering
is extracted from the ’KMeans’ object directly via the ’inertia_’ attribute. Then
we plot inertia against cluster number to find the sharp decrease in the rate of
change of inertia.

Figure 4.2 shows an elbow plot for the ’InverseFinance’ incident, again for a range
of 2 to 200 clusters. The global and local silhouette score maxima discovered in

4. Clustering 24

the previous Section 4.1.2 are marked by vertical magenta dotted lines. It is
clearly noticeable that at a cluster number of 153, the inertia shows a sharp
change in its rate of change. At cluster number 16 this change is not quite as
prominent, but the slope is steeper before than after cluster 16 as well. There
are no other significant changes observed in the inertia’s rate of decrease in this
plot. Consequently, both numbers should be considered, and clustering result for
both are presented in Section 4.2.1

0 25 50 75 100 125 150 175 200
Number of Clusters

103

104

105

106

107

108

109

1010

In
er

tia

16 Clusters 153 Clusters

Figure 4.2: Elbow plot for ’InverseFinance’ incident with corresponding target
contract address 0x39b1df026010b5aea781f90542ee19e900f2db15 in a range
from 2 to 200 clusters. The local and global maxima discovered in the silhouette
plot at 153 and 16 clusters respectively are marked by dotted magenta lines. Both
mark a point corresponding to a change in the slope of the inertia, although this
change is more prominent at 153 clusters than it is at 16.

4.1.4 Evaluation Metric

The empirical approach to determine the optimal number of clusters via Silhou-
ette Analysis and the Elbow Method, as describe in the previous two Sections
4.1.2 and 4.1.3, raises an important consequence. Specifically, the need for a met-
ric to evaluate whether the chosen number of clusters result in a clustering that
in fact groups transactions of similar intent together and is therefore capable of
capturing an overall operational intent.

The best case scenario for this purpose would be a labelled dataset, where every
transaction is assigned to one of the four stages of the attack lifecycle for a

4. Clustering 25

specific attack, such as the one used in ’Evil Under the Sun’. Unfortunately, we
do not have such a dataset at our disposal. Therefore, we approach this problem
with the only tangible metric available to us. Specifically, we consider for our
clustering testing, incidents with more than one corresponding known adversarial
transaction. In that case, we can check, after the clustering is performed, whether
the adversarial transactions are in fact grouped in the same cluster.

This should theoretically be the case, as the adversarial transactions from the
’SoK’ dataset constitute exploit transactions of the corresponding incident. Con-
sequently, they should be part of that incidents main exploitation stage, at least as
long as they originate from the same EOA. For some incidents, however, we have
a larger number of known adversarial transactions from different EOAs. There-
fore, it is also possible, although not necessarily the case, that they comprise
the exploitation stages of more than one attack on the victim DApp, exploit-
ing the same vulnerability. In that case, they may also be grouped in multiple
clusters, e.g. two clusters representing the exploitation stages of two different
attacks. For this reason, we only consider incidents with more than one known
adversarial transaction, but originating from a single EOA.

We also compare numerical results to some values from the ’Evil Under the Sun’
paper. Unfortunately, they do not quote average values across their dataset.
However, they do mention that for one clustering example, they have 11’088
transactions resulting in 142 clusters, with an average TG distance of 0.2 and
time difference of 1.5 h. This gives an average of 78.1 transactions per cluster.
This incident is from their labelled dataset (henceforth referred to as the ’example
incident’). As previously mentioned they also run DEFIER on unseen data, where
they cluster 2’350’779 transactions into 342’224 clusters, giving 6.9 transactions
per cluster (henceforth referred to as the ’unseen data’). These values show a
large spread, nevertheless we reference them for comparison [1].

4.1.5 Statistical Implications for Data Collection

As is described in Section 3.2.2 and presented in Tables 3.1 and 3.2 all of the
incidents, except for one, have their adversarial transactions located at least on
level 1, with the majority on level 2 or higher. Since all normal transactions up to
and including the level of the known adversarial transactions must be included
in the clustering, the large numbers of collected transactions corresponding to
an incident present a problem in regards to the required time for processing.
Especially, considering that the numbers stated in the table are those collected at
the different levels, but before scraping the additional transactions, as described
in Section 3.1.3. Therefore, we choose to do the clustering testing on two incidents
with a comparatively low number of transactions, and for two more incidents we
systematically reduce the number of transactions by only including those that
are executed within ± 2 weeks of the incident block.

4. Clustering 26

To give some reference in this context, the incident with the most transactions for
which we do clustering testing is ’CreamFinance’, with its adversarial transactions
located on level 1. For level 0 and level 1 combined we have collected 4’070
transactions in total, after reduction to include only transactions within ± 2
weeks of the incident block, we are left with 1’941 transactions. For these we need
to scrape the additional transactions, i.e. all transactions within ± 1 day of each
of the existing transactions, originating from the same EOA, which preliminarily
extends our set to 64’553 transactions. Next, we need to scrape all of their
transaction execution traces, which cannot be done in bulk, but we must make
individual API calls for each transaction. From those traces we need to calculate
the TG distances in order to decide which of these preliminary transaction are
kept, i.e. those with a TG distances smaller or equal to 3. Eventually, this results
in 19’593 transactions to be clustered, where in order to determine a suitable
number of clusters, we need to run the clustering for a wide range of cluster
numbers to calculate silhouette scores and inertia values. The corresponding
distance matrix for this incident on which the k-means clustering is based has a
size of 9 GB when save in plain text as a .csv file.

4.2 Results

In this section we present the results of the k-means clustering testing for four of
the exploit incidents from the ’SoK’ dataset. For each incident, we start with a
short introduction on number of clustered transactions. This is followed by the
interpretation of its Silhouette Analysis and Elbow Method plot to determine the
suitable number of clusters. Finally, we present the result of the clustering.

4.2.1 InverseFinance

This exploit incident is on the InverseFinance DApp with a vulnerable smart
contract with the address at 0x39b1df026010b5aea781f90542ee19e900f2db15
and 2 known adversarial transactions, located at level 1. During data collection
we find 0 normal transactions at level 0 and 411 at level 1, giving us a total of 411
transactions. These are preliminarily extended to 2’354 transactions, and after
disregarding those with TG distances greater than 3, it leaves 976 transactions
for clustering.

Silhouette Analysis and Elbow Method

The Silhouette Analysis as well as the Elbow Method for this incident is de-
scribed are Sections 4.1.2 and 4.1.3 in the context of the technical method for
the clustering section. They yield 16 and 153 clusters as the best suited choices.

4. Clustering 27

k-means Clustering

We preform k-means clustering for both cases of 16 and 153 clusters and the
results are displayed in Figures 4.3 and A.1 (appendix) respectively.

The results for 16 clusters show a mean number of transactions of 61.0 ± 115.4
which is close to the mean of 78.1 from the ’example incident’, however, the
standard deviation is very high, putting more than half the clusters beyond 100
transactions. The mean TG distance is 13.84 ± 9.45 which is far greater than
the 0.2 mentioned in the ’example incident’, and the mean time difference shows
a similar divergence at 113.08 ± 112.99 h compared to 1.5 h. In particular is
the standard deviation of the time difference almost as large as the mean time
difference itself. Finally, the 2 known adversarial transactions are clustered into
different clusters, namely cluster 0 and cluster 12. All of this indicates, that the
transactions are not clustered well in regards to our purpose of grouping similar
transactions of close temporal proximity in order to capture their common intent.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cluster

0

2

4

6

8

10

12

14

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

Overall Mean TG distance: 13.84
Overall Std TG distance: 9.45
Overall Mean GED: 2.82
Overall Std GED: 4.23
Overall Mean Time Diff [h]: 113.08
Overall Std Time Diff [h]: 112.99
Overall Mean # Transactions: 61.0
Overall Std # Transactions: 115.4
Overall Mean # unique EOAs: 18.9
Overall Std # unique EOAs: 34.5

Mean Graph Edit Distance

0

100

200

300

400

500

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

 /
M

ea
n

Ti
m

e
Di

ffe
re

nc
e

Mean Time Difference
Number of Transactions

Figure 4.3: k-means clustering with 16 clusters for the ’InverseFinance’ incident.
The 2 known adversarial transactions are clustered into different clusters, namely
cluster 0 and cluster 12.

The results for 153 clusters show a mean number of transactions of 6.4 ± 15.4
which is close to the mean on the ’unseen data’ of 6.9 as quoted in ’Evil Under the
Sun’. However the standard deviation actually exceeds the mean pointing to a
very large dispersion. Effectively, it results in the majority of clusters having less
than 4 transactions and some with more than 60. In the values for TG distance
and time difference the standard deviation also exceeds the mean at 0.30± 0.66
and 0.10 ± 0.34 h. In this clustering the 2 known adversarial transactions are

4. Clustering 28

also clustered into different clusters, namely cluster 25 and 37. Again, all of this
indicates that the transactions are not well clustered.

4.2.2 SushiSwap

This exploit incident is on the SushiSwap DApp with a vulnerable smart con-
tract with the address at 0xe11fc0b43ab98eb91e9836129d1ee7c3bc95df50 and
6 known adversarial transactions, located at level 0. During data collection we
find 655 normal transactions at level 0. These are preliminarily extended to
12’829 transactions, and after disregarding those with TG distances greater than
3, it leaves 671 transactions for clustering.

Silhouette Analysis

The results for the Silhouette Analysis are plotted in Figure 4.4 for a range of 2
to 200 clusters. We find a maximum at 0.80 for 2 clusters. This is disregarded,
because conceptually it does not make sense to cluster 671 transactions into only
2 clusters. Furthermore, there is a local maximum at 0.63 for 12 clusters, which
is preceded by a sharp rise and followed by a steady decline in Silhouette scores.
This is considered going forward.

0 25 50 75 100 125 150 175 200
Number of Clusters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
lh

ou
et

te
 S

co
re

2 @ 0.80

12 @ 0.63

Figure 4.4: Silhouette Scores for ’SushiSwap’ incident with corresponding target
contract address 0xe11fc0b43ab98eb91e9836129d1ee7c3bc95df50 in a range
from 2 to 200 clusters. The global maximum is 0.80 for 2 clusters with an-
other local maximum at 0.63 for 12 clusters.

4. Clustering 29

Elbow Method

Figure 4.5 shows the Elbow plot for a range of 2 to 200 clusters and the local
maximum found by the Silhouette Analysis is marked by a dotted magenta line.
The neighbourhood around 12 clusters, however, shows a steady slope, i.e. no
sharp decline in the rate of change of inertia. The plot does exhibit such a sharp
change though, located at 48 clusters. In order to explore all possibilities, both
values are considered for clustering.

0 25 50 75 100 125 150 175 200
Number of Clusters

108

109

1010

In
er

tia

48 Clusters12 Clusters

Figure 4.5: Elbow plot for ’SushiSwap’ incident with corresponding target con-
tract address 0xe11fc0b43ab98eb91e9836129d1ee7c3bc95df50 in a range from
2 to 200 clusters. The local maxima discovered in the silhouette plot at 12 clus-
ters is marked by dotted magenta line, as well as the observable sharp decline in
the rate of change of inertia at 48 clusters.

k-means Clustering

We preform k-means clustering for both cases of 12 and 48 clusters and the results
are displayed in Figures A.2 (appendix) and 4.6 respectively.

The mean number of transactions for 12 clusters are 55.9 ± 34.6, which is close
to the mean of the ’example incident’ at 78.1 transactions. Also, 5 of the 6
known adversarial transactions are in fact clustered into the same cluster, namely
number 5, with only the last transaction being in a different cluster, namely
cluster 2. In this regard the results appear quite reasonable, even though the
standard deviation of the number of transactions is rather high. Concerning

4. Clustering 30

however, are the mean values of mean TG distance and mean time difference
at 472.15 ± 338.52 and 663.45 ± 569.41 h respectively. These values and their
standard deviations are extremely large compared to the ’example incident’ with
0.2 and 1.5 h. They indicate that very different transactions with a large variance
in invocation time are clustered together, which is very counter productive for
our purposes.

The results for 48 clusters give a mean number of transactions of 14.0 ± 11.5
which is closer to the mean of 6.9 quoted for the ’unseen data’. In this clustering
also, 5 of the 6 known adversarial transactions are in fact clustered into the same
cluster, namely number 8, with only the last transaction being in a different
cluster, namely cluster 12. Again, this appears as a reasonable result, however,
we observe the same behaviour in regards to mean TG distance and mean time
difference, although not quite as extreme as for the 12 clusters result. The values
are 374.34 ± 345.27 and 185.90 ± 149.55 h respectively. The values and their
standard deviations again, are extremely large compared to those from the ’Evil
Under the Sun’ paper, and indicate that transactions with very different execution
traces and large temporal differences are grouped together. Therefore, we do
not consider these transactions well clustered for the purpose of discovering a
collective operational intent across a specific cluster.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Cluster

0

250

500

750

1000

1250

1500

1750

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

 /
Ti

m
e

Di
ffe

re
nc

e

Overall Mean TG distance: 374.34
Overall Std TG distance: 345.27
Overall Mean GED: 395.27
Overall Std GED: 379.28
Overall Mean Time Diff [h]: 185.90
Overall Std Time Diff [h]: 149.55
Overall Mean # Transactions: 14.0
Overall Std # Transactions: 11.5
Overall Mean # unique EOAs: 2.7
Overall Std # unique EOAs: 3.1

Mean Graph Edit Distance
Mean Time Difference

0

10

20

30

40

50

60

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Number of Transactions

Figure 4.6: k-means clustering with 48 clusters for the ’SushiSwap’ incident. Out
of the 6 known adversarial transactions, 5 are clustered into the same cluster,
namely cluster 8, while the last one is in cluster 12.

4. Clustering 31

4.2.3 Akropolis

This exploit incident is on the Akropolis DApp with a vulnerable smart con-
tract with the address at 0x1cec0e358f882733c5ecc028d8a0c24baee02004 and
17 known adversarial transactions, located at level 2. During data collection we
find 1 normal transaction at level 0, 3’024 at level 1 and 774 at level 2, giving us
a total of 3’799 transactions. This set is reduced by only including those trans-
actions that lie within ± 2 weeks of the exploit’s block number, resulting in 312
transactions. These are preliminarily extended to 4’699 transactions, and after
disregarding those with TG distances greater than 3, it leaves 1’153 transactions
for clustering.

Silhouette Analysis

0 50 100 150 200 250 300 350
Number of Clusters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
lh

ou
et

te
 S

co
re

22 @ 0.87 237 @ 0.84 366 @ 0.83

Figure 4.7: Silhouette Scores for ’Akropolis’ incident with corresponding target
contract address 0x1cec0e358f882733c5ecc028d8a0c24baee02004 in a range
from 2 to 380 clusters. The global maximum is 0.87 for 22 clusters with one
local maximum at 0.84 for 237 clusters and another local maximum at 0.83 for
366 clusters.

The results of the Silhouette Analysis are shown in Figure 4.7 for a range of 2 to
380 clusters. We observe a global maximum at 0.87 for 22 clusters, as well as two
other local maxima at 0.84 and 0.83 for 237 and 366 clusters respectively. The
first local maximum for 237 clusters describes a peak after a steady increase in
silhouette scores, followed by a sharp decline afterwards. The second local max-
imum for 366 clusters also marks a peak after a steady increase, but is followed

4. Clustering 32

by the scores levelling off, rather than declining afterwards. All three values are
considered for clustering.

Elbow Method

0 50 100 150 200 250 300 350 400
Number of Clusters

10 21

10 17

10 13

10 9

10 5

10 1

103

107

1011

In
er

tia

237 Clusters 366 Clusters22 Clusters

Figure 4.8: Elbow plot for ’Akropolis’ incident with corresponding target contract
address 0x1cec0e358f882733c5ecc028d8a0c24baee02004 in a range from 2 to
380 clusters. The local and global maxima discovered in the silhouette plot at
237, 366 and 22 clusters respectively are marked by dotted magenta lines. The
global maximum at 22 clusters sits in a neighbourhood of sharp change of slope,
while the first local maximum at 237 clusters is surrounded by a steady slope.
The second local maximum at 366 clusters is again situated where the rate of
change changes sharply, however, in this case it changes from a flat to a steep
slope.

Figure 4.8 shows the Elbow plot for a range of 2 to 380 clusters and the local
and global maxima found in the Silhouette Analysis at 237, 336 and 22 clusters
respectively are marked by dotted magenta lines. The neighbourhood around
22 clusters, i.e. at the global silhouette score maximum, does exhibit a sharp
change in the rate of change of inertia, meaning that for this value both methods
agree. The first local maximum at 237 clusters on the other hand is located in
a neighbourhood of a steady slope. The second local maximum at 366 clusters
is at a position marking a sharp change, however, changing from a slow rate of
change to a fast rate of change, which is the opposite of what we are looking
for. It is noteworthy to point out as well, that at the second local maximum the

4. Clustering 33

value of the inertia is already extremely low, i.e. smaller than 1, and drops off
by 20 orders of magnitude afterwards. Still, in order to explore all possibilities,
all three values are considered for clustering.

k-means Clustering

We preform k-means clustering for all three cases of 22, 237 and 366 clusters
and the results are displayed in Figures 4.9, A.3 (appendix) and A.4 (appendix)
respectively.

The results for 22 clusters exhibit a mean number of transactions of 52.4± 112.6
which is once again close to the 78.1 mean from the ’example incident’. However,
the standard deviation is greater than the mean pointing to a large dispersion.
Consequently, we see 3 clusters with over 200 transactions and a majority with
very few. In regards to adversarial transactions, out of the 17 known, 13 are
clustered into the same cluster, namely cluster 1, 2 more are located in cluster
13, and the remaining 2 are spread over 2 more clusters, 3 and 15. This appears
acceptably well clustered with the majority of known adversarial transactions
grouped in the same cluster. However, the values for the TG distance and time
difference are once again very high compared to the reference from the ’example
incident’. We see 104.30± 134.58 and 49.70± 67.52 h respectively. Additionally,
we observe a standard deviation greater than the mean again. All of this indicates
that very different transaction are grouped together within a single cluster, which
is counterproductive for our purposes.

We see a mean number of transaction of 4.9± 11.2 for the result of 237 clusters.
This is closer to the 6.9 mean number of transactions on the ’unseen data’. Out
of the 17 known adversarial transactions, 11 are clustered into the same cluster,
namely cluster 2, 2 more are located in cluster 226, and the remaining 4 are
spread over 4 more different clusters, 13, 95, 145 and 161. This result has the
known adversarial transactions more spread out than for 22 clusters, indicating
that an increase in the number of clusters, does not seem to improve the results
for this incident. Appearing promising are the low values for mean TG distance
and mean time difference at 0.07± 0.42 and 0.03± 0.15 h respectively. However,
from the plot we observe that this likely results from most of the clusters only
having a single transaction, while a few of them have larger numbers above 40.
This again indicates that the transactions are not well clustered.

The result for 366 clusters appears to continue in this trend with the known
adversarial transactions spread over 13 different clusters and the values for mean
TG distance and time difference of the order less than 10−3. And again, we
observe most clusters with only a single transaction.

4. Clustering 34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Cluster

0

100

200

300

400

500
M

ea
n

Gr
ap

h
Ed

it
Di

st
an

ce
 /

Ti
m

e
Di

ffe
re

nc
e

Overall Mean TG distance: 104.30
Overall Std TG distance: 134.58
Overall Mean GED: 110.37
Overall Std GED: 144.01
Overall Mean Time Diff [h]: 49.70
Overall Std Time Diff [h]: 67.52
Overall Mean # Transactions: 52.4
Overall Std # Transactions: 112.6
Overall Mean # unique EOAs: 5.6
Overall Std # unique EOAs: 6.1

Mean Graph Edit Distance
Mean Time Difference

0

100

200

300

400

500

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Number of Transactions

Figure 4.9: k-means clustering with 22 clusters for the ’Akropolis’ incident. Out
of the 17 known adversarial transactions, 13 are clustered into the same cluster,
namely cluster 1, 2 more are located in cluster 13, and the remaining 2 are spread
over 2 more clusters, namely 3 and 15.

4.2.4 CreamFinance

This exploit incident is on the CreamFinance DApp with a vulnerable smart
contract with the address at 0x33bf0bb8e1405dc440eccb97ffd92fef438c8a27
and 9 known adversarial transactions, located at level 1. During data collection
we find 2 normal transaction at level 0 and 4’068 at level 1, giving us a total
of 4’070 transactions. This set is also reduced by only including those transac-
tions that lie within ± 2 weeks of the exploit’s block number, resulting in 1’941
transactions. These are preliminarily extended to 64’553 transactions, and after
disregarding those with TG distances greater than 3, it leaves 19’593 transactions
for clustering.

Silhouette Analysis

The results of the Silhouette Analysis are presented in Figure 4.10 for a range of
2 to 1’500 clusters. We first looked at a similar range to the previous incidents
of 2 to 400, but this range only shows a global maximum at 0.86 for 18 clusters.
This appears very low considering there are 19’593 transactions to be clustered
for this incident compared to 1’153 transactions of the last incident. Therefore
the range is extended. Eventually, we find another local maximum at 0.76 for
1050 clusters. It is located after a steep rise in the silhouette scores and followed
by a slow decline afterwards. This value appears rather high. Nevertheless, both

4. Clustering 35

values are considered for clustering.

101 102 103

Number of Clusters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Si

lh
ou

et
te

 S
co

re

18 @ 0.86

1050 @ 0.76

Figure 4.10: Silhouette Scores for ’CreamFinance’ incident with corresponding
target contract address 0x33bf0bb8e1405dc440eccb97ffd92fef438c8a27 in a
range from 2 to 1’500 clusters. The global maximum is 0.86 for 18 clusters with
another local maximum at 0.76 for 1’050 clusters.

Elbow Method

Figure 4.11 shows the Elbow plot for a range of 2 to 1’050 clusters. The global
maximum of the Silhouette Analysis at 18 clusters exhibits the sought-after sharp
change in slope in its neighbourhood. The other local maximum, however, is
located in a region of steady rate of change of the inertia. Still, both values are
considered for the clustering.

k-means Clustering

We preform k-means clustering for both cases of 18 and 1’050 clusters and the
results are displayed in Figures 4.12 and A.5 (appendix) respectively.

The ’CreamFinance’ clustering with 18 clusters is the only result where all known
adversarial transactions are grouped in the same cluster, namely cluster 7. On
first glance, this appears very promising, however, this is likely the result of the
extremely large mean number of transactions per cluster at 1088.4±4008.6. Fur-
thermore, the entire distribution is very uneven, with cluster 1 including 17’614
transactions and a TG distance of 1.77, while 16 of the 17 remaining clusters
have TG distances greater than 200 and contain exactly 100 transactions each,

4. Clustering 36

0 200 400 600 800 1000 1200 1400
Number of Clusters

106

107

108

109

1010

In
er

tia

18 Clusters 1050 Clusters

Figure 4.11: Elbow plot for ’CreamFinance’ incident with corresponding target
contract address 0x33bf0bb8e1405dc440eccb97ffd92fef438c8a27 in a range
from 2 to 1’500 clusters. The local and global maxima discovered in the sil-
houette plot at 1’050 and 18 clusters respectively are marked by dotted magenta
lines.

which is a strange feature in itself. All of this indicates that the transactions are
not well clustered.

In the results for 1’050 clusters we observe a mean number of transactions of
18.7±36.3, which is more reasonable when comparing to the reference from ’Evil
Under the Sun’. In regards to the known adversarial transactions, 2 out of 9 are
clustered into the same cluster, namely cluster 92, 2 more are located in cluster
316, and the remaining 5 are spread over 5 more clusters, namely 420, 493, 636
and 689. This shows again a result, where transactions that are supposed to be
grouped together, are instead spread across multiple clusters. These results also
exhibit the same strange behaviour as with 18 clusters, where a large number
contain exactly 100 transactions. The reason for that is not clear at this point.
The mean TG distance and time difference take the values 13.05 ± 17.18 and
1.48± 2.35 h respectively. The time difference appears reasonable, while the TG
distance value is high compared to the 0.2 from the ’example incident’. Once
more, the standard deviation for both values is greater than the mean, indicating
large dispersions as well. The combination of these observations, suggest that
the results are not usable for our purpose.

4. Clustering 37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cluster

0

50

100

150

200

250

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

 /
Ti

m
e

Di
ffe

re
nc

e

Overall Mean TG distance: 193.79
Overall Std TG distance: 64.03
Overall Mean GED: 213.12
Overall Std GED: 73.90
Overall Mean Time Diff [h]: 19.79
Overall Std Time Diff [h]: 38.74
Overall Mean # Transactions: 1088.4
Overall Std # Transactions: 4008.6
Overall Mean # unique EOAs: 75.6
Overall Std # unique EOAs: 25.9

Mean Graph Edit Distance
Mean Time Difference

0

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Number of Transactions

Figure 4.12: k-means clustering with 18 clusters for the ’CreamFinance’ incident.
All 9 known adversarial transactions are clustered together in the same cluster,
namely cluster 7.

Chapter 5

Conclusion

In an effort to reproduce and validate the DEFIER approach on a modern dataset
in order to potentially build on it and further the understanding of and capability
in detecting exploit transactions on DApps, specifically in the DeFi space, this
study discovers various problems and limitations, as well as gains critical insight
into the evolution of DApps between 2016 and 2022.

5.1 Summary

This section summarizes the results and findings of this investigation into the
detection of exploit transaction on vulnerable smart contracts.

5.1.1 Data Collection

Potentially the most fundamental discovery of this study is in regards to the
complexity and structure of DApps in the evolution of blockchain technology.
The dataset from the ’SoK’ paper on which the study is based is focused on the
DeFi space, however, it stands to reason that the insights are transferable to
DApps in other segments. It is reported in the ’Evil Under the Sun’ paper, based
on their dataset, spanning transactions in a period from 2016 to 2018, that all
exploit transactions are located on level 0 or level 1, i.e. directly interacting with
the DApp’s vulnerable smart contract, or via one intermediary smart contract[1].
However, as this investigation shows, this is no longer the case. 69.6% of the
incidents from the more recent ’SoK’ dataset, containing transactions between
2018 and 2022, have their exploit transactions located on level 2 or higher. This
means that they interact with the vulnerable smart contract via two or more
intermediary smart contracts. It shows that the attacks exploit vulnerabilities not
in the DApp’s main smart contract, the point of interaction with other accounts,
but in a smart contract that the DApp calls internally. This transition represents
for once, how the complexity of the structure of DApps has grown between the
time frames of these two datasets, but also how exploit efforts have adapted to
this transition.

38

5. Conclusion 39

Another important discovery is in the context of adoption of blockchain tech-
nology. During the data collection process, when scraping transactions for an
incident on different levels, i.e. direct interactions with the target smart contract
or via one or more intermediary smart contracts, we find that the average number
of transactions has greatly increased. The ’Evil Under the Sun’ paper reports an
average of 22’603.6 scraped transactions on level 0 and 1 per DApp after running
DEFIER’s preprocessing on 104 DApps to search for unknown exploits. In our
data collection we find that the sum of the average level 0 and level 1 transactions
is 122’300.4, which represents an increase by a factor of 5.41. However, the num-
ber from ’Evil Under the Sun’ stems from the end of preprocessing, meaning it
includes the additional transactions, as defined in Section 3.1.3, while the average
quoted from our data collection refers to the state before this extension. We ob-
serve that on the ’SoK’ dataset the extension itself constitutes an average factor
of 3.74. In combination, this results in an average 20-fold increase in the number
of transactions that need to be scraped to run the DEFIER model. Operationally,
this makes the entire DEFIER approach more time consuming and computation-
ally more expensive, which is also shown in the total size of the collected data
at 102 GB. Note, that this value only contains the extended transactions for
four of the 56 incidents under investigation. Furthermore, on a qualitative level,
this shows that the amount of traffic on the Ethereum blockchain, i.e. executed
transactions, has vastly increased since the period of the ’Evil Under the Sun’
dataset of 2016 to 2018.

5.1.2 Clustering

The fact that neither the code nor the dataset from the ’Evil Under the Sun’ paper
is available means that the DEFIER approach must be reproduced from scratch
only by reference to its description in the paper. This makes its validation on a
modern dataset such as the one from the ’SoK’ paper vastly more challenging.

Specifically in the context of transaction clustering, a fundamental problem arises,
because Su et al. do not specify how they determine the number of clusters for the
k-means algorithm for a specific incident. As there is no obvious analytical way
of determination, the logical choice is an empirical approach. For that purpose
this study has chosen the Silhouette Analysis and Elbow Method. However, in
the absence of an available labelled dataset, such as the one created and used in
’Evil Under the Sun’, this problem gains an extra level of complexity. An empir-
ical approach to determine the number of clusters for an incident fundamentally
requires a rigorous metric by which the results can be evaluated, and without a
labelled dataset it is not entirely clear how to achieve this.

In this study we have chosen to look at whether the known adversarial transac-
tions of an incident originating from the same EOA are clustered together, which
they should be under the assumption that they constitute the main exploitation

5. Conclusion 40

stage of the attack, or at least part of that stage. However, being clustered to-
gether is certainly a necessary condition, but definitively not a sufficient one as
is shown in the clustering results with 18 clusters, of the ’CreamFinance’ inci-
dent. This is the only clustering result where all known adversarial transactions
are grouped in the same cluster. Nevertheless, the transactions can not be con-
sidered as well clustered, because out of 19’593 transaction fed to the k-means
algorithm 17’614 are grouped in cluster 1 with a mean TG distance of 1.77, while
16 of the 17 remaining clusters contain exactly 100 transactions with mean TG
distances greater than 200. All in all, it is fair to say that the clustering efforts
across the four investigated incidents are quite unsuccessful. At this point un-
fortunately, it is not entirely clear if that is a result of the technical method, or
due to other factors. It is entirely conceivable that while the complexity of DApp
structures has evolved over time, the complexity of calls and subcalls within a
transaction have evolved as well. If this should be the case, then it is possible
that the concept of the TG distance as defined in Equation 2.1, which is based on
a weighted sum of execution time difference and the graph edit distance between
graph representations of transaction execution traces, is no longer a viable metric
for such clustering purposes.

5.2 Going Forward

In regards to further investigation into exploit transaction detection, particularly
in the context of the DEFIER model, the recommendations are clear. There is
a strong need for a labelled dataset, specifying transactions at a specific stage of
the attack lifecycle. Without it, it remains extremely challenging to evaluate the
clustering results based on an empirical determination of the suitable number of
clusters, since there is no rigorous analytical metric for it. Furthermore, beyond
the clustering step lies the sequence-based classification, which also requires a
labelled dataset for training of the neural network.

In this context the question also arises, if the four-stage attack lifecycle, which
constitutes the basis of the entire approach, as discovered in the ’Evil Under
the Sun’ paper, is still valid. The paper mentions for example a case where the
propagation stage is based on multiple gambling DApps utilizing the same flawed
random number generator, which does not constitute a complex vulnerability.
With an evolution in the complexity of DApps it is reasonable to assume that
there is also an evolution in the complexity of vulnerabilities. This might lead to
the result that reusing, even of adjusted exploitation code is no longer possible.

As the reproduction of this approach, for the purpose of validation on modern
data in order to then build upon it, poses significant challenges, it is consequently
a very time consuming task. Coupled with the possibility, that its underlying
premise, i.e. the validity of the four-stage attack cycle, may no longer hold true,
due to an evolution in the complexity of DApps as well as their vulnerabilities,

5. Conclusion 41

we would recommend to proceed in one of two ways. The first option is to obtain
a working implementation of DEFIER for the original source, i.e. Su et al., and
run it on modern data such as the dataset from ’SoK’. If possible, this is the more
straight-forward approach, and will enable a swift evaluation, if the underlying
premise is still valid. Alternatively, if that is not possible, our recommendation is
to start with an evaluation of the validity of the four-stage attack lifecycle, which
likely entails manual assessment of exploit transactions. We suggest this course
of action, because if the concept of the attack lifecycle should indeed no longer
apply, then a reproduction of the DEFIER model becomes a vain effort.

Bibliography

[1] L. Su, X. Shen, X. Du, X. Liao, X. Wang, L. Xing, and B. Liu, “Evil under
the sun: Understanding and discovering attacks on ethereum decentralized
applications,” 30th USENIX Security Symposium (USENIX Security 21),
2021.

[2] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang, K. Qin,
R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized finance (defi)
attacks,” 2023 IEEE Symposium on Security and Privacy (SP), 2023.

[3] [n.d.], “Coingecko,” last accessed 26 August 2024. [Online]. Available:
https://www.coingecko.com/

[4] [n.d.], “Ethereum,” last accessed 26 August 2024. [Online]. Available:
https://ethereum.org/

[5] [n.d.], “Alchemy,” last accessed 26 August 2024. [Online]. Available:
https://docs.alchemy.com/

[6] C. Russo, The Infinite Machine: How an Army of Crypto-Hackers Is Build-
ing the Next Internet with Ethereum. HarperCollins, 2020.

[7] [n.d.], “Etherscan api,” last accessed 27 August 2024. [Online]. Available:
https://docs.etherscan.io/api-endpoints/accounts

[8] [n.d.], “Etherscan,” last accessed 27 August 2024. [Online]. Available:
https://etherscan.io/

[9] [n.d.], “Blockscout api,” last accessed 27 August 2024. [Online]. Avail-
able: https://docs.blockscout.com/developer-support/api/rpc-endpoints/
account

[10] [n.d.], “Infura api,” last accessed 27 August 2024. [Online]. Avail-
able: https://docs.infura.io/api/networks/ethereum/json-rpc-methods/
trace-methods/trace_transaction

[11] [n.d.], “Networkx - directed graph,” last accessed 27 August 2024. [Online].
Available: https://networkx.org/documentation/stable/reference/classes/
digraph.html

[12] [n.d.], “Gmatch4py,” last accessed 27 August 2024. [Online]. Available:
https://github.com/jacquesfize/GMatch4py

42

https://www.coingecko.com/
https://ethereum.org/
https://docs.alchemy.com/
https://docs.etherscan.io/api-endpoints/accounts
https://etherscan.io/
https://docs.blockscout.com/developer-support/api/rpc-endpoints/account
https://docs.blockscout.com/developer-support/api/rpc-endpoints/account
https://docs.infura.io/api/networks/ethereum/json-rpc-methods/trace-methods/trace_transaction
https://docs.infura.io/api/networks/ethereum/json-rpc-methods/trace-methods/trace_transaction
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://github.com/jacquesfize/GMatch4py

Bibliography 43

[13] [n.d.], “Bloxy api,” last accessed 27 August 2024. [Online]. Available:
https://bloxy.info/api_methods

[14] [n.d.], “scikit-learn, kmeans,” last accessed 28 August 2024. [On-
line]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.KMeans.html

[15] [n.d.], “scikit-learn, silhouette_score,” last accessed 28 August 2024.
[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.silhouette_score.html

[16] R. Thorndike, “Who belongs in the family? pyschometrika 18 (4): 267–276,”
1953.

https://bloxy.info/api_methods
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html

Appendix A

Plots for k-means Clustering
Results

A-1

Plots for k-means Clustering Results A-2

0
20

40
60

80
10

0
12

0
14

0
Cl

us
te

r

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Mean Graph Edit Distance / Time Difference
Ov
er
al
l
Me
an
 T
G
di
st
an
ce
:

0.
30

Ov
er
al
l
St
d
 T
G
di
st
an
ce
:

0.
66

Ov
er
al
l
Me
an
 G
ED
:

0.
33

Ov
er
al
l
St
d
 G
ED
:

0.
73

Ov
er
al
l
Me
an
 T
im
e
Di
ff
 [
h]
:

0.
10

Ov
er
al
l
St
d
 T
im
e
Di
ff
 [
h]
:

0.
34

Ov
er
al
l
Me
an
 #
 T
ra
ns
ac
ti
on
s:

6.
4

Ov
er
al
l
St
d
 #
 T
ra
ns
ac
ti
on
s:

 1
5.
4

Ov
er
al
l
Me
an
 #
 u
ni
qu
e
EO
As
:

3.
4

Ov
er
al
l
St
d
 #
 u
ni
qu
e
EO
As
:

9.
6

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

M
ea

n
Ti

m
e

Di
ffe

re
nc

e

020406080

Number of Transactions

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure A.1: k-means clustering with 153 clusters for the ’InverseFinance’ incident.
The 2 known adversarial transactions are clustered into different clusters, namely
cluster 25 and cluster 37.

Plots for k-means Clustering Results A-3

0

1

2

3

4

5

6

7

8

9

10

11

Cl
us

te
r

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

Mean Graph Edit Distance / Time Difference
Ov
er
al
l
Me
an
 T
G
di
st

an
ce
:

47

2.
15

Ov
er
al
l
St
d
 T
G
di
st

an
ce
:

33

8.
52

Ov
er
al
l
Me
an
 G
ED
:

45

4.
23

Ov
er
al
l
St
d
 G
ED
:

38

9.
69

Ov
er
al
l
Me
an
 T
im
e
Di

ff
 [
h]

:

63

3.
45

Ov
er
al
l
St
d
 T
im
e
Di

ff
 [
h]

:

56

9.
41

Ov
er
al
l
Me
an
 #
 T
ra
ns

ac
ti
on

s:

 5

5.
9

Ov
er
al
l
St
d
 #
 T
ra
ns

ac
ti
on

s:

 3

4.
6

Ov
er
al
l
Me
an
 #
 u
ni
qu

e
EO
As

:

6.
8

Ov
er
al
l
St
d
 #
 u
ni
qu

e
EO
As

:

6.
1

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

M
ea

n
Ti

m
e

Di
ffe

re
nc

e

02040608010
0

Number of Transactions

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure A.2: k-means clustering with 12 clusters for the ’SushiSwap’ incident. Out
of the 6 known adversarial transactions, 5 are clustered into the same cluster,
namely cluster 5, while the last one is in cluster 2.

Plots for k-means Clustering Results A-4

0
50

10
0

15
0

20
0

Cl
us

te
r

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Mean Graph Edit Distance / Time Difference

Ov
er

al
l

Me
an

 T
G

di
st

an
ce

:

0.
07

Ov
er

al
l

St
d

 T
G

di
st

an
ce

:

0.
42

Ov
er

al
l

Me
an

 G
ED

:

0.
08

Ov
er

al
l

St
d

 G
ED

:

0.
46

Ov
er

al
l

Me
an

 T
im

e
Di

ff
 [

h]
:

0.
03

Ov
er

al
l

St
d

 T
im

e
Di

ff
 [

h]
:

0.
15

Ov
er

al
l

Me
an

 #
 T

ra
ns

ac
ti

on
s:

4.
9

Ov
er

al
l

St
d

 #
 T

ra
ns

ac
ti

on
s:

 1

1.
2

Ov
er

al
l

Me
an

 #
 u

ni
qu

e
EO

As
:

1.
0

Ov
er

al
l

St
d

 #
 u

ni
qu

e
EO

As
:

0.
1

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

M
ea

n
Ti

m
e

Di
ffe

re
nc

e

01020304050607080

Number of Transactions

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure A.3: k-means clustering with 237 clusters for the ’Akropolis’ incident.
Out of the 17 known adversarial transactions, 11 are clustered into the same
cluster, namely cluster 2, 2 more are located in cluster 226, and the remaining 4
are spread over 4 more different clusters, namely 13, 95, 145 and 161.

Plots for k-means Clustering Results A-5

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Cl
us

te
r

0.
00

00

0.
00

05

0.
00

10

0.
00

15

0.
00

20
Mean Graph Edit Distance / Time Difference

Ov
er

al
l

Me
an

 T
G

di
st

an
ce

:

0.
00

Ov
er

al
l

St
d

 T
G

di
st

an
ce

:

0.
00

Ov
er

al
l

Me
an

 G
ED

:

0.
00

Ov
er

al
l

St
d

 G
ED

:

0.
00

Ov
er

al
l

Me
an

 T
im

e
Di

ff
 [

h]
:

0.
00

Ov
er

al
l

St
d

 T
im

e
Di

ff
 [

h]
:

0.
00

Ov
er

al
l

Me
an

 #
 T

ra
ns

ac
ti

on
s:

3.
1

Ov
er

al
l

St
d

 #
 T

ra
ns

ac
ti

on
s:

3.
3

Ov
er

al
l

Me
an

 #
 u

ni
qu

e
EO

As
:

1.
0

Ov
er

al
l

St
d

 #
 u

ni
qu

e
EO

As
:

0.
0

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

M
ea

n
Ti

m
e

Di
ffe

re
nc

e

0510152025

Number of Transactions

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure A.4: k-means clustering with 366 clusters for the ’Akropolis’ incident. Out
of the 17 known adversarial transactions, 3 are clustered into the same cluster,
namely cluster 340, 2 more are located in cluster 2, and another 2 are located in
cluster 332. The remaining 10 are spread over 10 more different clusters, namely
23, 95, 149, 163, 228, 263, 318, 339, 354 and 358.

Plots for k-means Clustering Results A-6

0
20

0
40

0
60

0
80

0
10

00
Cl

us
te

r

02040608010
0

Mean Graph Edit Distance / Time Difference

Ov
er

al
l

Me
an

 T
G

di
st

an
ce

:

13
.0

5
Ov

er
al

l
St

d
 T

G
di

st
an

ce
:

17

.0
7

Ov
er

al
l

Me
an

 G
ED

:

14
.3

4
Ov

er
al

l
St

d
 G

ED
:

18

.8
2

Ov
er

al
l

Me
an

 T
im

e
Di

ff
 [

h]
:

1.
48

Ov
er

al
l

St
d

 T
im

e
Di

ff
 [

h]
:

2.
35

Ov
er

al
l

Me
an

 #
 T

ra
ns

ac
ti

on
s:

18
.7

Ov
er

al
l

St
d

 #
 T

ra
ns

ac
ti

on
s:

36
.3

Ov
er

al
l

Me
an

 #
 u

ni
qu

e
EO

As
:

1.
9

Ov
er

al
l

St
d

 #
 u

ni
qu

e
EO

As
:

1.
4

M
ea

n
Gr

ap
h

Ed
it

Di
st

an
ce

M
ea

n
Ti

m
e

Di
ffe

re
nc

e

02040608010
0

Number of Transactions

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure A.5: k-means clustering with 1’050 clusters for the ’Akropolis’ incident.
Out of the 9 known adversarial transactions, 2 are clustered into the same cluster,
namely cluster 92, 2 more are located in cluster 316, and the remaining 5 are
spread over 5 more clusters, namely 420, 493, 636 and 689.

	Acknowledgements
	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum and Smart Contracts
	2.2 Decentralized Applications and Vulnerabilities
	2.3 The Four-Stage Attack Lifecycle
	2.4 DEFIER
	2.4.1 Preprocessing
	2.4.2 Sequence-based Classification
	2.4.3 New Attack Discoveries

	2.5 A Modern Dataset

	3 Data Collection
	3.1 Technical Method
	3.1.1 Dataset and Incident Sorting
	3.1.2 DApp Transaction Scraping
	3.1.3 Semantically-Similar Transaction Scraping

	3.2 Findings
	3.2.1 A Recursive Process
	3.2.2 Statistics on Collected Data

	4 Clustering
	4.1 Technical Method
	4.1.1 k-means Clustering
	4.1.2 Silhouette Analysis
	4.1.3 Elbow Method
	4.1.4 Evaluation Metric
	4.1.5 Statistical Implications for Data Collection

	4.2 Results
	4.2.1 InverseFinance
	4.2.2 SushiSwap
	4.2.3 Akropolis
	4.2.4 CreamFinance

	5 Conclusion
	5.1 Summary
	5.1.1 Data Collection
	5.1.2 Clustering

	5.2 Going Forward

	Bibliography
	A Plots for k-means Clustering Results

