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Abstract

The aim of this semester project is to analyse any impact that infrastructure
could have on the behaviour of cryptocurrencies. The motivation behind this is
that recent figures show that a significant number of Ethereum mainnet nodes
are being hosted by a handful of major cloud providers, thus undermining a core
principle of decentralization. The main contribution of this project was the devel-
opment of a logging infrastructure that allows for further analysis in the future.
The infrastructure that was developed logged messages, peering information and
peer-table information from both the Ethereum nodes’ Execution and Consensus
layers. An automation tool was also developed that allowed the logging to be
carried out on multiple machines simultaneously. Finally, a Jupyter Notebook
was created as a tool to process and plot the collected data.

From the analysis carried out in this project, some interesting patterns emerged
and some location-based biases were detected. There was not enough evidence
to state that an Ethereum node running in one of the main cloud provider’s
datacenter would have any significant advantage when compared to one running
on a commercial network, in this case a university network. However, it raises
interesting questions for further analysis. This could be done by looking at dif-
ferent parameters than the ones discussed in this project. The tools that were
developed will allow for these to be introduced at a later stage.
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Chapter 1

Introduction

1.1 Background & Aims

One of the main promises of cryptocurrencies is removing the dependency on
centralized institutions and instead adopting a decentralized model. With this,
a distributed network of users can use distributed agreement protocols to by-
pass the need of a central entity. Such an architecture promotes transparency
and accessibility - anyone can set up their own node and participate in this de-
centralized network. However, recent figures from Ethernodes [1] show that for
some cryptocurrencies, a new central point of failure has developed. A significant
number of nodes participating in the network are being hosted on major cloud
providers such as Amazon AWS and Hetzner. In fact, the cited figures show that
around two thirds of all Ethereum mainnet nodes are hosted by just 3 major
cloud providers. Of course it is not difficult to see how this may become an is-
sue, especially since it is defying one of the core principles of decentralization by
being so reliant on these providers. These providers also gain the ability to in-
fer network topologies, deanonymize communication etc. Potential network-layer
attacks that leverage the internet infrastructure itself have been demonstrated
and researched in the past [2, 3].

The aim of this project is to analyse the impact of such infrastructure on a
cryptocurrency. We hypothesize that running a node out of a datacenter could
produce a different behaviour than running a node out of a university network.
To do so we aim to analyze peer selection, connection and transaction latencies.
The main outcome of this project is to develop a logging infrastructure for the
chosen cryptocurrency, as well as to perform some initial analysis of the resulting
data.

1.2 Project Structure

This project is divided into three main parts. Chapter 2 discusses the analysis
of a number of cryptocurrencies and how one was identified for which to anal-
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1. Introduction 2

yse infrastructural impacts. Chapter 3 describes how after selecting a suitable
cryptocurrency network, a measurement plan was laid out. A logging client was
subsequently set-up such that the measurement plan could be realised. This chap-
ter also discusses the creation of some automated infrastructure that allowed the
data collection process to be deployed across multiple machines and to be run at
regular intervals. Chapter 4 discusses how the resultant data was processed and
plotted, and also presents relevant findings from this project.

1.3 Related Works

Peer-to-peer networks in the context of several cryptocurrencies have been the
topic of extensive reseach over the past years. Kiffer et al. present a study [4]
about how the Ethereum network evolves over time and how geographic location
can alter the peering experience. Kim et al. also present a study [5] which ana-
lyzes Ethereum’s p2p protocols enabling information propagation and blockchain
consensus. This study also discusses the geographic distribution of nodes partic-
ipating in the Ethereum network.

In a thesis by Hyun-Min Chang [6], node activity of various cryptocurrencies,
including their geographic distribution, is discussed. The web-scrapers devel-
oped by Chang for this thesis were used in the cryptocurrency selection process
discussed in Chapter 2.

Finally, this project also utilized the existing loggy submodule added to the
go-ethereum client, which was developed by members of the ETH Distributing
Computing group. Messages received or sent by the client were recorded into
.jsonl format. This is discussed in further detail in Chapter 3.2 This submodule
was also used in spyprysm, a modified version of the Prysm Ethereum client, to
log consensus layer activity. For spyprysm, this module logged certain activity
(discussed further in Chapter 3.3) into .csv files and then zipped these.



Chapter 2

Cryptocurrency Selection

2.1 Overview

The initial part of this semester project dealt with selecting a suitable cryptocur-
rency for which to analyse infrastructure impacts on. The chosen cryptocurrency
had to meet certain criteria - firstly that there were a substantial amount of nodes
participating in the network and more importantly, that a significant amout of
these were being hosted in an Amazon AWS datacenter. Without the latter
it would not be possible to investigate any potential bias that arises from hav-
ing a significant chunk of the network hosted by one provider. Ethereum (ETH),
Ethereum Classic (ETC), Dogecoin (DOGE), Bitcoin Cash (BCH), ZCash (ZEC),
Dash (DASH) and Groestlcoin (GRS) were all shortlisted as potential candidates
for the analysis.

2.2 Selection Process

A web-scraper was used in order to obtain a list of all active nodes in a particular
cryptocurrency network over 24 hours, as well as the information pertaining to
those nodes - such as node ID, IP, client information etc. The scraper utilised
APIs from a variety of blockchain explorers such as blockchair.com and etcn-
odes.org [7, 8]. The data was output in the form of csv files, so a simple python
script was written in order to parse the scraper’s output. The parser takes the
nodes’ IP, runs a reverse DNS query in order to find the host, and then outputs
how many of the nodes are being hosted on Amazon AWS. The parser was run
on three days worth of data in order to obtain an average number of active nodes
and how many of these were hosted in Amazon AWS. This is detailed in the
below Table 2.1

3



2. Cryptocurrency Selection 4

Number of Nodes Nodes in Amazon AWS Percentage in AWS
Ethereum 6105 910 14.9 %

Ethereum Classic 10157 87 0.85 %
Bitcoin Cash 697 82 11 %

Dash 3477 30 0.86 %
Dogecoin 710 46 6.5 %
Litecoin 931 58 6.2 %
ZCash 3485 26 0.75 %

Groestlcoin 47 1 2.14 %

Table 2.1: Nodes for each cryptocurrency

After analyzing the share of nodes that are hosted in Amazon AWS for each
of the above cryptocurrencies, it was decided that the Ethereum network was
going to be investigated in this project. The above results show that roughly
15% of nodes in the Ethereum network are being run out of an Amazon AWS
Datacenter. For a network of this size, this share of nodes is significant and such
a high degree of dependence on a centralized party can have a negative impact
on the system.



Chapter 3

Logging Clients & Experiments

3.1 Overview

Once Ethereum was chosen as the cryptocurrency to be analysed, it was nec-
essary to develop a logging infrastructure and an experimental plan for how to
record data. This chapter describes how this was done. Ever since The Merge
in September 2022 [9] where Ethereum switched from proof-of-work to proof-of-
stake based consensus, one requires an Execution Client as well as a Consensus
Client in order to run an Ethereum node. For the purpose of this project, go-
ethereum [10] was chosen as the execution client since it is one of the most widely
used client. Prysm [11] was used as the consensus client, it is also written in Go
and is also one of the most-widely used Consensus clients [12].

3.2 spygeth

Spygeth is a modified version of the go-ethereum client designed to log messages
sent and received by the Ethereum node. An older version of this was already
in use by the Distributed Computing Lab, written for an earlier release of the
go-ethereum client. This utilized the previously discussed loggy submodule in
order to log messages (both in/outbound) defined in the ETH Wire Protocol [13].
These included:

• GetBlockHeadersMsg

• BlockHeadersMsg

• GetBlockBodiesMsg

• BlockBodiesMsg

• GetNodeDataMsg

• NodeDataMsg

• GetReceiptsMsg

• ReceiptsMsg

• NewBlockHashesMsg

• NewBlockMsg

• TxMsg

5



3. Logging Clients & Experiments 6

Firstly, the existing loggy code was adapted to be compatible with the latest
release of go-ethereum, version 1.14.7. Logging for the aforementioned messages
was maintained, with some changes. For instance, NewBlockMsg and NewBlock-
HashesMsg were removed from the ‘eth’ protocol due to block propagation no
longer taking place in the execution network after The Merge [14], therefore the
logging for these messages was also removed. Logging for GetPooledTransaction-
sMsg and PooledTransactions was added - recording only a list of the transaction
hashes rather than the full message to avoid having huge log files.

The newer version of spygeth implemented in this project includes logging
for peering messages as well, to enable tracking which peers a client connects
to, duration of said connections as well as further information pertaining to how
the peer table is populated and maintained. This activity happens inside the
p2p/server.go module. To track active connections, the following logging mes-
sages were added:

• AddPeer - Whenever an addPeer checkpoint occurred during the execution
of the server subroutine, this was logged as a peer being added. This check-
point occurs after the protocol handshake has been completed successfully,
therefore the client will definitely connect to the peers being logged. The
peer’s IP, node ID, running peercount, current time, and direction of peer
(in/outbound) are all logged.

• RemovePeer - Whenever a ‘delpeer’ checkpoint occurred during the exe-
cution of the server subroutine, this was logged as a peer disconnection.
The peer’s IP, node ID, running peercount, current time and direction of
peer (in/outbound), connection duration and reason for disconnection are
all logged.

This version of spygeth also introduces logging for peer table information. As
part of its node discovery protocol which runs over UDP, go-ethereum makes use
of Kademlia which implements a Distributed Hash Table [15]. This table allows
the client to keep track of known nodes. The relevant code that maintains this
DHT is found inside the p2p/discover/table.go module, where the following
logging messages were added to track peer table information:

• addSeenNode - In this function, a node which may or may not be live is
added to the end of a bucket in the DHT. If there is no space in the bucket,
the node is added to a list of replacements to be swapped into the bucket
when space comes up. Our logger will only log the node being added once
it is actually added into the bucket. The nodes’ ID, IP and timestamp are
all logged.

• addVerifiedNode - This function adds a node whose existence has been
verified to the bucket. If it is already in the bucket it is moved to the front
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of the bucket, and if there is no space it is added to the replacement list as
explained above. The nodes’ ID, IP and timestamp are all logged.

• Node Added (replacement) - This function takes a node from the replace-
ment list and adds it to one of the DHT’s bucket. The node is then removed
from the replacement list. The nodes’ ID, IP and timestamp are all logged.

• Node Deleted - In the deleteInBucket function, a node is removed from
a DHT’s bucket. A check is made before this to ascertain that the node is
actually in the DHT before attempting to delete it, to prevent the delete
function from being called multiple times on the same node. The nodes’
ID, IP and timestamp are all logged.

This latest version of spygeth has been dockerized and pushed to GitLab
where it can now be accessed [16] and easily used.

3.3 spyprysm

Similar to spygeth, spyprysm is a modified prysm client that operates at the
consensus layer of the Ethereum node. Prior to this project, an earlier version
of spyprysm was already in use by the Distributed Computing Lab. This logged
attestations, gossip logs (how messages propagate through the network), mesh
information and peer information (connection state of the peer). Further infor-
mation about what was recorded can be found in Appendix A.

Once again, certain changes had to be made to this existing code in order to
also start logging peer table information for the consensus layer. Prysm uses Dis-
coveryV5 [17] in its peer discovery protocol, which is very similar to DiscoveryV4
used in go-ethereum. Peer table maintenance is done inside the p2p/status.go
submodule. The following were logged:

• Deletions - The prune function sorts the entries inside the DHT’s buckets
by a scoring system. Peers that are outdated or disconnected peers have
higher scores, and the pruning starts in order of descending score. When a
peer is removed from a bucket, the associated peer information as well as
the timestamp are logged.

• Additions - The addition of a node to the peer table is done in the
addIpToTracker function. Whenever an addition happens, the associated
peer information is logged together with the timestamp.

Apart from this, changes had to be made to the loggy submodule. A function
LogPeerTableAction was written to write logs of the peer table changes into a
.csv file.
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3.4 Experimental Plan & Set-up

This section discusses the set-up of machines for the experimentation conducted,
as well as the plan on how the data recording took place.

The plan was to have five Ethereum nodes running on five different machines.
The first node was run on an ETH machine in Zurich. To test the impact of run-
ning nodes on different providers, a further two nodes were run in close proximity
to each other - one on a Hetzner machine in Falkenstein and another on AWS in
Frankfurt. Finally, the impact of geographical location on the nodes’ behaviour
was of interest, so a further two nodes were run on AWS machines, but this time
based in Seoul and Virginia. All of these machines had 8 cores and 32GB of
memory, except for the ETH Machine which had 20 cores and 126GB of memory.
For the Ethereum nodes to be run, both the spygeth and spyprysm containers
were launched.

In order to have sufficient data to analyze, 6 data-logging runs were conducted
across six days - each of which running from 06:00 UTC to 22:00 UTC. During the
first three days, the machines had their UDP and TCP ports closed, whilst for the
last three days these were opened. The idea here was to be able to analyze what
effect this had with regards to peering and how quickly messages were propagated
to all five Ethereum nodes. The node running on the ETH machine in Zurich was
behind a NAT, therefore the ports remained closed for all six days. The ports in
question were:

• 30303 UDP/TCP - These are the ports used by the go-ethereum client for
peer-to-peer communication. The TCP port is the client’s listener port
whilst the UDP port is used by the node discovery protocol.

• 13000 TCP - This is used by the prysm client for peer connectivity. Gos-
sip/p2p communication also flows through this port.

• 12000 UDP - This is used by the prysm client for node discovery and chain
data.

Resource usage on each of the machine was also recorded through resources.py.
This script created a log file that recorded resource usage metrics every minute.
The log included:

• CPU Usage

• Virtual Memory Usage

• Swap Usage

• Bandwidth (In)

• Bandwidth (Out)

• Timestamp
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3.5 Automation Infrastructure

To facilitate the data logging process, automation infrastructure was created.
This enables recreation of this logging process in the future. The script log_script.py
was scheduled to run on every machine at 06:00 UTC using cron. The script takes
the duration (in seconds) of the run that a user requires as a parameter and does
the following:

1. The folders containing the logs for spygeth and spyprysm are deleted. These
folders are cleared at the start so that they only contain logs for one run of
data-collection.

2. The nodes and nodekey are folder deleted from go-ethereum’s data direc-
tory. This is done to clear the client’s peertable and to ensure that the
client has a fresh enode ID at the start of each run. The enode ID is what
identifies a node, so this ensures having freshness in the experiments and
that no nodes in the network are already aware of the Ethereum node being
run.

3. A directory tree is created which will hold all the logs pertaining to that
run. The directory tree created is as follows:

Logs_[starting_time]
geth
prysm
about

4. Spygeth and spyprysm are both launched. Their output is recorded in
geth_output.txt and spyprysm_output.txt respectively. Any exceptions
are logged in geth_stderr.txt and spyprysm_stderr.txt.

5. resources.py is also launched which creates a ResourceLog.json file in-
side the parent log directory.

6. The script then sleeps for the duration specified by the script parameter.
Logging is ongoing during this time.

7. Node information for both the spygeth and spyprysm clients is obtained.
For spygeth, an RPC call is made to port 8545, whilst an HTTP GET
request is made to port 3500 for spyprysm. This information is logged in
the /about subdirectory.

8. Spygeth, spyprysm and the resource script are all terminated. All the logs
are copied over from the logging directories to the directory tree created
in step 3 such that all information pertaining to the run is now inside this
directory structure.



Chapter 4

Results & Plots

This chapter aims to analyse the data obtained in the data-logging phase and
attempts to find any evidence of infrastructure having an impact on the Ethereum
nodes. The data is processed and plotted using a Jupyter Notebook written for
this project.

4.1 Resource Usage

Firstly, the ResourceLog.json files were analysed. These files gave information
about the resources used by each machine. Figure 4.1 below shows the CPU
usage of the machines running with closed and open ports. The plot for ws203
was omitted in this case, since the machine’s specs are different from the rest, as
previously mentioned. This figure shows that machines hosted in Amazon AWS
had an average CPU usage of around 8%. It can be seen that in general the CPU
usage seems to be slightly higher across all machines with open ports.

Next, bandwidth usage for each machine was plotted. Figure 4.2 shows the
inbound and outbound bandwidth metrics when the ports were closed whilst
Figure 4.3 shows shows the same metrics when the ports are opened. Similar
to the CPU plots, it can be seen that the average bandwidth usage is slightly
higher when the ports are opened. Perhaps more interestingly, Figure 4.4 and
Figure 4.5 show how this bandwidth usage scales with the number of peers the
spygeth client connects to. An important point to note is how the peercount
changes when the ports are opened. With closed ports, we only have outgoing
connections limited at 16 peers. Once the ports are opened incoming connections
can also be made, and hence the ceiling of connections rises to 50 peers.

10
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Figure 4.1: CPU Usage
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Figure 4.2: Bandwidth usage with
Closed ports.

Figure 4.3: Bandwidth usage with
Open ports.
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Figure 4.4: Bandwidth scaling with
peer-count (Closed)

Figure 4.5: Bandwidth scaling with
peer-count (Open)
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4.2 Peer Connectivity

This next section presents some insights into the data obtained from the peer-to-
peer logs, recently added to spygeth and spyprysm as discussed in Sections 3.2
and 3.3.

Starting with Figure 4.6, a CDF plot was made for the duration of connections
made by the spygeth client. The data seen in these plots comes from all the
six days of data collection. This means that the data from the three runs of
open/closed ports were aggregated in the same plot, to get an idea of the average
behaviour. The dotted vertical lines represent the average connection duration.
It is important to note that the x-axis is a log-scale, and also that between
closed and open ports, the number of active peers changes from ≈ 16 to ≈ 50
as demonstrated previously. This means that there are a lot more attempted
connections when the ports are opened. Initially, this fact lead to the belief that
the average connection duration would be shorter when the ports were opened
due to a lot of futile, unstable connections. However, the plots show that in
all but one machine the average connection duration is longer with open ports.
This could possibly be due to having more peers to choose from, thus enabling
the choice of more stable peers. Since machine ws203 is behind a NAT and the
opening of ports made no material difference, we see that the behaviour in the
first three and the last three days was roughly the same.

Figure 4.6: CDF of Connection Durations
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With these figures now available, it was of interest to investigate where
spygeth’s most stable peers were located. To do this, the top 50 longest con-
nections (with open ports) were analysed. A reverse DNS lookup was done in
order to get the provider, and the ip2geotools [18] library was used to get the
peers’ geographic location. Figure 4.7 and Figure 4.8 show the distribution of the
most stable peers by country and continent respectively. These are also grouped
by peers hosted on Amazon and those that are not.

It was observed that for all the machines, most of the stable peers were based
in Europe. The countries where most of our machines’ stable peers were located
were the US and Germany, which made sense when considering the general dis-
tribution of Ethereum Mainnet nodes. Ethernodes Statistics [1] state that these
two countries are the two countries hosting the most nodes. Most of the stable
peers that were also being hosted on Amazon AWS were based in North America.

Since in this project the peer table entries were also logged for spygeth and
spyprysm, it was possible to plot how these grew over time during the experiment
runs. Figure 4.9 and Figure 4.10 show the peer table growth for closed and open
ports respectively. A point to note was that the size of the peer table plateaued
at 200 on the plots, indicating its capacity. Interestingly, this was not always the
case for all machines. For instance, on the Virginia machine, the number of peers
in the peertable seems to hover around the 160 mark. This was also noted for
the Frankfurt machine.
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Figure 4.7: Peer Distribution by
Country

Figure 4.8: Peer Distribution by
Continent
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Figure 4.9: Peertable Size (Closed) Figure 4.10: Peertable Size (Open)
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4.3 Message Delays

Apart from the peering behaviour, the project’s analysis of infrastructure impact
also aims to look at message delays and propagation. Over the course of one run,
many transactions are received by each machine. A subset of these transactions
are received by all five machines in the experiment. The table below shows how
many transactions each machine received on average during one run.

Each machine’s transaction list was sorted in ascending order by time received
and then duplicates were removed, keeping only the first instance. Next, an
inner join on the transaction hash was done to find the transactions received
by all machines. All timestamps were converted to UTC, and then the earliest
timestamp was found. The bar chart in Figure 4.11 shows how often each machine
received a particular transaction first. Following this, the earliest timestamp was
subtracted from each machine’s own timestamp for that transaction in order to
find the delay in receiving the message. Initially, all delays were plotted however
this caused extreme skewing as some machines received a message hours later.
To combat this, an upper threshold of 1 minute was chosen, beyond which that
particular message was excluded. Anything below 1 minute was considered delay
due to the network, so was relevant to this analysis. As an example, on the last
day the number of transactions received were as follows:

Machine No. of Txs
Seoul 3,585,084

Frankfurt 1,289,210
Virginia 1,807,612
Hetzner 2,328,351
ws203 890,392

Table 4.1: Transaction Count

Table 4.1 already highlighted some differences between the machines. For
instance, the table showed that ws203 was at a disadvantage. The Seoul node
received 53% more transactions than the Hetzner node which had the next highest
number of transactions.

After the join was performed, there were only a total of 271,057 transactions
that were seen by all the machines. Out of these, 166,440 transactions have a
delay of less than one minute across all machines. From Figure 4.11 it can be
observed that from these transactions, the Hetzner node was the first machine to
receive a transaction the most times and the Seoul node was the first the least
amount of times. The latter was particularly interesting given the fact that the
Seoul node received the most transactions. After this, the average distribution of
delays was plotted in a box-plot, as shown in Figure 4.12. The black triangular
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shape represented the mean delay (0.07s for Hetzner - 0.14s for Seoul). Hetzner
and ws203 showed the highest degree of variance, whilst Seoul showed the least.
Since Hetzner and ws203 had the highest amount of transactions that they re-
ceived first, their lower quartile is at 0 (no delay). It was observed that the three
European machines were the top three in terms of how often they were the first
to receive a transaction. This was not surprising due to the fact that only the
transactions present in all five machines were considered. The three European
machines probably skew this overlap of transactions as they see a lot of the same
transactions.

Figure 4.11: Frequency of first received Transactions

Figure 4.12: Distribution of Transaction Delays

The same analysis was also carried out on the consensus layer, looking at
attestation aggregations received by the spyprysm client. Once again, the total
amount of attestation aggregates received by each machine were as follow:

There were a total of 4304 messages that were present on all five machines.
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Machine Attestation Aggregates Received Unique
Seoul 8,919,325 5083

Frankfurt 8,344,048 4966
Virginia 9,012,566 5054
Hetzner 8,412,554 4902
ws203 6,675,095 4311

Table 4.2: Attestation Aggregate Count

This time, the Frankfurt node was the best performing and the Seoul node was
once again the first node the least times. In general, the mean delay times are
shorter in the analysis of the consensus layer than the previously discussed delays
for transactions. The delay distribution can be seen in Figure 4.14. Once again,
the top three machines that were first to receive a particular AttestationAggregate
most often were the European machines. This showed that there was a bit of an
advantage that these machines had over the others.

Figure 4.13: Frequency of first received Attestation Aggregate
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Figure 4.14: Distribution of delays
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4.4 Subnet Plots

Finally, the mesh sizes per subnet in the Consensus Layer were plotted.

The plots in Figure 4.15 show how the sizes of the Beacon Chain subnets
varied across the whole experiment. It is worth recalling at this point that the
first three days of the experiment were run with closed ports, whilst during the
last days the ports were opened. It could be seen that the mesh sizes actually
increased across all machines once the ports were opened, with the notable ex-
ception of ws203 that was behind a NAT. At any given time, each machine was
subscribed to only two subnets picked randomly. Over the course of the exper-
iment, these two subnets changed as can also be seen in the plots. The data is
not continuous as the experiments were not running 24 hours daily, however, in
some points the plot shows that the same subnets could have been selected on
multiple days, thus giving the appearance of a continuation in the plot. Note
that there is a missing day of data for the Zurich machine on the 19th of July.
This was due to an incorrectly configured automation script which was resolved
for the next run.
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Figure 4.15: Mesh size per subnet



Chapter 5

Conclusion

An infrastructure was developed to enable the logging of messages and p2p in-
formation for multiple Ethereum Nodes spread across different machines. This
was done through the modified execution and consensus clients - spygeth and
spyprysm. Both of these are available as Docker containers for easy use by any-
one who wishes to conduct further experimentation in the future.

A Jupyter Notebook was also written in order to process the data and output
the plots related to resource usage, peercounts, peer-table information, message
delays and more as discussed in Chapter 4.

Overall, some interesting patterns in the behaviour of nodes were observed.
There were also some location-based biases which were detected. The preliminary
analyses presented in this project does not show a clear bias in running nodes out
of cloud providers, however it raises interesting questions for further investigation.
Importantly, the work carried out on the infrastructure will allow for further
analysis on different metrics where it might be possible to identify a more concrete
bias experienced by nodes running on major cloud providers.
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Appendix A

Full List of Logged Items

A.1 Execution Client

A.1.1 Info

• Dictionary received from RPC Call. Name, enode, IP etc of execution
client.

A.1.2 TxMsg

• TxHash - Transaction Hash

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.3 GetBlockHeadersMsg

• Message - Includes Request ID, Origin (Hash, Number), Amount, Reverse
(t/f)

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.4 GetBlockBodiesMsg

• Request ID

• GetBlockBodiesRequest - array of all block hashes we request a body for.

A-1



Full List of Logged Items A-2

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.5 GetReceiptsMsg

• Request ID

• GetReceiptsRequest - array of all block hashes we request a receipt for.

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.6 AddPeer

• Peercount

• Peer Details - name, id, address, connection

• Direction - inbound/outbound

• Time - Time.Now()

A.1.7 RemovePeer

• Peercount

• Peer Details - id, address

• Direction - inbound/outbound

• Connection Duration

• Time - Time.Now()

• Disconnect Reason



Full List of Logged Items A-3

A.1.8 PeerTable

• Action - Node Added/Removed

• Node ID, Address

• Timestamp_logged - time.Now()

A.1.9 GetPooledTransactionsMsg

• Request ID

• GetPooledTxRequest - array of all transaction hashes requested.

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.10 PooledTransactionsMsg

• Hashes - array of TxHashes

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.11 BlockBodiesMsg

• Request ID

• Array of blockbodies corresponding to the hashes sent in the GetBlockBod-
iesMsg.

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()



Full List of Logged Items A-4

A.1.12 BlockHeadersMsg

• Request ID

• Array of block headers corresponding to the hashes sent in the GetBlock-
HeadersMsg.

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.13 ReceiptsMsg

• Request ID

• Array of receipts corresponding to the hashes sent in the GetReceiptsMsg.

• Timestamp_received - msg.Time

• Timestamp_logged - time.Now()

A.1.14 NewBlockMsg

This returns an error, so never logged. Support for non-merge networks dropped.

A.1.15 NewBlockHashesMsg

This returns an error, so never logged. Support for non-merge networks dropped.

Note: NodeDataMsg and GetNodeDataMsg were included in the original loggy
implementation, however, as per EIP-4938 these messages are no longer included.

A.2 Consensus Client

A.2.1 Info

• Dictionary received from RPC Call. Name, enode, IP etc of prysm client.

https://eips.ethereum.org/EIPS/eip-4938


Full List of Logged Items A-5

A.2.2 PeerTableLog

• peer ID

• Address

• Peer Added/Removed

• Time of Action - time.Now()

• Implemented in Prune() and Add() functions - status.go

A.2.3 Attestations

• peer ID

• Msg.ID

• Address

• Peer Metadata

• Time of Action - time.Now()

• Attestation

A.2.4 peerInfo

• peer ID

• Address

• Peer Metadata

• State

• Time of Action - time.Now()
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