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Abstract

Long-range dependence (LRD) is discovered in time series arising from different fields, especially in network traffic and economet-
rics. Detecting the presence and the intensity of LRD plays acrucial role in time series analysis and fractional system identification.
The existence of LRD is usually indicated by the Hurst parameters. Up to now, many Hurst parameter estimators have been
proposed in order to identify the LRD property involved in a time series. Since different estimators have different accuracy and
robustness performances, in this paper, 13 most popular Hurst parameter estimators are summarised and their estimation perfor-
mances are investigated. LRD processes with known Hurst parameters are generated as the control data set for the robustness
evaluation. In addition, three types of LRD processes are also obtained as the test signals by adding noises in terms of means,
trends and seasonalities to the control data set. All 13 Hurst parameter estimators are applied to these LRD processes toestimate
the existing Hurst parameters. The estimation results are documented and quantified by the standard errors. Conclusions of the
accuracy and robustness performances of the estimators aredrawn by comparing the estimation results.

Keywords: LRD, Hurst parameters, fGn, robustness.

1. Introduction

The study of long-range dependence (LRD) has received
considerable attention in diverse research areas, such as agron-
omy, astronomy, chemistry, economics, engineering, environ-
mental science, geoscience, hydrology, mathematics, physics
and statistics [1]. The LRD phenomenon is known as the de-
pendence between observations far away in time. The presence
and intensity of LRD are traditionally measured by the Hurst
parameters,H, introduced by Hurst [2] during his studies on
Nile discharges and problems related to water storage. TheH
parameter ranges in (0, 1). From a physical point of view,H is a
measure of roughness; the roughness or anti-correlation inthe
signal is maximal whenH is close to zero. White noise with
zero correlation hasH = 0.5. Smoother correlated signals have
H near 1.0 [3].

The Hurst parameter has a close relationship with power law,
long memory, fractal, fractional calculus and chaos theory. De-
tection of LRD is crucial to time series analysis, especially to
fractional system identification and prediction [4]. Many meth-
ods for estimatingH are proposed in the literature. For in-
stance, the oldest and most common method is the Re-scaled
Range (R/S) method [5]. The Aggregated Variance method [6]
is based on a dispersional analysis. The Periodogram method
[7] is the linear regression of the log periodogram. The Whit-
tle estimator [8] is obtained by minimising the objective func-
tion based on the periodogram. Abry and Veitch’s method [9]
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is a wavelet-based analysis tool ofH. Higuchi’s method [10]
is based on fractal theory. Most of the above-mentioned esti-
mators are based on linear regression with graphical analysis,
except the Whittle estimator.

Different estimators have different accuracy and robustness
performances. Previous studies, [4], [6], [8] and [11], have
made intensive efforts to compare the accuracy and robust-
ness of the existing Hurst parameter estimators. In [4], 12
Hurst parameter estimators are analysed to compare their ro-
bustness against three kinds of noises, namely the 30 dB signal-
to-noise ratio (SNR) white Gaussian noise, 30 dB SNR sta-
ble noise and Fractional Autoregressive Integrated MovingAv-
erage (FARIMA) with stable innovations. In [6], Taqqu and
his co-workers summarise nine Hurst parameter estimators and
compare their performances when they are applied to both the
fractional Gaussian noise (fGn) andFARIMA(0, d, 0) processes
at some determined Hurst parameter values. Reference [8] con-
centrates on comparing the robustness of the Whittle-type esti-
mators; both the Gaussian innovations and the infinite variance
symmetric stable innovations are considered. In [11], the ro-
bustness of Hurst parameter estimators for noisy multifractional
processes, and multifractional processes with infinite second-
order statistics is tested and analysed.

However, none of these studies clearly provides sufficient in-
formation for selecting the most suitable Hurst parameter esti-
mators to detect the LRD properties involved in a time series
with the presence of means, trends and seasonalities. In this
study, 4 different LRD processes, namely, LRD process with
known Hurst parameters, LRD process with non-zero means,
LRD process with linear trends, and LRD process with sea-
sonalities are generated to evaluate the robustness of existing



Hurst parameter estimators. In the following, 13 most pop-
ular existing Hurst parameter estimators are documented and
investigated, (i) Re-scaled Range (R/S) method [5]; (ii) Aggre-
gated Variance method [12]; (iii) Difference Variance method
[6]; (iv) Absolute Value method [5]; (v) Variance of Residu-
als method [6]; (vi) Periodogram method [7]; (vii) Modified
Periodogram method [13]; (viii) Whittle estimator [8]; (ix) Dif-
fusion Entropy method [14]; (x) Kettani and Gubner’s method
[15]; (xi) Abry and Veitch’s method [9]; (xii) Koutsoyiannis’
method [16]; (xiii) Higuchi’s method [10]. A brief summary
for all the above-mentioned 13 Hurst parameter estimators can
be found in [4]. These estimators are applied to the 4 LRD
processes. The estimation results are quantified by the standard
errors. The robustness evaluation results show that the presence
of trends and seasonalities has an essential influence on most of
the 13 Hurst parameter estimators. However, Abry and Veitch’s
method exhibits strong robustness to the trends, whereas the
Whittle estimator is not vulnerable to seasonalities.

The paper is organised as follows: in Section 2, preliminary
studies on LRD property and fGn processes are reviewed. In
Section 3, the test signals are generated and Hurst parameter es-
timator evaluation procedures are provided. Subsequently, the
performances of the 13 estimators against means, trends and
seasonalities are investigated and the results are given inboth
graphic styles and quantified by the standard errors in Section 4.
The performances of the 13 estimators are summarised in Sec-
tion 5.

2. Preliminaries

Preliminaries on LRD and fGn are essential for this study.
Detailed descriptions of these two concepts are provided below.

2.1. Long-range dependence

A stationary process with finite second-order statistics issaid
to have long-range dependence if its covariance functionC(n)
decays slowly asn→ ∞. That is, there exists anα, 0 < α < 1,
such that

lim
n→∞

C(n)
n−α

= c, (1)

wherec is a finite, positive constant. That is to say, for largen,
C(n) is similar toc/nα [17]. The parameterα has a relationship
to H asα = 2 − 2H. The LRD can also be defined by the
spectral density. A weak stationary time seriesXi is said to be
long-range dependent if its spectral density follows

f (λ) ∼ C f |λ|
−β, (2)

asλ→ ∞, for certainC f > 0 and real parameterβ ∈ (0, 1). The
parameterβ is related to the Hurst parameter byH = (1+ β)/2
[18]. For 0.5 < H < 1 the process has long-range dependence,
for H = 0.5 the observations are uncorrelated, and for 0< H <
0.5 the process has short-range dependence and the correlations
sum up to zero.

2.2. Fractional Gaussian noise

Before testing the Hurst parameter estimators, some control
data set with known Hurst parameters are reqired. The control
data are better synthesised from the first principle of fractional
Brownian motion (fBm), which is a Gaussian process as defined
in [12]. Successive increments of an fBm are called fGn [19],
which is defined as follows.

Let Xi denote a time series. ThenXi is second-order sta-
tionary if its mean valueE(Xi) does not depend oni and if the
auto-covariance functionE[(Xi − E(Xi))(X j − E(X j))] depends
on i and j only through their differencek = i − j, in which case
one has

γ(k) = E[(Xi − E(Xi))(Xi−k − E(Xi−k))]. (3)

The variance of the process isσ2 = γ(0) = E[(Xi−E(Xi))2], and
the autocorrelation function isρ(k) = γ(k)/σ2. A second-order
stationary process is said to be exactly second-order self-similar
with Hurst exponentH ∈ (0, 1) if

γ(k) = (σ2/2)(|k+ 1|2H
− 2|k|2H + |k− 1|2H), (4)

or equivalently

ρ(k) =
1
2

(|k+ 1|2H − 2|k|2H + |k− 1|2H). (5)

If Xi is a Gaussian process, then it is known as an fGn.

3. Test signal generation and Hurst parameter estimator
evaluation procedures

3.1. Test signal generation

In order to evaluate the robustness of the 13 Hurst parameter
estimators against means, trends and seasonalities, test signals
that exhibit the LRD properties with known Hurst parameters
are required as control data sets. For this purpose, fGn time
series, denoted byFk(t,H j) with the standard deviationσ = 1
and known Hurst parametersH j are adopted to generate the test
signals. Four LRD processes are produced for the robustness
evaluation for the 13 estimators. As shown in Equation (6),

F̃k(t, Ĥ j) = Fk(t,H j) + a+ bt+ csin(2π f t), (6)

Ĥ j denotes the Hurst parameters that need to be characterised
from the following 4 LRD processes that are produced by ad-
justing the coefficientsa, b andc in (6).

1) LRD 1: LRD processes with known Hurst parameters,
F̃k(t, Ĥ j) = Fk(t,H j);

2) LRD 2: LRD processes with non-zero means,F̃k(t, Ĥ j) =
Fk(t,H j) + a;

3) LRD 3: LRD processes with linear trends,̃Fk(t, Ĥ j) =
Fk(t,H j) + bt;

4) LRD 4: LRD processes with seasonalities,
F̃k(t, Ĥ j) = Fk(t,H j) + csin(2π f t).
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H j increases from 0.01 to 0.99 in steps of 0.01,j = 1, 2, . . . , 99;
for the estimator evaluation, each of the 4 LRD processes will
be generated 100 times for everyH j , wherek = 1, 2, . . . , 100
represents thek-th generated LRD process;t = 1, 2, . . . , 8760
since the length of an hourly sampled time series for 365 daysin
a year is 365×24= 8760. LRD 1 represents the LRD processes
with known Hurst parameters, LRD 2-4 are the LRD processes
with additive noises in terms of means, trends and seasonalities,
respectively. It is noted that during the evaluation process of the
13 estimators, the mean, trend and seasonality noises will only
be added separately.

3.2. Hurst parameter estimator evaluation procedures
In this section, detailed Hurst parameter estimator robustness

evaluation procedures are provided as shown in the flow chart
in Fig. 1. For LRD 1, the Hurst parameters are estimated by
different Hurst parameter estimators by the following steps:
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Figure 1: Flow chart of the Hurst parameter estimator evaluation

Step 1: Let j = 1, k = 1 and the temporary variableHs = 0.

Step 2: In the inner loop of the flow chart, 100 replications
of each of the 4 LRD processes are generated. For the
k-th generated LRD process,Ĥ j is estimated by a certain
estimator, and then summed up and stored inHs.

Step 3: The final estimated Hurst parameterH̄ j is the average
of the 100 estimates of̂H j .

Step 4: For the outer loop, Step 2 and 3 will repeat 99 times
until all H̄ j ’s are obtained.

During the robust evaluation for each Hurst parameter estima-
tor, Ĥ j of LRD 1 is taken as a benchmark for comparison pur-
pose. By following similar evaluation procedures, the finalesti-
mated Hurst parameters of LRD 2-4 can also be obtained. The

Table 1: Initial coefficients for the evaluation
LRD processes Coefficients in Eq. (6)

LRD 1 a = 0, b = 0, c = 0

LRD 2
a = 1

N
∑N

k=1[max(Fk) −min(Fk)],
b = 0, c = 0

LRD 3
a = 0, c = 0,
b = 1

N×8760
∑N

k=1[max(Fk) −min(Fk)],

LRD 4
a = 0, b = 0, f = 1/24,
c = 1

N

∑N
k=1[max(Fk) −min(Fk)],

impact of means, trends and seasonalities to the 13 estimators
can be characterised by comparing the final Hurst parameter
estimates between LRD 1 and LRD 2-4. For LRD 4, daily sea-
sonalities with frequencyf = 1/24 are generated to add into
the LRD 1 processes for the robustness evaluation of the 13 es-
timators. In order to achieve a fair comparison of the estimation
performances for the 13 Hurst parameter estimators, the expec-
tations ofa, b andc for LRD 2-4 are calculated respectively
as provided in Table 1, whereN is suggested to be a sufficient
large number, say 1000000;Fk is short forFk(t, 0.5).

4. Robustness assessment and comparison

In this section, the robustness evaluation results of the 13
Hurst parameter estimators are provided from Fig. 2 to Fig. 14.
In these figures, the solid lines (in blue) are the known Hurst
parameter valuesH j as the reference lines. In order to indicate
the severity of the estimation bias, two bias thresholdH j ±0.03,
denoted by solid lines (in green) are also plotted in all these
figures. The estimated Hurst parametersĤ j of different LRD
processes are denoted by lines with different styles and colours.
Specifically, the estimates of LRD 1-4 are represented by a dot-
ted line (in red), a circle line (in cyan), a dash-dotted line(in
magenta) and a dashed line (in black), respectively.

4.1. Re-scaled Range method

The estimates by the Re-scaled Range (R/S) method for the
LRD 1-4 processes are presented in Fig. 2. The dotted line
(in red) and the circle line (in cyan) coincide with each other,
which shows that the mean value does not severely affect the
R/S estimator. However, the estimates for LRD 1-2 are bi-
ased for almost all Hurst parameter values (0< H < 1). Ĥ
is apparently overestimated at aroundH ∈ (0, 0.6] and under-
estimated at aroundH ∈ [0.8, 1). In addition, the dash-dotted
line (in magenta) shows that the estimated Hurst parametersare
severely overestimated. Nevertheless, the dashed line (inblack)
is severely underestimated. It indicates that the R/S method is
robust neither to the trends nor to the seasonalities.

4.2. Aggregated Variance method

The estimates by the Aggregated Variance method for the
LRD 1-4 processes are presented in Fig. 3. The overlap of the
dotted line (in red) and the circle line (in cyan) shows that the
mean value does not influence the Aggregated Variance estima-
tor. Ĥ of LRD 1-2 is slightly biased at aroundH ∈ (0, 0.7). But
an underestimation appears at aroundH ∈ [0.7, 1). However,
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the dash-dotted line (in magenta) is generally close to 1.0 and
the dashed line (in black) is far underestimated. It shows that
this estimator has poor robustness performance to LRD pro-
cesses with trends and seasonalities.

4.3. Difference Variance method

The estimates by the Difference Variance method for the
LRD 1-4 processes are presented in Fig. 4. The Hurst es-
timates for LRD 1-2 are generally underestimated and over-
lap with the lower bound of the bias threshold in the range
0 < H < 1. Therefore, the mean value has no influence on
this estimator. However, as shown by the dash-dotted line (in
magenta), the estimates are obviously overestimated at around
H ∈ (0, 0.6)

⋂

(0.9, 1). On the contrary, the estimates are un-
derestimated at aroundH ∈ [0.6, 0.9]. Moreover, as shown by
the dashed line (in black), the seasonalities impose a greater
impact on this estimator, and̂H is extremely biased. Thus, the
Difference Variance method is severely affected by trends and
seasonalities.

4.4. Absolute Value method

The estimates by the Absolute Value method for the LRD 1-4
are presented in Fig. 5. The estimation performance of the Ab-
solute Value method is very similar to the Aggregated Variance
method. The estimates are nearly unbiased whenH is around
(0, 0.7) but underestimated whenH is around [0.7, 1) for both
LRD 1-2. The dash-dotted line (in magenta) is severely over-
estimated and the dashed line (in black) is always under the
reference line. Thus the Absolute Value method exhibits poor
estimation performance to trends and seasonalities.

4.5. Variance of Residuals method

The estimates by the Variance of Residuals method for the
LRD 1-4 are presented in Fig. 6. The dotted line (in red) and
the circle line (in cyan) show that the Variance of Residuals
method estimates the Hurst parameters for both LRD 1-2 accu-
rately given that all estimates lie within the range of theH±0.03
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Figure 2: Estimates of LRD 1-4 by R/S method
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Figure 3: Estimates of LRD 1-4 by Aggregate Variance method
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Figure 4: Estimates of LRD 1-4 by Difference Variance method
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Figure 5: Estimates of LRD 1-4 by Absolute Value method
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bias thresholds (solid line in green). However, the trends in-
fluence this estimator since overestimation occurs at around
H ∈ (0, 0.8) as shown by the dash-dotted line (in magenta),
while only slightly biased estimation appears whenH is around
[0.8, 1). The influence of the seasonalities is more severe, as
shown by the dashed line (in black). The estimator can hardly
give accurate estimates of LRD 4.
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Figure 6: Estimates of LRD 1-4 by Variance of Residuals method

4.6. Periodogram method

The estimates by the Periodogram method for the LRD 1-4
are presented in Fig. 7. The overlap of the dotted line (in red)
and the circle line (in cyan) shows that the mean value does not
affect this estimator. The estimates are slightly biased whenH
is around (0, 0.2) for LRD 1-2. However,the linear trends make
the estimation performance poor. As shown by the dash-dotted
line (in magenta), the Hurst parameters are severely overesti-
mated. In addition, it can be observed that the seasonalities do
not affect this estimator. The estimates denoted by the dashed
line (in black) are slightly biased whenH is around (0.2, 1),
only a little underestimated whenH is around (0, 0.2].

4.7. Modified Periodogram method

The estimates by the Modified Periodogram method for the
LRD 1-4 are presented in Fig. 8. The dotted line (in red) and
the circle line (in cyan) show that̂H of LRD 1-2 are a little
underestimated at aroundH ∈ (0.2, 1) since the estimates are
very close to the lower bound of the bias threshold. But the
underestimation of̂H is more severe whenH is around (0, 0.2]
given that the estimates are out of the range of the bias thresh-
olds. The estimates shown by the dash-dotted line (in magenta)
is severely overestimated. In addition, the estimates denoted by
the dashed line (in black) is consistently underestimated when
0 < H < 1. Generally, the modified Periodogram method is
severely influenced by the linear trends.

4.8. Whittle estimator

The estimates by the Whittle estimator for the LRD 1-4 are
presented in Fig. 9. From the dotted line (in red) and the circle
line (in cyan), it is found that the estimation ofH is slightly
biased and only a little underestimated whenH is close to zero.
It indicates that the Whittle estimator is robust to the means. As
shown by the dash-dotted line (in magenta), the trends severely
affect the Whittle estimator. The estimatedĤ is overestimated
and generally greater than 1.0. The dashed line (in black) shows
that seasonalities have little influence on the Whittle estimator
since the estimates are generally within the range of the bias
thresholds.

4.9. Diffusion Entropy method

The estimates by the Diffusion Entropy method for the LRD
1-4 are presented in Fig. 10. The dotted line (in red) and the
circle line (in cyan) show that the estimates are slightly biased
whenH is around (0, 0.7), and a little underestimated whenH is
around [0.7, 1.0). The mean value does not severely influence
the Diffusion Entropy method. However, the estimatesĤ are
always in range (0.8, 1.0) as provided by the dash-dotted line
(in magenta). Thus the Diffusion Entropy estimator is generally
overestimated with respect to the impact of linear trends. In
addition, the dashed line (in black) shows that the estimates for
LRD 4 are severely underestimated.

4.10. Kettani and Gubner’s method

The estimates by Kettani and Gubner’s method for the LRD
1-4 are presented in Fig. 11. The estimates for LRD 1 are gen-
erally accurate whenH is around (0, 0.9) and only a little un-
derestimated at aroundH ∈ [0.9, 1). The mean value does not
affect Kettani and Gubner’s method. Thus the dotted line (in
red) and the circle line (in cyan) coincide with each other. How-
ever, from the dash-dotted line (in magenta) and the dashed line
(in black), it is clear that the estimates of LRD 3-4 are severely
overestimated.
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Figure 7: Estimates of LRD 1-4 by Periodogram method
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Figure 8: Estimates of LRD 1-4 by Modified Periodogram method
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Figure 9: Estimates of LRD 1-4 by Whittle estimator
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Figure 10: Estimates of LRD 1-4 by Diffusion Entropy method

4.11. Abry and Veitch’s method

The estimates by Abry and Veitch’s method for the LRD 1-
4 processes are presented in Fig. 12. The Abry and Veitch’s
method is a wavelet-based Hurst parameter estimator. In this
study, the Daubechies wavelet is chosen as the mother wavelet
and the number of vanishing moments is 3 for the estimator
evaluation. More detailed explanation can be found in [9]. It
is very interesting to see that three of the estimation curves for
LRD 1-3 overlap in Fig. 12.Ĥ is slightly biased whenH is
around (0.1, 1.0), and underestimated at aroundH ∈ (0, 0.1].
The results indicate that this estimator is robust to the means
and trends. However, the dashed line (in black) is severely un-
derestimated. It is evident that Abry and Veitch’s method is
poor in estimating the Hurst parameters from time series with
seasonalities.

4.12. Koutsoyiannis’ method

The estimates by Koutsoyiannis’ method for the LRD 1-4
processes are presented in Fig. 13. From the dotted line (in
red) and the circle line (in cyan), it is found that the estimates
of LRD 1-2 are generally accurate at aroundH ∈ (0.1, 0.9).
However, this estimator tends to be infinite whenH is close
to 1.0 as can be found from the dotted line and the circle line.
The reason for the infinity estimates are given in [16] and [20],
where detailed numerical method in findingĤ is also provided
in the two references. In addition, the estimator is very sensitive
to the linear trends given that the all estimates for LRD 3 are
tends to be infinite. From the dashed line (in black) we find that
the estimates are in the range (0.6, 0.7) due to the impact of the
seasonalities.

4.13. Higuchi’s method

The estimates by Higuchi’s method for the LRD 1-4 pro-
cesses are presented in Fig. 14. The dotted line (in red) shows
that the estimates are generally accurate for allH ∈ (0, 1). But
this estimator is severely vulnerable to the means, trends and
seasonalities. The Hurst estimation is constantly equal to1.0
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Figure 11: Estimates of LRD 1-4 by Kettani and Gubner’s method
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Figure 12: Estimates of LRD 1-4 by Abry and Veitch’s method

for LRD 2-3. On the other hand, the estimates are generally
underestimated in LRD 4.

4.14. Quantitative comparison of the estimation results

From Fig. 2 to Fig. 14 we can roughly compare the robust-
ness performances of the 13 Hurst parameter estimators. In or-
der to quantify the robustness, the standard errorsS of different
estimations are calculated.S is defined as

S =

√

∑n
j=1(H j − H̄ j)2

n− 1
, (7)

wheren is the number of estimated Hurst parameters by each
estimator andn = 99 in this study. Table 2 gives the standard
errors of the estimates for the 4 different LRDs.

In Table 2, we can find that the standard errors for LRD 1-2
are generally smaller than the standard errors for LRD 3-4. It
indicates that the linear trends and seasonalities tend to impose
worse effects to the Hurst parameter estimators than the mean
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Figure 13: Estimates of LRD 1-4 by Koutsoyiannis’ method
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Figure 14: Estimates of LRD 1-4 by Higuchi’s method

Table 2: Standard errors of Hurst parameter estimates
Estimators LRD 1 LRD 2 LRD 3 LRD 4

R/S 0.0613 0.0613 0.6252 0.4038
Aggregated Variance 0.0258 0.0258 0.5758 0.5995
Difference Variance 0.0311 0.0311 0.4395 0.2771
Absolute Value 0.0261 0.0261 0.5750 0.6347
Variance of Residuals 0.0045 0.0045 0.2514 0.5124
Periodogram 0.0529 0.0529 0.6610 0.0532
Modified Periodogram 0.0483 0.0483 0.7021 0.1164
Whittle estimator 0.0144 0.0144 0.9040 0.0144
Diffusion Entropy 0.0224 0.0224 0.5307 0.3855
Kettani and Gubner 0.0129 0.0129 0.5131 0.5560
Abry and Veitch 0.0441 0.0441 0.0441 0.9407
Koutsoyiannis N/A N/A N/A 0.2838
Higuchi 0.0062 0.5788 0.5764 0.6006

offset. It is also interesting to find that the standard errors for
LRD 1-2 are the same except for the Higuchi’s method, which
indicates that the mean values generally have no influence to12
of the estimators. In addition, we can also find the best estima-
tor for LRD 1-4 by looking up the minimum standard errors in
each column. For instance, the Variance of Residuals method
is the best one for LRD 1-2, Abry and Veitch’s method is the
most suitable estimator for LRD 3 while the Whittle estimator is
recommended to estimate Hurst parameter from LRD 4. How-
ever, it is also clear that none of the estimators consistently per-
formed a good estimation performance across 4 different LRD
processes.

5. Conclusion and discussion

In this study, the robustness performances of the 13 Hurst pa-
rameter estimators have been evaluated for different LRD pro-
cesses with the existence of non-zero means, linear trends and
seasonalities. Since only a certain level of the mean noise and
linear trend are added into LRD 1 and not all frequencies of
the seasonalities have been tested in this study, the conclusion
might not be decisive. However, the robustness assessment pro-
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cedures developed in this paper are applicable to practicalsce-
narios, such as the prices in stock markets, residential daily en-
ergy usage, etc., where means, trends and daily seasonalities
have been exhibited. In addition, the robust evaluation results
offer useful information in choosing the most appropriate Hurst
parameter estimator for a particular LRD process in order to
avoid misusing of these estimators. For instance, for an LRD
process with mean offset, the Variance of Residuals method is
highly recommended since the standard error by this estimator
is less than 1%. In addition, if an LRD process exhibits linear
trends, the Abry and Veitch’s method is suggested to be used to
estimate the Hurst parameter for this LRD process. Moreover,
given an LRD process with seasonalities, the Whittle estimator
proves to be the most suitable estimator for the Hurst parameter
estimation.

Besides all the above-mentioned contributions of this study,
more remarkable and challenging issues related to this study
are raised. These issues are listed in the following and theyare
going to be considered and addressed in our ongoing and future
work.

Firstly, one may argue that under the real world scenario, the
mean offset, the trends and seasonalities are not confined in iso-
lation, for instance, data sampled from the stock markets, and
residential daily energy usage. In this case, an alternative way
of estimating the Hurst parameter is to conduct signal decom-
position by separating the mean, trend, seasonality and theran-
dom component in Time Series Analysis [21]. The coefficients
of mean, trend and seasonality can be obtained by curve fitting
and the random component can be modeled as an fBm.

Secondly, the constant variance of the LRD processes is ideal
but not realistic. To further examine the robustness of estima-
tors for real data, it is plausible to model the variance term
by the Autoregressive Conditional Heteroskedasticity (ARCH),
the Generalised ARCH model, the stochastic volatility or diffu-
sion model if it will be used in capturing the Hurst parameterin
the real data scenarios such as the above-mentioned data from
stock markets or residential daily energy usage.

Thirdly, some real world data that sampled from the stock
markets or residential daily energy usage, either in fGn or
FARIMA type may be in multifractional or multiscales, see [22]
and [23]. In those cases, the effects of trends and seasonalities
to theH estimators are also worth investigation.

Acknowledgment

The authors would like to express our sincere appreciation
to the anonymous reviewers for their valuable comments and
suggestions. The authors also thank Dr. Hu Sheng for sev-
eral pieces of Matlab code of the Hurst parameter estimators.
This work is supported by the National Hub for the Postgrad-
uate Programme in Energy Efficiency and Demand Side Man-
agement at the University of Pretoria.

References

1. Beran, J.: ‘Statistics for Long-Memory Processes’ (Chapman &
Hall/CRC, New York, 1994, 1st edn.)

2. Hurst, H.E.: ‘Long-term storage capacity of reservoirs’, Transactions of
the American Society of Civil Engineers, 1951,116, (3), 770–799

3. Bassingthwaighte, J.B., Raymond, G.M.: ‘Evaluation of the dispersional
analysis method for fractal time series’,Annals of Biomedical Engineer,
1995,23, (4), 491–505

4. Sheng, H., Chen, Y.Q., Qiu, T.: ‘On the robustness of Hurstestimators’,
IET Signal Processing, 2011,5, (2), 209–225

5. Sun, R., Chen, Y.Q., Li, Q.: ‘The modeling and prediction of Great
Salt Lake elevation time series based on ARFIMA’. Proceedings of the
ASME 2007 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference 2007,Las Vegas,
Nevada, USA, 2007, 1–11

6. Taqqu, M., Teverovsky, V., Villinger, W.: ‘Estimators for long-range
dependence: an empirical study’,Fractals, 1995,3, (4), 785–788

7. Geweke, J., Porter-Hudak, S.: ‘The estimation and application of long
memory time series models’,Journal of Time Series Analysis, 1983,4,
221–238

8. Taqqu, M., Teverovsky, V.: ‘Robustness of whittle-type estimators for
time series with long-range dependence’,Stochastic Models, 1997,13,
(4), 723–757

9. Abry, P., Veitch, D.: ‘Wavelet analysis of long-range-dependent traffic’,
IEEE Transactions on Information Theory, 1998,44, (1), 2–15

10. Higuchi, T.: ‘Approach to an irregular time series on thebasis of the
fractal theory’, Physica D: Nonlinear Phenomena, 1988,31, (2), 277–
283

11. Sheng, H., Chen, Y.Q., Qiu, T.: ‘Robustness analysis of Hurst estimators
for multifractional Gaussian process’. The 4th IFAC Workshop Fractional
Differentiation and its Applications, 2010, Badajoz, Spain, 1–6

12. Blok, H.J.: ‘On the nature of the stock market: simulations and experi-
ments’, PhD thesis, Department of Physics and Astronomy, University of
British Columbia, November 2000.

13. Montanari, A., Taqqu, M.S., Teverovsky, V.: ‘Estimating long-range
dependence in the presence of periodicity: an empirical study’, Mathe-
matical and Computer Modelling, 1999,29, (10-12), 217–228

14. Grigolini, P., Palatella, L., Raffaelli, G.: ‘Asymmetric anomalous diffu-
sion: an efficient way to detect memory in time series’,Fractals, 2001,9,
(4), 439–449

15. Kettani, H., Gubner, J.: ‘A novel approach to the estimation of the
long-range dependence parameter’,IEEE Transactions on Circuits and
Systems, 2006,52, (6), 463–467

16. Koutsoyiannis, D.: ‘Climate change, the Hurst phenomenon, and hydro-
logical statistics’,Hydrological Science Journal, 2003,48, (1), 3–24

17. Gubner, J.A.: ‘Probability and Random Processes for Electrical and
Computer Engineers’ (Cambridge University Press, Cambridge, 2006,
1st edn.)

18. Clegg, R.G.: ‘A practical guide to measuring the Hurst parameter’, In-
ternational Journal of Simulation: Systems, Science& Technology, 2006,
7, (2), 3–14

19. Mandelbrot, B.B., Van Ness, J.W.: ‘Fractional Brownianmotions, frac-
tional noises and applications’,SIAM Review, 1968,10, (4), 422–437

20. Koutsoyiannis, D.: ‘Supplementary material for the paper
climate change, the Hurst phenomenon, and hydrological statis-
tics’, Technical Report, Department of Water Resources, Fac-
ulty of Civil Engineering, National Technical University,Athens,
2003, http://www.itia.ntua.gr/getfile/537/2/2003HSJHurstSuppl.pdf, ac-
cessed October 2012

21. Brockwell, P., Davis, R.: ‘Introduction to Time Series and Forecasting’
( Springer, New York, 2002, 2nd edn.)

22. Li, M., Zhao, W.: ‘Quantitatively investigating locally weak stationarity
of modified multifractional Gaussian noise’,Physica A, 2012,391, 6268–
6278

23. Li, M., Zhao, W.: ‘Representation of a stochastic traffic bound’, IEEE
Transactions on Parallel and Distributed Systems, 2010,21, (9), 1368–
1372

8


