Peptic ulcer as mediator of the association between risk of gastric cancer and socioeconomic status, tobacco smoking, alcohol drinking, and salt intake

Giulia Collatuzzo¹, Gianfranco Alicandro^{2,3}, Paola Bertuccio^{4,5}, Claudio Pelucchi⁴, Rossella Bonzi⁴, Domenico Palli⁶, Monica Ferraroni⁴, Weimin Ye⁷, Amelie Plymoth⁷, David Zaridze⁸, Dmitry Maximovich⁸, Nuria Aragones^{9,10}, Gemma Castaño-Vinyals^{9,11,12,13} (authorship for study SPAIN 1 to be confirmed by the PIs), Jesus Vioque^{9,14}, Manoli Garcia de la Hera^{9,14}, Zuo-Feng Zhang¹⁵, Jinfu Hu¹⁶, Lizbeth López-Carrillo¹⁷, Malaquias López-Cervantes¹⁸, Michela Dalmartello⁴, Lina Mu¹⁹, Mary H. Ward²⁰, Charles S. Rabkin²⁰, Guo-Pei Yu²¹, M. Constanza Camargo²⁰, Maria Paula Curado²², Nuno Lunet^{23,24,25}, Eva Negri^{1,4}, Carlo La Vecchia⁴, Paolo Boffetta^{1,26}

1 Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy

- 2 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- 3 Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- 4 Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Università degli Studi di Milano, Milan, Italy
- 5 Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- 6 Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network, ISPRO, Florence, Italy
- 7 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- 8 Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Center, Moscow, Russia
- 9 Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- 10 Cancer Epidemiology Section, Public Health Division, Department of Health of Madrid, Spain
- 11 Barcelona Institute for Global Health-ISGlobal, Barcelona, Spain
- 12 IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- 13 Universitat Pompeu Fabra (UPF), Barcelona, Spain
- 14 Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernandez (ISABIAL-UMH), Alicante, Spain
- 15 Department of Epidemiology, UCLA Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- 16 Harbin Medical University, Harbin, China
- 17 Mexico National Institute of Public Health, Morelos, Mexico
- 18 Facultad de Medicina, UNAM. Coyoacán, 04510, Mexico
- 19 Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA

- 20 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
- 21 Medical Informatics Center, Peking University, Peking, China
- 22 Centro Internacional de Pesquisa, A. C. Camargo Cancer Center, São Paulo, Brasil
- 23 EPIUnit Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- 24 Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- 25 Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- 26 Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA

Corresponding author Paolo Boffetta, MD, MPH Stony Brook Cancer Center Stony Brook University Lauterber Dr Stony Brook, NY, 11794 USA Email paolo.boffetta@stonybrookmedicine.edu

Word count Abstract: 207 Text: 2851

Abstract

Peptic ulcer disease (PUD) and gastric cancer (GC) are more prevalent in low socioeconomic status (SES) individuals and share several risk factors. The aim of this study was to investigate the mediating role of PUD in the association between established risk factors and GC. To this aim, we conducted a pooled analysis of 12 studies from the Stomach cancer Pooling (StoP) Project Consortium, including a total of 4,877 GC cases and 11,808 controls. We explored the mediating role of PUD in the association between SES, tobacco smoking, heavy alcohol drinking and salt intake, and GC. Also, we assessed the ORs and 95% CIs of the risk factors and both PUD and GC. Our results showed PUD mediates 36% of the smoking effect mainly among men. Other risk factors were only slightly mediated by PUD (SES 5.3%, heavy alcohol drinking 3.3%, salt intake 2.5%). No significant difference was found when excluding PUD diagnosed within 2 years from GC. Our study provides innovative information on the mechanism of stomach mucosal damage leading to PUD and GC, in particular with respect to the effect of tobacco smoking.

Introduction

Despite its declining incidence and mortality (1), gastric cancer (GC) remains one of the most common neoplasms, representing the fifth most common cancer and the fourth cause of cancer mortality worldwide (2). Its burden concerns especially low socioeconomic status (SES) groups of the population.

Besides the key role of Helicobacter pylori (Hp), lifestyle factors such as smoking, alcohol drinking, low fiber consumption and high red meat and salt intake play an important role in GC occurrence (3,4). Indeed, lifestyle habits have been hypothesized to partly explain the link between GC and low SES. Recently, we described a mediation role of a score combining different lifestyle factors (tobacco smoking, heavy alcohol drinking, low intake of fruit, vegetables, and processed meat and salt), which explained 10% of the effect of low SES among men in studies participating in the Stomach cancer Pooling (StoP) Project Consortium (5). Around 10% of people worldwide develop peptic ulcer disease (PUD) lifelong (6). The discovery of Hp as the main etiological factor of PUD, led to a preventive strategy through eradication of the bacterium with common antibiotics (6) (7). Anyway, PUD remains a severe disease, with a minority of patients necessitating surgery (8).

Nowadays, the challenges are represented by the etiological classification of the disease (9), and the differential diagnosis between neoplastic and preneoplastic conditions. In fact, it is unclear whether the strong association between PUD and GC can be explained by PUD being an ulcerative lesion of the neoplasm, or by the fact that PUD is a separate lesion associated with higher risk of developing GC (10). PUD has strong socioeconomic disparity (11), with higher rates of complications and mortality among disadvantaged subgroups of the population and in less developed countries (12).

The StoP Consortium provides a unique opportunity to address this complex relationship in a large population of GC cases and controls. In particular, we aimed at exploring the mediation role of PUD in the relationship between SES, tobacco smoking, alcohol drinking and salt intake and the risk of GC.

Methods

We used data from the StoP-Project, an international consortium of 34 studies on GC, including individualdata from 13,121 GC cases and 31,420 controls (version 3.2 of the StoP database) (13).

To participate in the consortium, principal investigators of the studies signed a data transfer agreement and provided a copy of the original dataset to the coordinating center. All data were harmonized according to a standard format at the data center (13). The StoP-Project received ethical approval from the University of Milan Institutional Review Board.

For the present analysis, we pooled data from 12 studies with information on PUD, SES, and tobacco smoking (14-25). Details about the studies are in Supplementary Table 1. In addition to excluding studies that did not collected information of one or more of these factors, we excluded those with more than 10% missing values for PUD or SES, as well as 4 studies with reported prevalence of PUD in controls higher than 20% or lower than 1%. Information on alcohol drinking was not available in one of the 12 studies, and that on salt intake in two. In five of the studies information on date of PUD was also available: they were included in a secondary analysis from which subjects with PUD diagnosed within 2 years from date of GC diagnosis or interview were excluded, to address potential reverse causality between PUD and GC.

We considered SES, tobacco smoking, alcohol drinking and salt intake as exposures. To measure SES, we used a variable comprising education, occupation and income, based on study-specific indicators. In preliminary analyses, we also considered the highest attained level of education as proxy of SES; since the results were very close to those based on SES, we do not report them in detail. We generated dichotomous variables for each exposure: low vs medium-high level of SES, based on study-specific categories, never vs ever tobacco smoking, no-moderate alcohol vs heavy alcohol drinking (i.e., 47 or more g ethanol/day), and low-medium vs high consumption of salt, based on study specific tertiles.

The mediator of our analysis was self-reported history of PUD. In some studies, separate information was collected on gastric and duodenal ulcer; however, in the present analyses, PUD accounted for history of either gastric or duodenal ulcer.

First, we estimated the pooled odds ratios (OR) of GC and their corresponding 95% confidence intervals (CI) through multivariable logistic regression models, for each exposure, including SES, smoking status, alcohol drinking, salt intake and history of PUD, as binary exposures. OR among categories of socioeconomic status and tobacco smoking was obtained from a core model including sex, age (<50, 50-60, 61-65, 66-69, 70-74, 75+), study, socioeconomic status and tobacco smoking as explanatory variables. PUD was added to the core model to obtain the OR among subjects with PUD. Alcohol drinking and salt intake was alternatively added

to the core model to obtain the corresponding OR. Second, we used the same analytic approach to investigate the association between the same risk factors and PUD, both among controls only and within the whole study population, adjusting for GC case/control status.

For the mediation analysis, we used the dichotomous variables for PUD and the risk factors described above, and decomposed the total effect of each factor into a natural direct effect and a natural indirect effect, the latter being the effect explained by the mediation effect of PUD, and calculated the proportion of mediation (PM) as the ratio between the log of the natural indirect effect and that of the total effect (26,27). The mediation analysis was performed by using the command *paramed* in STATA (StataCorp etc.) (28).

The following additional analyses were performed to explore the mediating role of PUD: (i) excluding cases and controls with PUD diagnosed within 2 years from GC diagnosis or interview; (ii) stratifying by sex; (iii) considering a subset of nine studies with data available for all risk factors, to increase comparability of results across risk factors.

Results

Table 1 shows the distribution of the main characteristics of the study population. The pooled dataset comprised 16,685 subjects, including 4,877 cases and 11,808 controls. Median age was 64 (IQR 56-71) among cases and 62 (IQR 52-70) among controls. Compared to controls, cases were more often heavy current smokers, heavy alcohol drinkers, with lower SES, and they more often reported history of PUD, while there was only a small difference in salt intake between cases and controls. The overall prevalence of history of PUD (either gastric or duodenal) was 12.0% (19.0% among cases, 9.1% among controls).

Table 2 illustrates the association between each risk factor and GC (i.e. the outcome) and PUD (i.e. the mediator) separately. GC was positively associated PUD, heavy smoking, increasing alcohol consumption, low SES, and increasing salt intake. The OR of GC for history of PUD was 2.36 (95% CI 2.13-2.62). When excluding ulcers diagnosed within 2 years from GC diagnosis (Supplementary table 2), the corresponding OR was 2.12 (95% CI 1.76-2.55).

In the analysis restricted to controls, there was an association between history of PUD and female sex (OR=0.62, 0.53-0.72), older age (p for trend <0.001), SES (0.78, 0.68-0.90) and tobacco smoking (1.78, 1.53-2.08, p<0.001). Those associations were confirmed also in the analysis with cases and controls, after adjusting for case/control status (Supplementary Table 2).

Table 3 illustrates the results of the mediation analysis on the whole study population. The primary analysis revealed that PUD mediated 36.2% of the risk exerted by tobacco smoking. On the other hand, PUD mediated only a small amount of the risk of GC from SES (5.3%), heavy alcohol drinking (3.3%) and salt intake (2.5%).

When the analysis was repeated in the subset of studies with complete information (Table 4), results were confirmed (PMs were: 44.3% for tobacco smoking, 7.7% for SES, 2.0% for heavy alcohol drinking, and 0.8% for salt intake).

Results of the mediation analysis on tobacco smoking stratified by sex are illustrated in Figure 1: among men, the OR of natural direct effect was 1.14, that of natural indirect effect was 1.06 (PM=31.6%), among women, the ORs were 1.00 and 1.03, respectively (PM=88.3%).

The results of the sensitivity analysis excluding subjects whose PUD was diagnosed less than two years before GC or interview, showed substantially comparable results with those of the main analysis (Supplementary Table 3).

7

Discussion

We presented the results of a pooled analysis of 12 studies investigating the mediation role of PUD in the association between several risk factors and GC. This approach provides an original contribution to an understanding of the relationship between PUD and GC, and how established risk factors of GC may exert their effect.

Besides confirming the association with known risk factors, our results indicate that PUD mediates about 36% of the effect of tobacco smoking, while the mediation effect was smaller for the other risk factors. The results were robust to the exclusion of recently diagnosed PUD, arguing against reverse causality in the relationship between PUD and GC.

Our results are in agreement with those of previous studies, that have identified low SES, tobacco smoking, high alcohol drinking and high salt intake as risk factors of GC (3,4,29). Also, we identified a strong association between PUD and GC (10,30). In particular, the risk of GC among subjects with history of PUD remained elevated when considering only PUD diagnosed more than two years before GC diagnosis of interview, despite the fact that several studies indicated that the highest risk of GC occurs in the first 2 years from PUD diagnosis (10,31,32).

Components of SES, including education, occupation and income may be markers of other risk factors of disease (33). Mediation analysis complements statistical adjustment by describing the proportion of risk of disease exerted by a given factor, which is attributable to another factor (the mediator) (26,27).

Both GC and PUD are observed more commonly in the lowest SES strata of the population, representing an important cause of disease disparity (34,35). Education, a major component of SES, is related to conditions and lifestyle factors predisposing to disease (36-39): habits as smoking and alcohol drinking are clustered in less affluent groups, as well as low-quality diet, including highly salted diet (40); low education also correlates with exposure to occupational carcinogens, and with poor hygienic conditions (33). Indeed, higher prevalence of Hp infection, which is the main cause of both PUD and GC, can be observed in middle and low income countries, particularly among subjects living in crowded places, and with no access to potable water (33,41,42).

Based on our analysis, the association between SES and GC is mediated by PUD only to a limited extent. In a previous study, we explored the mediation role of lifestyle factors in the association

between education and GC, without individuating an element justifying this strong and significant relationship (5).

Conversely, PUD mediates the association between tobacco smoking and GC. In particular, about one third of this excess risk of GC due to tobacco smoking appears to be mediated by PUD. This is consistent with the fact that tobacco smoking is strongly linked to PUD. Tobacco smoking may damage gastric mucosa, leading to PUD, by multiple mechanisms, including (i) inhibition of mucus synthesis (ii) inhibition of angiogenesis through the dysregulation of nitric oxide (NO) production (iii) mucosal ischemia due to microvascular alteration (iv) cellular lesions due to increased reactive oxygen species and mechanical effects (43). Long-term smoking increases acid secretion, leading to a lower stomach pH; it also modifies mucus production, reduces mucosal repair, alters microcirculation and significantly reduces blood flow to the gastrointestinal mucosa, which may favor the development of inflammatory diseases. Moreover, nicotine compromise gastric mucosal blood flow, causing also delayed healing and increased relapse of the disease (44).

Elevated alcohol intake was associated to GC in this analysis, as well as in previous analyses based on the StoP Consortium (45), but the association with PUD was not significant. This agrees with a large study from Denmark, that found no relation between alcohol drinking and PUD (46), as well as with a previous review, in which the majority of studies did not associate heavy alcohol drinking with duodenal ulcer (47). As a consequence, PUD did not appear to be an important mediator of the relationship between alcohol drinking and GC risk.

Similarly, elevated salt intake was associated with risk of GC but the association with PUD was weak and non-significant. As a consequence, PUD had no relevant mediating role in the association between high salt intake and GC risk. Several studies reported higher mortality from gastric ulcer (48), but no material relationship with duodenal ulcer in subjects with highly salted diet (49). Salty diet is a probable risk factor of GC (50). Anyway, little is known on the mechanisms beyond this association. An inverse relation between sodium concentrations and Hp growth and virulence factors has been described (51). However, salt may damage gastric mucosa by potentiating Hp carcinogenicity (52), though the increase of CagA protein transcription, associated with higher risk of PUD and GC (53,54); also, salt alters gastric osmolarity and time of stomach emptying, prolonging the contact of stomach mucosa with potential harmful substances (52). A study based on Mongolian gerbil model has shown higher risk of gastric ulceration in Hp infected animals assigned

to a highly-salted diet program, with salt being related to mucous microenvironment impairment predisposing to Hp damage (55). Cag-A up-regulation was confirmed in bacterial culture (56).

The results of the stratified analysis by sex suggest a higher role of PUD in the association between tobacco smoking and GC among women compared to men, although the overall effect was stronger in the latter. This is likely explained by the large number of men who smoked (71.7% of controls) compared to women (27.9%) in this population.

Our results imply that identification and treatment of PUD among smokers may be of particular importance as a tool to reduce GC risk. Conversely, this does not appear to be the case for two other behavior-related risk factors of GC, i.e., heavy alcohol and salt intake. The sensitivity analysis performed excluding PUD diagnosed in the 2 years before GC diagnosis supports the main findings, confirming that PUD a separate entity which anticipates the development of stomach malignancy rather than a marker of incipient GC.

Data collection was based on self-reported information on exposure to risk factors, including PUD, which may partially affect the analysis through recall bias. The direction and magnitude of this bias depends on the degree of misclassification of information on PUD and other risk factors, and whether this was differential between GC cases and controls, making its effect difficult to predict. Moreover, the included studies are of retrospective case-control design, therefore prone to selection bias. This is especially relevant for hospital-based studies (14,16,19,23,24). However, the findings are not heterogeneous between hospital and population-based controls. Furthermore, we did not have accurate information on Hp status for a large part of the subjects included in the analysis, which prevented us from adjusting the analysis for this important risk factor of both PUD and GC. Although Hp infection does not appear to be associated with tobacco smoking (57), its persistence may be (58), suggesting that some residual confounding on the role of PUD as mediator of the carcinogenic effect of tobacco smoking cannot be excluded. Next, we pooled data of studies conducted in a large timeframe (1985-2012), entailing some heterogeneity in diagnostic criteria for both PUD and GC. This issue was addressed by adjusting for the single included studies in the different models. Finally, we were not able to distinguish gastric and duodenal ulcers. Despite this, our aim was to study PUD overall, and we were able to account for both types of ulcers.

The present study has several strengths. The pooled analysis allowed the investigation on a large set of cases of GC. Also, we put together detailed sociodemographic, clinical and lifestyle-related data,

enabling to perform accurate analyses. We followed a well assessed method for mediation analysis, and we performed sensitivity analyses to assess the robustness of our results. Additionally, we assessed the robustness of our results by conducting several sensitivity analyses, which overall highlighted the overall validity of our investigation.

In conclusion, we offer original and new insight to a stomach disease epidemiology, which describes how established risk factors act in promoting GC.

This study contributes to clarifying the mechanisms underlying gastric carcinogenesis from an epidemiologic perspective. PUD appears to mediate about one third of the excess risk exerted by tobacco smoking on GC, representing a clinical flag for surveillance among smokers. Conversely, other known risk factors of GC do not appear to be mediated by PUD.

Authors' contributions: Conception and design of study: GC, GA, PBe, EN, PBo; acquisition of data: DP, MF, WY, AP, DZ, DM, NA, GCV, JV, MGH, ZFZ, JH, LLC, MLC, MD, LM, MHW, CSR, GPY, MCC, MPC, NL, EN, CLV; management, analysis and interpretation of data: GC, GA, PBe, CP, RB, PBo; drafting the manuscript: GC, PBo; revising the manuscript critically for important intellectual content: GA, PBe, CP, EN, CLV; approval of final manuscript: all authors.

Conflict of interest: The authors have no conflicts to report.

Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request and approval by members of StoP-project Consortium.

Ethics Statement: The StoP Project has been approved by the Institutional Review Board of the University of Milan. The parent studies have been approved by relevant Institutional Review Boards.

Funding: This study was funded by the Associazione Italiana per la Ricerca sul Cancro (AIRC), Project no. 21378 (Investigator Grant). The authors thank the European Cancer Prevention (ECP) Organization for providing support for the project meetings.

Acknowledgement: NA

References

- Zhang T, Chen H, Zhang Y, et al. Global changing trends in incidence and mortality of gastric cancer by age and sex, 1990-2019: Findings from Global Burden of Disease Study. J Cancer. 2021;12:6695-705.
- 2- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209-49.
- 3- Cavatorta O, Scida S, Miraglia C, et al. Epidemiology of gastric cancer and risk factors. Acta Biomed. 2018;89:82-7.
- 4- Lyons K, Le LC, Pham YT, et al. Gastric cancer: epidemiology, biology, and prevention: a mini review. Eur J Cancer Prev. 2019;28:397-412.
- 5- Alicandro G, Bertuccio P, Collatuzzo G, et al. The mediating role of combined lifestyle factors on the relationship between education and gastric cancer in the Stomach cancer Pooling (StoP) Project. Submitted for publication.
- 6- Lanas A, Chan FKL. Peptic ulcer disease. Lancet. 2017;390:613-24.
- 7- Talamini G, Tommasi M, Amadei V, et al. Risk factors of peptic ulcer in 4943 inpatients. J Clin Gastroenterol. 2008;42:373-80.
- 8- Howley IW, Bruns BR, Tesoriero RB, et al. Statewide Analysis of Peptic Ulcer Disease: As Hospitalizations Decrease, Procedural Volume Remains Steady. Am Surg. 2019;85:1028-32.
- 9- Quan C, Talley NJ. Management of peptic ulcer disease not related to Helicobacter pylori or NSAIDs. Am J Gastroenterol. 2002;97:2950-61.
- 10- Lee TY, Wang CB, Chen TT, et al. A tool to predict risk for gastric cancer in patients with peptic ulcer disease on the basis of a nationwide cohort. Clin Gastroenterol Hepatol. 2015;13:287-93.
- 11- Havens JM, Castillo-Angeles M, Nitzschke SL, Salim A. Disparities in peptic ulcer disease: A nationwide study. Am J Surg. 2018;216:1127-8.
- 12- Stewart B, Khanduri P, McCord C, Ohene-Yeboah M, Uranues S, Vega Rivera F, Mock C. Global disease burden of conditions requiring emergency surgery. Br J Surg. 2014;101:e9-22.
- 13- Pelucchi C, Lunet N, Boccia S, et al. The stomach cancer pooling (StoP) project: study design and presentation. Eur J Cancer Prev. 2015;24:16-23.
- 14- La Vecchia C, D'Avanzo B, Airoldi L, Braga C, Decarli A. Nitrosamine intake and gastric cancer risk. Eur J Cancer Prev. 1995;4:469-74.
- 15- Deandrea S, Foschi R, Galeone C, La Vecchia C, Negri E, Hu J. Is temperature an effect modifier of the association between green tea intake and gastric cancer risk? Eur J Cancer Prev. 2010;19:18-22.
- Lucenteforte E, Scita V, Bosetti C, Bertuccio P, Negri E, La Vecchia C. Food groups and alcoholic beverages and the risk of stomach cancer: a case-control study in Italy. Nutr Cancer. 2008;60:577-84.

- 17- Buiatti E, Palli D, Decarli A, et al. A case-control study of gastric cancer and diet in Italy. Int J Cancer. 1989;44:611-6.
- 18- Mu LN, Lu QY, Yu SZ, et al. Green tea drinking and multigenetic index on the risk of stomach cancer in a Chinese population. Int J Cancer. 2005;116:972-83.
- 19- Zaridze D, Borisova E, Maximovitch D, Chkhikvadze V. Aspirin protects against gastric cancer: results of a case-control study from Moscow, Russia. Int J Cancer. 1999;82:473-6.
- 20- Setiawan VW, Zhang ZF, Yu GP, et al. Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int J Cancer. 2001;92:600-4.
- 21- Castaño-Vinyals G, Aragonés N, Pérez-Gómez B, et al. Population-based multicase-control study in common tumors in Spain (MCC-Spain): rationale and study design. Gac Sanit. 2015;29:308-15. Erratum in: Gac Sanit. 2018;32:501.
- 22- Ye W, Ekström AM, Hansson LE, Bergström R, Nyrén O. Tobacco, alcohol and the risk of gastric cancer by sub-site and histologic type. Int J Cancer. 1999;83:223-9.
- 23- Santibañez M, Alguacil J, de la Hera MG, Navarrete-Muñoz EM, et al. Occupational exposures and risk of stomach cancer by histological type. Occup Environ Med. 2012;69:268-75.
- 24- López-Carrillo L, López-Cervantes M, Robles-Díaz G, et al. Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int J Cancer. 2003;106:277-82.
- 25- Ward MH, Sinha R, Heineman EF, et al. Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preference. Int J Cancer. 1997;71:14-9.
- 26- Vanderweele TJ, Vansteelandt S. Conceptual issues concerning mediation, interventions and composition. Stat Interface. 2009;2:457–468.
- 27- Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18:137-50. Erratum in: Psychol Methods. 2013;18:474.
- 28- Emsley R, Liu H. PARAMED: Stata module to perform causal mediation analysis using parametric regression models. Statistical software components. Boston: Boston College Department of Economics; 2013.
- 29- De Martel C, Parsonnet J. Stomach Cancer. In Thun M, Linet MS, Cerhan JR, Haiman CA, Schottenfeld D. Cancer Epidemiology and Prevention. New York, NY: Oxford University Press, 2018.
- 30- Hwang JJ, Lee DH, Lee AR, et al. Characteristics of gastric cancer in peptic ulcer patients with Helicobacter pylori infection. World J Gastroenterol. 2015;21:4954-60.
- 31- Hansson LE, Nyrén O, Hsing AW, et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med. 1996;335:242-9.
- 32- Molloy RM, Sonnenberg A. Relation between gastric cancer and previous peptic ulcer disease. Gut. 1997;40:247-52.

- 33- Kogevinas M, Pearce N, Susser M, Boffetta P, Eds. Social Inequalities and Cancer. IARC Scientific Publication No. 138. Lyon, France: IARC, 1997.
- 34- Alicandro G, Frova L, Sebastiani G, El Sayed I, Boffetta P, La Vecchia C. Educational inequality in cancer mortality: a record linkage study of over 35 million Italians. Cancer Causes Control. 2017;28:997-1006.
- 35- Lagergren J, Andersson G, Talback M, et al. Marital status, education, and income in relation to the risk of esophageal and gastric cancer by histological type and site. Cancer. 2016;122:207-12.
- 36- Sarkar S, Dauer MJ, In H. Socioeconomic Disparities in Gastric Cancer and Identification of a Single SES Variable for Predicting Risk. J Gastrointest Cancer. 2021;10.1007/s12029-020-00564-z.
- 37- Yegen BC. Lifestyle and Peptic Ulcer Disease. Curr Pharm Des. 2018;24:2034-40.
- 38- Havens JM, Castillo-Angeles M, Nitzschke SL, Salim A. Disparities in peptic ulcer disease: A nationwide study. Am J Surg. 2018;216:1127-8.
- 39- Rota M, Alicandro G, Pelucchi C, et al. Education and gastric cancer risk-An individual participant data meta-analysis in the StoP project consortium. Int J Cancer. 2020;146:671-81.
- 40- Schuit AJ, van Loon AJ, Tijhuis M, Ocké M. Clustering of lifestyle risk factors in a general adult population. Prev Med. 2002;35:219-24.
- 41- Malaty HM, Graham DY. Importance of childhood socioeconomic status on the current prevalence of Helicobacter pylori infection. Gut. 1994;35:742-5.
- 42- Laszewicz W, Iwańczak F, Iwańczak B; Task Force of the Polish Society of Gastroenterology; Task Force of the Polish Society of Gastroenterology. Seroprevalence of Helicobacter pylori infection in Polish children and adults depending on socioeconomic status and living conditions. Adv Med Sci. 2014;59:147-50.
- 43- Berkowitz L, Schultz BM, Salazar GA, et al. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn's Disease and Ulcerative Colitis. Front Immunol. 2018;9:74.
- 44- Maity P, Biswas K, Roy S, Banerjee RK, Bandyopadhyay U. Smoking and the pathogenesis of gastroduodenal ulcer recent mechanistic update. Mol Cell Biochemistry 2003;253:329-38.
- 45- Rota M, Pelucchi C, Bertuccio P, et al. Alcohol consumption and gastric cancer risk-A pooled analysis within the StoP project consortium. Int J Cancer. 2017 Nov 15;141(10):1950-1962.
- 46- Rosenstock S, Jørgensen T, Bonnevie O, Andersen L. Risk factors for peptic ulcer disease: a population based prospective cohort study comprising 2416 Danish adults. Gut. 2003;52:186-93.
- 47- Franke A, Teyssen S, Singer MV. Alcohol-related diseases of the esophagus and stomach. Dig Dis. 2005;23:204-13.
- 48- Sonnenberg A. Dietary salt and gastric ulcer. Gut. 1986;27:1138-42. Erratum in: Gut 1986;27:1523.
- 49- Stemmermann G, Haenszel W, Locke F. Epidemiologic pathology of gastric ulcer and gastric carcinoma among Japanese in Hawaii. J Natl Cancer Inst. 1977;58:13-20.
- 50- https://www.wcrf.org/wp-content/uploads/2021/01/CUP-Strong-Evidence-Matrix.pdf

- 51- Gancz H, Jones KR, Merrell DS. Sodium chloride affects Helicobacter pylori growth and gene expression. J Bacteriol. 2008;190:4100-5.
- 52- Niv Y, Banić M. Gastric barrier function and toxic damage. Dig Dis. 2014;32:235-42.
- 53- Palli D, Menegatti M, Masala G, et al. Helicobacter pylori infection, anti-cagA antibodies and peptic ulcer: a case-control study in Italy. Aliment Pharmacol Ther. 2002;16:1015-20.
- 54- Nomura AM, Pérez-Pérez GI, Lee J, Stemmermann G, Blaser MJ. Relation between Helicobacter pylori cagA status and risk of peptic ulcer disease. Am J Epidemiol. 2002;155:1054-9.
- 55- Kato S, Tsukamoto T, Mizoshita T, et al. High salt diets dose-dependently promote gastric chemical carcinogenesis in Helicobacter pylori-infected Mongolian gerbils associated with a shift in mucin production from glandular to surface mucous cells. Int J Cancer. 2006;119:1558-66.
- 56- Loh JT, Torres VJ, Cover TL. Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res. 2007;67:4709-15.
- 57- Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000;22:283–97.
- 58- Yu J, Yang P, Qin X, Li C, Lv Y, Wang X. Impact of smoking on the eradication of Helicobacter pylori. Helicobacter. 2021:e12860.

	All subjects (n=16,685)				
Characteristics	Controls	Cases			
Sex					
Male	6,923 (58.6)	3,098 (63.5)			
Female	4,885 (41.4)	1,779 (36.5)			
Age					
<50	2,434 (20.6)	634 (13.0)			
50-60	2,886 (24.5)	1,211 (24.8)			
61-65	1,866 (15.8)	824 (16.9)			
66-69	1,446 (12.3)	686 (14.1)			
70-74	1,667 (14.1)	869 (17.8)			
>=75	1,503 (12.7)	653 (13.4)			
History of PUD					
No	10,656 (90.9)	3,902 (81.0)			
Yes	1,061 (9.1)	915 (19.0)			
History of PUD >2 years before cancer diagnosis/interview No	3,858 (93.3)	1,674 (85.8)			
Yes	277 (6.7)	278 (14.2)			
Socioeconomic status					
High	6,009 (51.3)	2,998 (62.0)			
Medium	3,654 (31.2)	1,370 (28.3)			
Low	2,060 (17.6)	468 (9.7)			
Tobacco smoking					
Never	5,429 (46.5)	2,066 (43.1)			
Former	3,161 (27.1)	1,236 (25.8)			
Low	1,018 (8.7)	418 (8.7)			
Medium	1,237 (10.6)	626 (13.1)			
High	820 (7.0)	820 (9.3)			
Alcohol					
Never	3,000 (28.2)	1,219 (26.7)			
Low	3,415 (32.2)	1,145 (25.4)			
Medium	2,918 (27.5)	1,523 (33.1)			
High	1,290 (12.1)	685 (15.0)			
Salt					
Low	3,016 (33.9)	932 (29.6)			
Medium	3,609 (40.6)	1,416 (44.9)			
High	2,264 (25.5)	806 (25.6)			

Table 1: Characteristics of the study population by selected covariates.

Numbers may not sum up with the total of study subjects because of missing data PUD, peptic ulcer disease

Table 2: Odds ratios and 95% confidence intervals of the association between selected characteristics and gastric cancer and peptic ulcer disease

	Gastric cancer	Peptic ulcer disease§
Characteristics	OR, 95% CI	OR, 95% CI
PUD^a		
No	1.0 (Ref)	-
Yes	2.36 (2.13-2.62)	
Socioeconomic status ^b		
Low	1.0 (Ref)	1.0 (Ref)
Medium-high	0.67 (0.61-0.72)	0.78 (0.68-0.90)
Tobacco smoking ^b		
Never	1.0 (Ref)	1.0 (Ref)
Ever	1.15 (1.06-1.25)	1.78 (1.53-2.08)
Alcohol drinking ^c		
No	1.0 (Ref)	1.0 (Ref)
Yes	1.24 (1.10-1.40)	1.08 (0.87-1.36)
Salt intake ^d		
Low	1.0 (Ref)	1.0 (Ref)
medium-high	1.29 (1.16-1.43)	1.07 (0.90-1.27)

^a Odds ratio obtained through a logistic regression model including sex, age, study, socioeconomic status, tobacco smoking and peptic ulcer disease as explanatory variables.

^b Odds ratio obtained through a logistic regression model including sex, age, study, socioeconomic status and tobacco smoking as explanatory variables.

^c Odds ratio obtained through a logistic regression model including sex, age, study, socioeconomic status, tobacco smoking and alcohol drinking as explanatory variables

^d Odds ratio obtained through a logistic regression model including sex, age, study, socioeconomic status, tobacco smoking and salt intake as explanatory variables

OR, odds ratio CI, confidence interval PUD, peptic ulcer disease Ref, reference category § analysis restricted to controls

	Socioeconomic status	Tobacco smoking	Heavy alcohol drinking*	Salt intake*
	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
NDE	0.67 (0.62-0.73)	1.09 (1.00-1.19)	1.23 (1.09-1.39)	1.28 (1.16-1.42)
NIE	0.98 (0.96-0.99)	1.05 (1.04-1.06)	1.01 (0.99-1.02)	1.01 (0.99-1.02)
TE	0.66 (0.60-0.72)	1.15 (1.06-1.25)	1.24 (1.09-1.41)	1.29 (1.16-1.43)
PM	5.3%	36.2%	3.3%	2.5%

Table 3. Analysis of mediation effect of peptic ulcer disease on the association between selected risk factors and gastric cancer (all studies)

*Analyses were conducted excluding studies with missing information for the exposure OR, odds ratio

CI, confidence interval

NDE, natural direct effect

NIE, natural indirect effect

TE, total effect

PM, proportion of mediation

	Socioeconomic status	Tobacco smoking	Heavy alcohol drinking	Salt intake
	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
NDE	0.73 (0.66-0.80)	1.07 (0.97-1.19)	1.25 (1.10-1.43)	1.26 (1.13-1.40)
NIE	0.97 (0.96-0.99)	1.06 (1.04-1.07)	1.00 (0.99-1.02)	1.00 (0.99-1.01)
TE	0.71 (0.64-0.78)	1.13 (1.03-1.25)	1.26 (1.11-1.43)	1.26 (1.14-1.40)
PM	7.7%	44.3%	2.0%	0.8%

Table 4. Analysis of mediation effect of peptic ulcer disease on the association between selected risk factors and gastric cancer (subset of studies with information on all risk factors).

OR, odds ratio

CI, confidence interval

NDE, natural direct effect NIE, natural indirect effect

TE, total effect PM, proportion of mediation

20

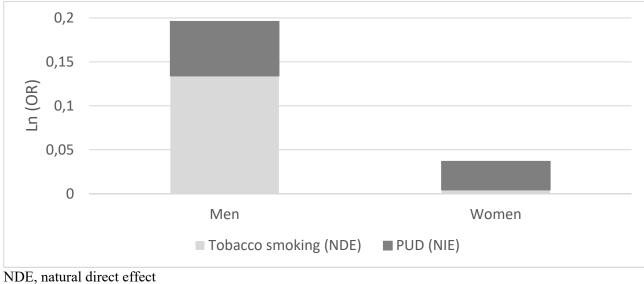


Figure 1: Contribution of PUD as a mediator to the association between tobacco smoking in gastric cancer, by sex.

NDE, natural direct effect NIE, natural indirect effect PUD, peptic ulcer disease

Study location	Period of enrolment	Design	N cases/controls	Reference
Milan, Italy‡	1985–1997	Н	769/2,081	(14)
Harbin, China	1987–1989	Р	266/533	(15)
Milan, Italy‡	1997–2007	Н	230/547	(16)
Four areas, Italy*	1985–1987	Р	1,016/1,159	(17)
Taixing, Jiangsu, China	2000	Р	206/415	(18)
Moscow, Russia‡	1996–1997	Н	450/611	(19)
Yangzhong, China†	1995	Р	133/433	(20)
Ten provinces, Spain	2008–2012	Р	441/3,440	(21)
Five counties, Sweden*	1989–1995	Р	561/1,164	(22)
Valencia, Spain‡	1995-1999	Н	401/455	(23)
3 areas, Mexico	1994-1996	Н	234/468	(24)
Nebraska, USA‡	1988-1993	Р	170/502	(25)

Supplementary Table 1. Characteristics of the studies included in the pooled analysis.

* Study without information on salt intake.† Study without information on alcohol drinking.

Study with information on date of ulcer P, population-based study

H, hospital-based study

Supplementary Table 2: Odds ratios and 95% confidence intervals of the association between selected characteristics and peptic ulcer disease – results of analysis including GC cases and controls

Characteristics	OR (95% CI)
Socioeconomic status ^a	
Low	1.0 (Ref)
Medium-high	0.88 (0.78-0.99)
Tobacco smoking ^a	
Never	1.0 (Ref)
Ever	1.79 (1.59-2.01)
Alcohol drinking ^b	
No	1.0 (Ref)
Yes	1.11 (0.94-1.31)
Salt intake ^c	
Low	1.0 (Ref)
medium-high	1.01 (0.88-1.16)

^a Odds ratio obtained through a logistic regression model including sex, age, study, GC case/control status, socioeconomic status and tobacco smoking as explanatory variables.

^b Odds ratio obtained through a logistic regression model including sex, age, study, GC case/control status, socioeconomic status, tobacco smoking and alcohol drinking as explanatory variables

^c Odds ratio obtained through a logistic regression model including sex, age, study, GC case/control status, socioeconomic status, tobacco smoking and salt intake as explanatory variables

OR, odds ratio CI, confidence interval Ref, reference category GC, gastric cancer * variables added individually to the main model Supplementary Table 3. Analysis of mediation effect of peptic ulcer disease on the association between selected risk factors and gastric cancer (subset of studies with information on date of ulcer).

	Socioeconomic status	Tobacco smoking	Heavy alcohol drinking	Salt intake
	OR	OR	OR	OR
All PUD				
NDE	0.76 (0.60-0.87)	1.10 (0.96-1.25)	1.14 (0.98-1.31)	1.32 (1.16-1.51)
NIE	0.97 (0.94-1.00)	1.03 (1.01-1.04)	1.00 (0.98-1.02)	1.00 (0.98-1.02)
TE	0.73 (0.63-0.85)	1.13 (0.99-1.29)	1.14 (0.98-1.31)	1.32 (1.16-1.51)
PM	10.2%	22.4%	2.2%	0.0%
PUD dia	agnosed >2 years be	fore cancer diagnosis/in	iterview	
NDE	0.75 (0.65-0.86)	1.09 (0.95-1.24)	1.12 (0.97-1.29)	1.36 (1.19-1.55)
NIE	0.98 (0.96-1.00)	1.02(1.01-1.04)	1.00 (0.98-1.02)	1.00 (0.88-1.01)
TE	0.73 (0.63-0.85)	1.11 (0.97-1.27)	1.12 (0.97-1.30)	1.35 (1.18-1.55)
PM	6.4%	33.9%	0.0%	0.0%

OR, odds ratio

PUD, peptic ulcer disease

NDE, natural direct effect

NIE, natural indirect effect

TE, total effect

PM, proportion of mediation

History of peptic					
study		2			
1	2,549 89.50	299 10.50	2,848		
	705 90.73	72 9.27	100.00		
9	948	101	1,049		
	90.37	9.63	100.00		
13	474	46	520		
	91.15	8.85	100.00		
21	3,402	469	3,871		
	87.88	12.12	100.00		
22	1,447	274	1,721		
	84.08	15.92	100.00		
23	726	127	853		
	85.11	14.89	100.00		
27	571	100	671		
	85.10	14.90	100.00		
	227 50.22	225 49.78	452		
	189 67.74	90 32.26	100.00		
	18	438	456		
	3.95	96.05	100.00		
32	547	82	629		
	86.96	13.04	100.00		
36	1,102	4	1,106		
	99.64	0.36	100.00		
Total	12,90	5 2,327 15.28	15,23		

----+

MEDIATION ANALYSIS BY ULCER TYPE: GASTRIC (vg2_new) & DUODENAL (vg8_new)

Type of ulcer	SES	SMK	ALCOHOL	SALT
Gastric	4.6%	19.1%	0%	6.7%
Duodenal	0.8%	16.1%	3.7%	0%

NB: the number of studies included, indicated by the variable va2_N, varies a lot and for the last two exposures is markedly reduced when considering each type of ulcer

. paramed val, avar(ses_dico) mvar(vg2_new) cvars(va2_2 va2_5 va2_8 va2_9 va2_13 va2_22 va2_32 vb1
> age_1-age_5 smk_dico) a0(0) a1(1) m(1) yreg(logistic) mreg(logistic) nointer case

Iteration	0:	log	likelihood	=	-6461.3363
Iteration	1:	log	likelihood	=	-6096.4103
Iteration	2:	log	likelihood	=	-6091.5848
Iteration	3:	log	likelihood	=	-6091.5782

Logistic regression Log likelihood = -6091.5782				LR ch	r of obs = i2(16) = > chi2 = o R2 =	10086 739.52 0.0000 0.0572
val	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ses_dico vg2_new va2_2 va2_5 va2_8 va2_9 va2_13 va2_22 va2_32 vb1 age_1 age_2 age_3 age_4 age_5 smk_dico _cons	4598254 .9884914 .2976286 .6033008 .2831627 .9051311 1057111 1732004 0516461 0676743 .5534439 .658837 .7546822 .7903938 .7814204 .1139019 -1.313889	.0529631 .0776984 .0893321 .0646006 .098767 .0830952 .1178312 .0751801 .1208655 .0520342 .0705008 .0780806 .084119 .082398 .0971365 .0509282 .1162034	-8.68 12.72 3.33 9.34 2.87 10.89 -0.90 -2.30 -0.43 -1.30 7.85 8.44 8.97 9.59 8.04 2.24 -11.31	$\begin{array}{c} 0.000\\ 0.000\\ 0.001\\ 0.004\\ 0.000\\ 0.370\\ 0.021\\ 0.669\\ 0.193\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.025\\ 0.000\\ \end{array}$	5636311 .8362053 .122541 .476686 .0895831 .7422675 336656 3205507 2885381 1696594 .4152649 .5058019 .5898119 .6288967 .5910363 .0140845 -1.541643	3560197 1.140778 .4727163 .7299157 .4767424 1.067995 .1252338 0258501 .1852458 .0343108 .6916229 .8118721 .9195525 .9518909 .9718045 .2137193 -1.086134
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Logistic regre	log likeliho log likeliho log likeliho log likeliho log likeliho log likeliho	pod = -1380. pod = -1298. pod = -1276. pod = -1276. pod = -1276.	5431 0339 9076 3191 3156	Numbe LR ch	r of obs = i2(15) = > chi2 =	6663 208.45 0.0000
Log likelihood	A = -1276.3156	5		Pseud	o R2 =	0.0755
vg2_new	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ses_dico va2_2 va2_5 va2_8 va2_9 va2_9 va2_13 va2_22	3337285 -1.390771 2667684 0205889 1712079 .1893558 .6389509	.1380889 .4277827 .1921354 .2766695 .2886609 .3016974 .1650293	-2.42 -3.25 -1.39 -0.07 -0.59 0.63 3.87	0.016 0.001 0.165 0.941 0.553 0.530 0.000	6043778 -2.229209 6433468 5628511 7369729 4019603 .3154995	0630792 5523321 .10981 .5216733 .3945571 .7806719 .9624024

va2_32	.9545379	.2327809	4.10	0.000	.4982957	1.41078
vb1	4708851	.1394776	-3.38	0.001	7442562	197514
age_1	.4999147	.211236	2.37	0.018	.0858997	.9139296
age_2	.8681748	.2188765	3.97	0.000	.4391848	1.297165
age_3	.9416078	.231743	4.06	0.000	.4873999	1.395816
age_4	1.06603	.2220013	4.80	0.000	.6309158	1.501145
age_5	1.088583	.2338092	4.66	0.000	.6303253	1.54684
smk_dico	.4201382	.13064	3.22	0.001	.1640884	.676188
_cons	-3.199394	.3050865	-10.49	0.000	-3.797352	-2.601435
	Estimate	Std Err	P> z	[95% Cc	onf Interval	.]
age_5 smk_dico	1.088583 .4201382 -3.199394	.2338092 .13064 .3050865	4.66 3.22 -10.49	0.000 0.001 0.000	.6303253 .1640884 -3.797352	1.54 .676 -2.601

+					
cde	.63139387	.05296305	0.000	.56913763	.70046014
nde	.63139387	.05296305	0.000	.56913763	.70046014
nie	.97879397	.00880892	0.015	.96203966	.99584005
mte	.61800451	.05369854	0.000	.55626602	.6865952

. paramed val, avar(ses_dico) mvar(vg8_new) cvars(va2_5 va2_9 va2_13 va2_32 vb1 age_1-age_5 smk_ > dico) a0(0) a1(1) m(1) yreg(logistic) mreg(logistic) nointer case

Iteration	0:	log	likelihood	=	-4538.5335
Iteration	1:	log	likelihood	=	-4259.5752
Iteration	2:	log	likelihood	=	-4254.6498
Iteration	3:	log	likelihood	=	-4254.6382

Logistic regression

Log likelihood = -4254.6382

Number of obs	=	7040
LR chi2(13)	=	567.79
Prob > chi2	=	0.0000
Pseudo R2	=	0.0626

val	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ses_dico	4971973	.0644903	-7.71	0.000	6235959	3707986
vg8_new	.2596742	.1018385	2.55	0.011	.0600745	.459274
va2_5	.547338	.065352	8.38	0.000	.4192505	.6754255
va2_9	.9343806	.0856597	10.91	0.000	.7664906	1.102271
va2_13	0946726	.1184949	-0.80	0.424	3269183	.137573
va2_32	.0463506	.1238307	0.37	0.708	1963532	.2890543
vb1	1976719	.0629412	-3.14	0.002	3210344	0743093
age_1	.6284151	.082206	7.64	0.000	.4672942	.7895359
age_2	.8892968	.0905964	9.82	0.000	.711731	1.066863
age_3	.9114648	.0975249	9.35	0.000	.7203195	1.10261
age_4	1.034202	.0961723	10.75	0.000	.8457073	1.222696
age_5	.9095407	.1246505	7.30	0.000	.6652302	1.153851
smk_dico	.0461955	.0630348	0.73	0.464	0773505	.1697414
_cons	-1.147424	.1363367	-8.42	0.000	-1.41464	8802093

Iteration	0:	log	likelihood	=	-1030.6692
Iteration	1:	log	likelihood	=	-989.78874
Iteration	2:	log	likelihood	=	-986.29117
Iteration	3:	log	likelihood	=	-986.26368
Iteration	4:	log	likelihood	=	-986.26367

Log likelihood = -986.26367

Number of obs	=	4607
LR chi2(12)	=	88.81
Prob > chi2	=	0.0000
Pseudo R2	=	0.0431

vg8_new	Coef.	Std. Err.	 Z	₽> z	[95% Conf.	Interval]
ses_dico va2_5 va2_9 va2_13 va2_32 vb1 age_1 age_2 age_3	2809581 .4292715 4028762 .4649012 .0119995 4131191 .2373884 .3915244 .3222319	.1449145 .1550302 .2759516 .23409 .3017791 .161516 .1838753 .2093405 .2353428	-1.94 2.77 -1.46 1.99 0.04 -2.56 1.29 1.87 1.37	0.053 0.006 0.144 0.047 0.968 0.011 0.197 0.061 0.171	5649853 .1254178 9437314 .0060932 5794767 7296847 1230006 0187754 1390314	.0030691 .7331252 .1379791 .9237092 .6034758 0965535 .5977773 .8018243 .7834953

age_5 smk_dico _cons	1264574 .6344828 -2.79933	.3364219 .1622263 .3274723	-0.38 3.91 -8.55	0.707 0.000 0.000	7858321 .3165252 -3.441164	.5329174 .9524405 -2.157496
	Estimate	Std Err	P> z	[95% Conf	Interval	.]
cde nde nie mte	.60823299 .60823299 .9960751 .60584574	.06449029 .06449029 .00879351 .06507067	0.000 0.000 0.655 0.000	.53601226 .53601226 .97905457 .53330147	5 .6901845 7 1.013391	52 .5

cde:controlled direct effect, nde:natural direct effect, nie:natural indirect effect, mte:marginal total effect

paramed val, avar(smk_dico) mvar(vg2_new) cvars(va2_2 va2_5 va2_8 va2_9 va2_13 va2_22 va2_32 vb1 > age_1-age_5 ses_dico) a0(0) a1(1) m(1) yreg(logistic) mreg(logistic) nointer case

Number of obs = 10086

Number of obs = 6663

Iteration	0:	log	likelihood	=	-6461.3363
Iteration	1:	log	likelihood	=	-6096.4103
Iteration	2:	log	likelihood	=	-6091.5848
Iteration	3:	log	likelihood	=	-6091.5782

Logistic regression

Log likelihood	a = -6091.5782	2			112(16) > ch12 lo R2	= =	739.52 0.0000 0.0572
val	Coef.	Std. Err.			[95%	Conf.	Interval]
smk_dico vq2 new	.1139019 .9884914	.0509282 .0776984	2.24 12.72	0.025	.0140		.2137193 1.140778
va2_2	.2976286	.0893321	3.33	0.001	.122	541	.4727163
va2_5	.6033008	.0646006	9.34	0.000	.476	686	.7299157

va2_5	.6033008	.0646006	9.34	0.000	.476686	.7299157
va2_8	.2831627	.098767	2.87	0.004	.0895831	.4767424
va2_9	.9051311	.0830952	10.89	0.000	.7422675	1.067995
va2_13	1057111	.1178312	-0.90	0.370	336656	.1252338
va2_22	1732004	.0751801	-2.30	0.021	3205507	0258501
va2_32	0516461	.1208655	-0.43	0.669	2885381	.1852458
vb1	0676743	.0520342	-1.30	0.193	1696594	.0343108
age_1	.5534439	.0705008	7.85	0.000	.4152649	.6916229
age_2	.658837	.0780806	8.44	0.000	.5058019	.8118721
age_3	.7546822	.084119	8.97	0.000	.5898119	.9195525
age_4	.7903938	.082398	9.59	0.000	.6288967	.9518909
age_5	.7814204	.0971365	8.04	0.000	.5910363	.9718045
ses_dico	4598254	.0529631	-8.68	0.000	5636311	3560197
_cons	-1.313889	.1162034	-11.31	0.000	-1.541643	-1.086134
Iteration 0:	log likeliho	pod = -1380	.5431			

1001001011	0	- C - J	1110111000a		1000.0101
Iteration	1:	log	likelihood	=	-1298.0339
Iteration	2:	log	likelihood	=	-1276.9076
Iteration	3:	log	likelihood	=	-1276.3191
Iteration	4:	log	likelihood	=	-1276.3156
Iteration	5:	log	likelihood	=	-1276.3156

Logistic regression

	LR chi2(15) Prob > chi2	=	208.45 0.0000
Log likelihood = -1276.3156	Pseudo R2	=	0.0755

vg2_new	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
smk_dico	.4201382	.13064	3.22	0.001	.1640884	.676188
va2_2	-1.390771	.4277827	-3.25	0.001	-2.229209	5523321
va2_5	2667684	.1921354	-1.39	0.165	6433468	.10981
va2_8	0205889	.2766695	-0.07	0.941	5628511	.5216733
va2_9	1712079	.2886609	-0.59	0.553	7369729	.3945571
va2_13	.1893558	.3016974	0.63	0.530	4019603	.7806719
va2_22	.6389509	.1650293	3.87	0.000	.3154995	.9624024
va2_32	.9545379	.2327809	4.10	0.000	.4982957	1.41078
vb1	4708851	.1394776	-3.38	0.001	7442562	197514
age_1	.4999147	.211236	2.37	0.018	.0858997	.9139296
age_2	.8681748	.2188765	3.97	0.000	.4391848	1.297165

age_3 age_4 age_5 ses_dico _cons	.9416078 1.06603 1.088583 3337285 -3.199394	.231743 .2220013 .2338092 .1380889 .3050865	4.06 4.80 4.66 -2.42 -10.49	0.000 0.000 0.000 0.016 0.000	.4873999 .6309158 .6303253 6043778 -3.797352	1.395816 1.501145 1.54684 0630792 -2.601435
	Estimate	Std Err	P> z	[95% Conf	Interva	1]
cde nde nie mte	1.1206422 1.1206422 1.0273119 1.1512491	.05092817 .05092817 .00485971 .05096957	0.025 0.025 0.000 0.000	1.0141823 1.0141823 1.0175732 1.041797	1.23827 1.03714	73 38

cde:controlled direct effect, nde:natural direct effect, nie:natural indirect effect, mte:marginal total effect

. paramed val, avar(smk_dico) mvar(vg8_new) cvars(va2_5 va2_9 va2_13 va2_32 vbl age_1-age_5 ses_ > dico) a0(0) a1(1) m(1) yreg(logistic) mreg(logistic) nointer case

Iteration	0:	log	likelihood	=	-4538.5335
Iteration	1:	log	likelihood	=	-4259.5752
Iteration	2:	log	likelihood	=	-4254.6498
Iteration	3:	log	likelihood	=	-4254.6382

Logistic regre Log likelihood		LR ch Prob	Number of obs = LR chi2(13) = Prob > chi2 = Pseudo R2 =			
val	Coef.	Std. Err.		P> z	[95% Coni	f. Interval]
smk_dico	.0461955	.0630348	0.73	0.464	0773505	.1697414
vg8_new va2_5	.547338	.1018385	2.55 8.38	0.001	.4192505	.6754255
va2_9	.9343806	.0856597	10.91	0.000	.7664906	1.102271
va2_13	0946726	.1184949	-0.80	0.424	3269183	.137573
1722 32	0463506	1228207	0 37	0 708	- 1963532	2890543

va2_32	.0463506	.1238307	0.37	0.708	1963532	.2890543
vbl	1976719	.0629412	-3.14	0.002	3210344	0743093
age_1	.6284151	.082206	7.64	0.000	.4672942	.7895359
age_2	.8892968	.0905964	9.82	0.000	.711731	1.066863
age_3	.9114648	.0975249	9.35	0.000	.7203195	1.10261
age_4	1.034202	.0961723	10.75	0.000	.8457073	1.222696
age_5	.9095407	.1246505	7.30	0.000	.6652302	1.153851
ses_dico	4971973	.0644903	-7.71	0.000	6235959	3707986
_cons	-1.147424	.1363367	-8.42	0.000	-1.41464	8802093

Iteration	0:	log	likelihood	=	-1030.6692
Iteration	1:	log	likelihood	=	-989.78874
Iteration	2:	log	likelihood	=	-986.29117
Iteration	3:	log	likelihood	=	-986.26368
Iteration	4:	log	likelihood	=	-986.26367

Logistic regre Log likelihood		LR ch	er of obs di2(12) > chi2 do R2		4607 88.81 0.0000 0.0431		
vg8_new	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
smk_dico va2_5 va2_9 va2_13 va2_32 vb1 age_1 age_2 age_3 age_4 age_5 ses_dico _cons	.6344828 .4292715 -4028762 .4649012 .0119995 -4131191 .2373884 .3915244 .3222319 .2856504 -1264574 -2809581 -2.79933	.162263 .1550302 .2759516 .23409 .3017791 .161516 .1838753 .2093405 .2353428 .2351557 .3364219 .1449145 .3274723	3.91 2.77 -1.46 1.99 0.04 -2.56 1.29 1.87 1.37 1.37 1.37 1.21 -0.38 -1.94 -8.55	$\begin{array}{c} 0.000\\ 0.006\\ 0.144\\ 0.047\\ 0.968\\ 0.011\\ 0.197\\ 0.061\\ 0.171\\ 0.224\\ 0.707\\ 0.053\\ 0.000\\ \end{array}$. 316525 .125417 - 943731 .006093 - 579476 - 729684 - 123000 - 018775 - 139031 - 175246 - 785832 - 564985 - 3.44116	8 4 2 7 7 6 4 4 4 1 3	.9524405 .7331252 .1379791 .9237092 .6034758 0965535 .5977773 .8018243 .7834953 .7465471 .5329174 .0030691 -2.157496

	Estimate	Std Err	P> z	[95% Co	nf Interval]	
ado	+ 1.0472791	.06303482	0.464	.925563	20 1 105001	-	
cde nde		.06303482		.925563			
nie							
mte	1.0088856	.0631693		.933541			
liice	1 1.0202040	.0031093	0.304	.933541	30 1.193045	1	
cde:controlled mte:marg:	d direct effec inal total eff		ral direc	ct effect	, nie:natural	indirect eff	Eect,
. paramed val > smk_dico se							2 vbl age_1-age_5
Iteration 0:	log likeliho	bod = -3855.3	8775				
Iteration 1:	log likeliho						
Iteration 2:	log likeliho						
Iteration 3:	log likeliho	bod = -3592.	5505				
Iteration 4:	log likeliho	pod = -3592.1	5505				
Logistic regre	ession				r of obs = i2(15) =	6281 526.65	
					> chi2 =		
Log likelihood	d = -3592.5505	5			o R2 =		
va1	, +	Std. Err.		P> z	[95% Conf.	Interval]	
vi4_dico		.0733232		0.000	.141647	.4290686	
vg2_new	1.087992	.1096149	9.93		.8731509	1.302833	
va2_2		.090868		0.001	.1314385	.4876347	
va2_8		.101349	2.40	0.017	.0443535	.4416342	
va2_9			9.92	0.000	.696029		
va2_13		.1329433	0.42	0.674	2046385		
va2_32		.1365333	-1.36	0.173	4535443	.0816565	
vbl		.0689367 .0833023	-1.38 7.12	0.167 0.000	2302679 .4298453	.0399592 .7563841	
age_1 age_2		.0957957	9.12	0.000	.6927809		
age_2 age_3		.1050092	9.85	0.000	.8283046	1.239933	
		.1133381	12.01	0.000	1.139438		
age 5	1.361576 1.170516	.1418112	8.25	0.000	.8925709		
	.0960447		1.44	0.149	0342598		
		.0677302	-5.83	0.000	5274581	2619607	
_cons	-1.690721	.1625565	-10.40	0.000	-2.009326	-1.372116	
Iteration 0: Iteration 1: Iteration 2: Iteration 3:	log likeliho log likeliho	pod = -715.12 pod = -691.2	5882 3259				
Iteration 4:							
Logistic regre	ession			Numbe	r of obs =	4374	
				LR ch	i2(14) = > chi2 =	101.32	
				Prob	> chi2 =	0.0000	
Log likelihood	d = -690.39724	ł		Pseud	o R2 =	0.0684	
vg2_new	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
vi4 dico	.3101589	.1973327	1.57	0.116	0766061	.696924	
va2_2	-1.472699 0968441	.4289365	-3.43	0.001	-2.313399	6319993	
va2_8	0968441	.2858214	-0.34	0.735	6570438	.4633556	
	1715206						
va2_13	.4128174	.3253956	1.27	0.205	2249462	1.050581	
	.9594726						
	6532123						
age_1	.5726352	.∠JU00U8 272/706	2.48	0.013 0.013	.1205091	1 010000	
age_2	.6828209 .7416613 .8102438 1.203173	3009521	2.3U 2.46	0.013	15180420	1 331510	
aye_s	8102438	3283959	2.40	0.014	1665996	1 453888	
age_4	1.203173	.3132669	3.84	0.000	.5891811	1.817165	
Smk dico		. 1805898	1.53	0.126	0 / / / 4 / 9	. 6301561	
ses_dico	300285	.1855224	-1.62	0.106	6639022	.0633321	
_cons					-3.933243		
	Estimate	Std Err	₽> z	[95% Co	nf Interval]	

cde	1.3302379	.07332317	0.000	1.1521669	1.5358304		
nde	1.3302379	.07332317	0.000	1.1521669	1.5358304		
nie	1.0208741			1.0074087	1.0345194		
mte	1.3580054	.07363803	0.000	1.1754916	1.5688573		
cde:controlled			ral direc	ct effect,	nie:natural	indirect effe	ect,
mile.marg.	inal total eff	ect					
. paramed val	. avar(vi4 dio	co) mvar(vg8	new) cva	ars(va2 9 v	va2 13 va2 32	vbl age 1-ag	ge_5 smk_dico se
> s_dico) a0((5
Iteration 0:	log likeliho						
Iteration 1:	log likeliho						
Iteration 2:	log likeliho						
Iteration 3: Iteration 4:	log likeliho log likeliho						
iteration 4.	IOG IIKEIIIK	100 = -2752.	/ 2 1 1				
Logistic regre	ession			Number	of obs =	4906	
5 5				LR chi2	chi2 =	461.34	
				Prob >	chi2 =	0.0000	
Log likelihood	d = -2752.7211	L		Pseudo	R2 =	0.0773	
	Coef.	Ctd Err			[95% Conf.	Intorvall	
val	+						
vi4 dico	40281	0812395	4.96	0.000	.2435836	.5620365	
vg8_new	.519688	.1342888	3.87	0.000	.2564868	.7828893	
va2_9	.9153031	.0915622	10.00	0.000	.7358444 1124408	1.094762	
	.1531701		1.13	0.258	1124408	.418781	
_	0843437	.1389394	-0.01	0.JII		.10/9/20	
vbl					3373435		
age_1	.7352974 1.139174	.0977369 .1104193	7.52	0.000 0.000	.5437367 .922756	.9268581	
age_2	1 260102	118319	10.52		1.028202		
age 4	1.604715	.1263707	12.70	0.000	1.357033	1.852397	
age_5	1.440458	.157164	9.17				
smk_dico	1.260102 1.604715 1.440458 .0702384	.0778111	0.90	0.367	1.132422 0822685	.2227453	
ses_dico	4383125	.0815557	-5.37	0.000	5981588	2784662	
_cons	-1.757716	.1843453	-9.53	0.000	-2.119027	-1.396406	
Iteration 0:	log likeliho	nod = -656 6	2513				
Iteration 0: Iteration 1:	log likeliho log likeliho						
	log likeliho log likeliho log likeliho	bod = -632.5	0927				
Iteration 1:	log likeliho	pod = -632.5 pod = -630.6	0927 5798				
Iteration 1: Iteration 2:	log likeliho log likeliho	pod = -632.5 pod = -630.6 pod = -630.6	0927 5798 4577				
Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likeliho log likeliho log likeliho log likeliho	pod = -632.5 pod = -630.6 pod = -630.6	0927 5798 4577	Number	of obr	2450	
Iteration 1: Iteration 2: Iteration 3:	log likeliho log likeliho log likeliho log likeliho	pod = -632.5 pod = -630.6 pod = -630.6	0927 5798 4577	Number LR chi2		3450 51.96	
Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likeliho log likeliho log likeliho log likeliho	pod = -632.5 pod = -630.6 pod = -630.6	0927 5798 4577	LR chi2	= (12) =	51.96	
Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likeliho log likeliho log likeliho log likeliho ession	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6</pre>	0927 5798 4577		chi2 =		
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regre	log likeliho log likeliho log likeliho log likeliho ession	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6</pre>	0927 5798 4577	LR chi2 Prob >	chi2 =	51.96 0.0000	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood	log likeliho log likeliho log likeliho log likeliho ession d = -630.64577	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6</pre>	0927 5798 4577 4577	LR chi2 Prob > Pseudo	2(12) = chi2 = R2 =	51.96 0.0000 0.0396	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regre	log likeliho log likeliho log likeliho log likeliho ession	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6</pre>	0927 5798 4577	LR chi2 Prob >	chi2 =	51.96 0.0000 0.0396	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood	log likeliho log likeliho log likeliho log likeliho ession d = -630.64577	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6</pre>	0927 5798 4577 4577	LR chi2 Prob > Pseudo	2(12) = chi2 = R2 =	51.96 0.0000 0.0396	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood	<pre>log likeliho log likeliho log likeliho ession d = -630.64577 Coef.</pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 500.6 bod = 50</pre>	0927 5798 4577 4577 2	LR chi2 Prob > Pseudo P> z 0.834	2(12) = chi2 = R2 = [95% Conf.	51.96 0.0000 0.0396 Interval]	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likeliho log likeliho log likeliho ession d = -630.64577 Coef. </pre>	<pre>bod = -632.5 bod = -630.6 bod = bod</pre>	0927 5798 4577 4577 -0.21	LR chi2 Prob > Pseudo P> z 0.834 0.205	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042</pre>	51.96 0.0000 0.0396 Interval] .3536204	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likeliho log likeliho log likeliho log likeliho ession d = -630.64577 Coef. +</pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = 20000 bod = 20000 bod</pre>	0927 5798 4577 4577 -0.21 -1.27	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379</pre>	51.96 0.0000 0.0396 Interval] .3536204 .1961164	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 Coef. </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 2206984	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 Coef. </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = 20000 bod = 20000 bod</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005	51.96 0.0000 0.0396 Interval] 	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 Coef. 0422919 3581313 .3485041 1065812 6292612 .1708381 .371167</pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 200.6 bod = 2</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 2206984 .5813767 .8685975	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 Coef. </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = 2000 bod = 20000 bo</pre>	0927 5798 4577 4577 2 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.50	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 2206984 .5813767 .8685975 .7600063	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 Coef. 0422919 3581313 .3485041 1065812 6292612 .1708381 .371167</pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 200.6 bod = 2</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 2206984 .5813767 .8685975	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 / Coef. </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = 20000 bod = 20000 bod</pre>	0927 5798 4577 4577 -0.21 -1.27 -0.31 -3.02 0.82 1.46 0.50 0.63	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021</pre>	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 -2206984 .5813767 .8685975 .7600063 .9068664	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 Coef. +</pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = 2000 bod = 20000 bo</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.50 0.63 -0.15	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865</pre>	51.96 0.0000 0.0396 Interval] 	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regra Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = -630.6 bod = 2000 cod = 2000 c</pre>	0927 5798 4577 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.50 0.63 -0.15 3.09	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527</pre>	51.96 0.0000 0.0396 Interval] 	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regra Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = -630.6 bod = 2000 bod = 20000 bod = 2000 bod = 2000 bod = 20000 bod = 20000 bod = 200</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.63 -0.15 3.09 -1.94	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002 0.053	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527 7168759</pre>	51.96 0.0000 0.0396 Interval] 	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regra Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 Coef. 0422919 3581313 .3485041 1065812 6292612 .1708381 .371167 .1543446 .2214821 0672292 .6117039 3562854 -2.392815</pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = -630.6 bod = 2000 cod = 2000 c</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.50 0.63 -0.15 3.09 -1.94 -5.41	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002 0.053 0.000	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527 7168759 -3.258949	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 2206984 .5813767 .8685975 .7600063 .9068664 .8214065 .999555 .0043052 -1.526681	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regra Log likelihood 	<pre>log likelihd log likelihd log likelihd ession d = -630.64577 </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = -630.6 bod = 2000 bod = 20000 bod = 2000 bod = 2000 bod = 20000 bod = 20000 bod = 200</pre>	0927 5798 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.63 -0.15 3.09 -1.94	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002 0.053	2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527 7168759 -3.258949	51.96 0.0000 0.0396 Interval] .3536204 .1961164 .8954649 .5782079 2206984 .5813767 .8685975 .7600063 .9068664 .8214065 .999555 .0043052 -1.526681	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 Coef. 0422919 3581313 .3485041 1065812 6292612 .1708381 .371167 .1543446 .2214821 0672292 .6117039 3562854 -2.392815 Estimate </pre>	bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = 2000 cod = 20000 cod = 2000 cod = 20000 cod = 20000 cod = 2000 cod = 2000 cod = 2000 cod = 2000 cod	0927 5798 4577 4577 4577 -0.21 -1.27 -0.31 -3.02 0.82 1.46 0.50 0.63 -0.15 3.09 -1.94 -5.41 P> z 0.000	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002 0.053 0.000 [95% Conf 1.2758092	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527 7168759 -3.258949 </pre>	51.96 0.0000 0.0396 Interval] 	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regra Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 </pre>	<pre>bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = -630.6 bod = 2000 bod = 20000 bod = 2000 bod = 2000 bod = 20000 bod = 2000 bod = 2000</pre>	0927 5798 4577 4577 4577 -0.21 -1.27 1.25 -0.31 -3.02 0.82 1.46 0.50 0.63 -0.15 3.09 -1.94 -5.41 P> z 0.000 0.000 0.000	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002 0.053 0.000 [95% Conf 1.2758092 1.2758092	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527 7168759 -3.258949 </pre>	51.96 0.0000 0.0396 Interval] 	
Iteration 1: Iteration 2: Iteration 3: Iteration 4: Logistic regree Log likelihood 	<pre>log likelihd log likelihd log likelihd log likelihd ession d = -630.64577 Coef. 0422919 3581313 .3485041 1065812 6292612 .1708381 .371167 .1543446 .2214821 0672292 .6117039 3562854 -2.392815 Estimate </pre>	bod = -632.5 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = -630.6 bod = 2000 bod = -630.6 bod = 2000 cod = 20000 cod = 2000 cod = 20000 cod = 20000 cod = 2000 cod = 2000 cod = 2000 cod = 2000 cod	0927 5798 4577 4577 4577 -0.21 -1.27 -0.31 -3.02 0.82 1.46 0.50 0.63 -0.15 3.09 -1.94 -5.41 P> z 0.000	LR chi2 Prob > Pseudo P> z 0.834 0.205 0.212 0.760 0.003 0.415 0.144 0.617 0.526 0.882 0.002 0.053 0.000 [95% Conf 1.2758092	<pre>2(12) = chi2 = R2 = [95% Conf. 4382042 912379 1984566 7913703 -1.037824 2397005 1262635 451317 4639021 955865 .2238527 7168759 -3.258949 Interval] 2 1.7542466 1.7542466 1.0183305</pre>	51.96 0.0000 0.0396 Interval] 	

cde:controlled direct effect, nde:natural direct effect, nie:natural indirect effect, mte:marginal total effect

. paramed val, avar(alcolextreme) mvar(vg2_new) cvars(va2_2 va2_5 va2_9 va2_22 va2_32 vbl age_1-ag
> e_5 smk_dico ses_dico) a0(0) al(1) m(1) yreg(logistic) mreg(logistic) nointer case

Number of obs =

9443

Iteration	0:	log	likelihood	=	-6080.9855
Iteration	1:	log	likelihood	=	-5770.2383
Iteration	2:	log	likelihood	=	-5767.0842
Iteration	3:	log	likelihood	=	-5767.0817

Logistic regression

LR chi2(15) = Prob > chi2 = 627.81 0.0000 0.0516 Log likelihood = -5767.0817Pseudo R2 = _____ val | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ _____ alcolextreme | .1242137 .0723116 1.72 0.086 -.0175145 .2659418 12.72 0.000 .8513217 3.29 0.001 .1179411 9.52 0.000 .491933 1.006378 .0791119 .2922023 .0889104 vg2_new | 1.161435 va2 2 | .4664635
 3.29
 0.001
 .1179411
 .4664635

 9.52
 0.000
 .491933
 .7470314

 9.52
 0.000
 .6270366
 .9519678

 -1.98
 0.048
 -.2988952
 -.0011599
 -.1124672 .1192708 -0.94 0.346 -.3462338 .1212993 -.0197597 .0546953 -0.36 0.718 -.1269605 .0874412 va2_32 | vb1 | 6.66 0.000 6.93 0.000 7.89 0.000 age_1 | .4861201 .0729614 .3431185 .6291218 .3994126 .5568256 .0803142 .6808029 .0863338 .7142385 age_2 age_3 .7035353 .0844826 .7234687 .0987689 .0807252 .0520542 8.33 0.000 .5379524 .8691183 7.32 0.000 .5298852 .9170521 age_4 | age_5 .9170521 .5298852 1.55 0.121 -.0212991 smk_dico | .1827496 ses_dico | -.4087522 .054157 -7.55 0.000 -.5148979 -.3026065 _cons | -1.315283 .1232179 -10.67 0.000 -1.556786 -1.073781

Iteration	0:	log	likelihood	=	-1311.383
Iteration	1:	log	likelihood	=	-1230.6812
Iteration	2:	log	likelihood	=	-1210.2069
Iteration	3:	log	likelihood	=	-1209.6171
Iteration	4:	log	likelihood	=	-1209.6129
Iteration	5:	log	likelihood	=	-1209.6129

Tenistis memorales	Number of the		6190
Logistic regression	Number of obs	=	0190
	LR chi2(14)	=	203.54
	Prob > chi2	=	0.0000
Log likelihood = -1209.6129	Pseudo R2	=	0.0776

vg2_new	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
alcolextreme	1061408	.1915548	-0.55	0.580	4815814	.2692997
va2_2	-1.410096	.4281645	-3.29	0.001	-2.249283	5709085
va2_5	3140577	.1942376	-1.62	0.106	6947563	.0666409
va2_9	1189551	.2879507	-0.41	0.680	683328	.4454179
va2_22	.617429	.1669592	3.70	0.000	.2901949	.944663
va2_32	.9731402	.2270196	4.29	0.000	.52819	1.41809
vbl	4281589	.1430575	-2.99	0.003	7085465	1477714
age_1	.4527043	.2255968	2.01	0.045	.0105426	.8948659
age_2	.8632918	.2273709	3.80	0.000	.417653	1.308931
age_3	.9617959	.2401208	4.01	0.000	.4911677	1.432424
age_4	1.059109	.2305728	4.59	0.000	.6071949	1.511024
age_5	1.087456	.240917	4.51	0.000	.6152678	1.559645
smk_dico	.433427	.1333577	3.25	0.001	.1720506	.6948033
ses_dico	3769077	.1423706	-2.65	0.008	6559491	0978664
_cons	-3.196732	.3221518	-9.92	0.000	-3.828138	-2.565327
	Estimate	Std Err	₽> z	[95% Conf	Interval]
cde	1.1322578	.07231159	0.086	.98263546	1.304662	5
nde	1.1322578	.07231159	0.086	.98263546	1.304662	5
nie	.99311322	.00942453	0.463	.97493674	1.011628	б

mte | 1.1244601 .07291317 0.108 .97471832 1.2972062

cde:controlled direct effect, nde:natural direct effect, nie:natural indirect effect, mte:marginal total effect

. paramed val, avar(alcolextreme) mvar(vg8_new) cvars(va2_5 va2_9 va2_32 vb1 age_1-age_5 smk_dico
> ses_dico) a0(0) al(1) m(1) yreg(logistic) mreg(logistic) nointer case

Iteration	0:	log	likelihood	=	-4219.8435
Iteration	1:	log	likelihood	=	-3993.8098
Iteration	2:	log	likelihood	=	-3990.7027
Iteration	3:	log	likelihood	=	-3990.6982

Logistic regression	Number of obs	=	6494
	LR chi2(13)	=	458.29
	Prob > chi2	=	0.0000
Log likelihood = -3990.6982	Pseudo R2	=	0.0543

va1	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
alcolextreme	.1035541	.0777116	1.33	0.183	0487578	.255866
vg8_new	.3075654	.1042362	2.95	0.003	.1032662	.5118645
va2_5	.6064512	.070028	8.66	0.000	.4691988	.7437036
va2_9	.8830951	.0878795	10.05	0.000	.7108545	1.055336
va2_32	.0644592	.1243576	0.52	0.604	1792773	.3081956
vb1	1340093	.0677625	-1.98	0.048	2668213	0011972
age_1	.5178988	.085764	6.04	0.000	.3498045	.685993
age_2	.7410929	.0935282	7.92	0.000	.5577809	.9244049
age_3	.8095662	.1001988	8.08	0.000	.6131801	1.005952
age_4	.8972371	.0989048	9.07	0.000	.7033872	1.091087
age_5	.7913447	.1265945	6.25	0.000	.543224	1.039465
smk_dico	.0161131	.0647898	0.25	0.804	1108725	.1430987
ses_dico	4721425	.0665933	-7.09	0.000	602663	341622
_cons	-1.170355	.1491475	-7.85	0.000	-1.462679	8780314

Iteration	0:	log	likelihood	=	-930.87534
Iteration	1:	log	likelihood	=	-889.87334
Iteration	2:	log	likelihood	=	-885.99097
Iteration	3:	log	likelihood	=	-885.95437
Iteration	4:	log	likelihood	=	-885.95436

Logistic regre Log likelihood	Number o LR chi2(Prob > c Pseudo R	12) = hi2 =	4196 89.84 0.0000 0.0483			
vg8_new	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
alcolextreme va2_5 va2_9 va2_32 vb1 age_1 age_2 age_3 age_4 age_5 smk_dico ses_dico _cons	4439282 .0749905 3641192 .4005511 .4933508 .4318767 .4392584 .0026426 .6142024	.2538086 .2494471 .3466022 .1713953	$\begin{array}{c} 1.22\\ 2.78\\ -1.54\\ 0.25\\ -2.08\\ 1.96\\ 2.19\\ 1.70\\ 1.76\\ 0.01\\ 3.58\\ -2.34\\ -8.15\end{array}$	0.005 0.123 - 0.806 - 0.038 - 0.050 - 0.029 0.089 0.078 0.994 - 0.000 0.019 -	.5236537 .7077416 .0004045 .0512538 065579 049649 .6766853	.5925241 .8139949 .1204489 .6736347 0204968 .8015067 .9354477 .9293325 .9281657 .6819705 .9501311 0587956 -2.277334
		Std Err			Interval	-
cde nde nie mte	1.1091058 1.1091058 1.004033 1.1135788	.07771157 .07771157 .00848977 .07819049	0.183 0.183 0.635 0.169	.95240912 .95240912 .98746421 .95535301	1.291583 1.291583 1.020879 1.298010	2 9

cde:controlled direct effect, nde:natural direct effect, nie:natural indirect effect, mte:marginal total effect