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Abstract

Long-range dependence (LRD) is discovered in time serisimgrfrom diferent fields, especially in network ffie and economet-
rics. Detecting the presence and the intensity of LRD playsiaial role in time series analysis and fractional systemiification.

The existence of LRD is usually indicated by the Hurst patanse Up to now, many Hurst parameter estimators have been
proposed in order to identify the LRD property involved iniraé series. Since fferent estimators haveftirent accuracy and
robustness performances, in this paper, 13 most populast ldarameter estimators are summarised and their estimagidor-
mances are investigated. LRD processes with known Hursinpeters are generated as the control data set for the rekastn
evaluation. In addition, three types of LRD processes &e abtained as the test signals by adding noises in terms afisne
trends and seasonalities to the control data set. All 13tHharmmeter estimators are applied to these LRD processssinoate

the existing Hurst parameters. The estimation results acardented and quantified by the standard errors. Conckisibthe
accuracy and robustness performances of the estimatodsaave by comparing the estimation results.

Keywords: LRD, Hurst parameters, fGn, robustness.

1. Introduction is a wavelet-based analysis tool ldf Higuchi’'s method [10]

ids based on fractal theory. Most of the above-mentioned esti
mators are based on linear regression with graphical aealys
except the Whittle estimator.

The study of long-range dependence (LRD) has receive
considerable attention in diverse research areas, suadras-a
omy, astronomy, chemistry, economics, engineering, envir . . )
mental science, geoscience, hydrology, mathematics,iqsnys ~ Different estimators haveftiérent accuracy and robustness
and statistics [1]. The LRD phenomenon is known as the dePerformances. Previous studies, [4], [6], [8] and [11], éav
pendence between observations far away in time. The preseng1ade intensive féorts to compare the accuracy and robust-
and intensity of LRD are traditionally measured by the Hurst€ss Of the existing Hurst parameter estimators. In [4], 12
parametersH, introduced by Hurst [2] during his studies on Hurst parameter estimators are analysed to compare their ro
Nile discharges and problems related to water storage.Hrhe bustness against three kinds of noises, namely the 30 dBlsign
parameter ranges in(D). From a physical pointof viewd isa  t0-noise ratio (SNR) white Gaussian noise, 30 dB SNR sta-
measure of roughness; the roughness or anti-correlatitmein Pl€ noise and Fractional Autoregressive Integrated Modng
signal is maximal whetH is close to zero. White noise with €rage (FARIMA) with stable innovations. In [6], Tagqu and
zero correlation hall = 0.5. Smoother correlated signals have his co-workers summarise nine Hurst parameter estimanats a
H near 10 [3]. compare their performances when they are applied to both the

The Hurst parameter has a close relationship with power lawffactional Gaussian noise (fGn) aRARIMA(0, d, 0) processes
long memory, fractal, fractional calculus and chaos thebgy ~ atsome determined Hurst parameter values. Referencerj8] co
tection of LRD is crucial to time series analysis, espegitdl centrates on comparing the robustness of the Whittle-tgpe e
fractional system identification and prediction [4]. Mangtim ~ Mators; both the Gaussian innovations and the infinite naeia
ods for estimatingd are proposed in the literature. For in- symmetric stable innovations are considered. In [11], the r
stance, the oldest and most common method is the Re-scal@ystness of Hurst parameter estimators for noisy multifsael
Range (RS) method [5]. The Aggregated Variance method [6]Processes, and multifractional processes with infiniteiséc
is based on a dispersional analysis. The Periodogram meth@jder statistics is tested and analysed.

[7] is the linear regression of the log periodogram. The Whit However, none of these studies clearly providgEaient in-
tle estimator [8] is obtained by minimising the objectivéés  formation for selecting the most suitable Hurst paramedér e
tion based on the periodogram. Abry and Veitch’'s method [9mators to detect the LRD properties involved in a time series
with the presence of means, trends and seasonalities. dn thi
c *(ior;zSpondihg author. Tek:27 (0)12 ;1(20 4353; :{aX+27 (0)123625000.  study, 4 diferent LRD processes, namely, LRD process with
mf\l(aigqrjasr?élr?:rTSIr;ﬁgliﬁgug:flg.rzaz(og?mEIrI]egctr?c)al and Computer En- known Hurst pa_ram_eters, LRD process with non-zero_ means,
gineering Department, Utah State University, 4120 Old Meili, Logan, ~ LRD process with linear trends, and LRD process with sea-
uT84322, USA sonalities are generated to evaluate the robustness dingxis




Hurst parameter estimators. In the following, 13 most pop2.2. Fractional Gaussian noise
ular existing Hurst parameter estimators are documentdd an
investigated, (i) Re-scaled Rangeg@#Rmethod [5]; (ii) Aggre-
gated Variance method [12]; (iii) Berence Variance method
[6]; (iv) Absolute Value method [5]; (v) Variance of Residu-
als method [6]; (vi) Periodogram method [7]; (vii)) Modified
Periodogram method [13]; (viii) Whittle estimator [8]; {i®if-
fusion Entropy method [14]; (x) Kettani and Gubner’s method
[15]; (xi) Abry and Veitch’s method [9]; (xii) Koutsoyiansi

Before testing the Hurst parameter estimators, some dontro
data set with known Hurst parameters are reqired. The dontro
data are better synthesised from the first principle of foact
Brownian motion (fBm), which is a Gaussian process as defined
in [12]. Successive increments of an fBm are called fGn [19],
which is defined as follows.

Let X; denote a time series. Thef is second-order sta-
tionary if its mean valué(X;) does not depend arand if the

;netk:lo:jh [1633; (i) ng:_uchls lrge:'hodt [10]. A tb”ef .':,.umrg;:llry auto-covariance functioB[(X; — E(X))(X; — E(X;))] depends
or all the above-mentione urst parameter eSumamms ¢ . ; andj only through their dierencek = i — j, in which case

be found in [4]. These estimators are applied to the 4 LRDJ e has

processes. The estimation results are quantified by thdasten

errors. The robustness_gvaluation results _shc_)w that tlsepce y(K) = E[(Xi = E(X))(Xi—x = E(Xi—))].- (3)

of trends and seasonalities has an essential influence dromos

the 13 Hurst parameter estimators. However, Abry and Vesitch The variance of the processi$ = y(0) = E[(X—E(X;))?], and

method exhibits strong robustness to the trends, whereas tithe autocorrelation function jg(k) = y(k)/o%. A second-order

Whittle estimator is not vulnerable to seasonalities. stationary process is said to be exactly second-ordessalfar
The paper is organised as follows: in Section 2, preliminarywith Hurst exponenH € (0, 1) if

studies on LRD property and fGn processes are reviewed. In

_ 2 2H 2H 2H
Section 3, the test signals are generated and Hurst panagsete ¥(K) = (°/2)(k+ 117" = 21K + [k = 1°7), (4)
timator evaluation procedurt_as are provided. Subsequéhdy or equivalently
performances of the 13 estimators against means, trends and
seasonalities are investigated and the results are giveatin _1 2H _ oyp2H _qp2H
graphic styles and quantified by the standard errors in @edti pll) = 2(|k +1 20+ k= 217). )

;Ii'gr? 5performances of the 13 estimators are summarised in Seﬁ;—xi is a Gaussian process, then it is known as an fGn.
o 3. Test signal generation and Hurst parameter estimator
2. Preliminaries evaluation procedures

Preliminaries on LRD and fGn are essential for this study3.1. Test signal generation

Detailed descriptions of these two concepts are providishbe In order to evaluate the robustness of the 13 Hurst parameter

estimators against means, trends and seasonalitiesigiealss
2.1. Long-range dependence that exhibit the LRD properties with known Hurst parameters
are required as control data sets. For this purpose, fGn time
series, denoted bly,(t, H;) with the standard deviatiom = 1
and known Hurst parameteirl are adopted to generate the test
signals. Four LRD processes are produced for the robustness
evaluation for the 13 estimators. As shown in Equation (6),

A stationary process with finite second-order statisticsid
to have long-range dependence if its covariance fundipm)
decays slowly ag — . That s, there exists an 0 < @ < 1,
such that

lim S0 _

n—oco N

C, (1) Fi(t, Hj) = F(t, H;) + a+ bt+ csin(2rft), (6)

wherec is a finite, positive constant. That is to say, for large H; denotes the_ Hurst parameters that need to be characterised
C(n) is similar toc/n® [17]. The parameter has a relationship from the following 4 LRD processes that are produced by ad-
to H asa = 2 - 2H. The LRD can also be defined by the justing the cofficientsa, b andc in (6).

spectral density. Awegk stationary time ;eness said to be 1) LRD 1: LRD processes with known Hurst parameters,
long-range dependent if its spectral density follows Eot H0) = Fy(t HO):
s M1j) = s T1j )y

f(2) ~ Cela™, (2)  2) LRD 2: LRD processes with non-zero meafi(t, H;) =

asd — oo, for certainC; > 0 and real parametgre (0, 1). The Ft.Hj) +&

parametep is related to the Hurst parameter By= (1+8)/2  3) |RD 3: LRD processes with linear trendBy(t, H))
[18]. For 05 < H < 1 the process has long-range dependence, Fi(t, Hj) + bt;

for H = 0.5 the observations are uncorrelated, and ferlg <

0.5 the process has short-range dependence and the conrelatial) LRD 4: LRD processes with seasonalities,

sum up to zero. Fi(t, Hj) = Fu(t, Hj) + csin(2r ft).



H; increases from 0.01 to 0.99 in steps of 0.p%,1,2,...,99;

Table 1: Initial codficients for the evaluation

for the estimator evaluation, each of the 4 LRD processds wil LRD processes  Coefficients in Eq. (6)

be generated 100 times for every, wherek = 1,2,...,100 LRD 1 a=0b=0c=0

represents thi-th generated LRD process;= 1,2,...,8760 LRD 2 a= & I [maxFi) — min(Fy)],
since the length of an hourly sampled time series for 365 ohays b=0c=0

ayearis 36%24 = 8760. LRD 1 represents the LRD processes LRD 3 Z‘f O’io’ N [maxFy) - min(Fi)]
with known Hurst parameters, LRD 2-4 are the LRD processes 0~ i i o K2
with additive noises in terms of means, trends and seasiesali LRD 4 c= 3N [maxFo) - minFl,

respectively. It is noted that during the evaluation preadshe
13 estimators, the mean, trend and seasonality noisesmiyll o

be added separately. impact of means, trends and seasonalities to the 13 estnato
can be characterised by comparing the final Hurst parameter
3.2. Hurst parameter estimator evaluation procedures estimates between LRD 1 and LRD 2-4. For LRD 4, daily sea-

In this section, detailed Hurst parameter estimator roi@sst  sonalities with frequency = 1/24 are generated to add into
evaluation procedures are provided as shown in the flow chathe LRD 1 processes for the robustness evaluation of the-13 es
in Fig. 1. For LRD 1, the Hurst parameters are estimated byimators. In order to achieve a fair comparison of the edfiona
different Hurst parameter estimators by the following steps: performances for the 13 Hurst parameter estimators, thecexp

tations ofa, b andc for LRD 2-4 are calculated respectively

as provided in Table 1, wheid is suggested to be afficient
large number, say 1000008 is short forF(t, 0.5).
=
‘ Generate LRD1 < 4. Robustness assessment and comparison
o ﬁ 7 In this section, the robustness evaluation results of the 13
stimate . . . .
j E=k=1] Hurst parameter estimators are provided from Fig. 2 to Fg. 1

In these figures, the solid lines (in blue) are the known Hurst
parameter valueld; as the reference lines. In order to indicate
the severity of the estimation bias, two bias thresl#ld 0.03,
denoted by solid lines (in green) are also plotted in all ¢hes
figures. The estimated Hurst parameteissof different LRD
processes are denoted by lines witlietient styles and colours.
Specifically, the estimates of LRD 1-4 are represented byt-a do
ted line (in red), a circle line (in cyan), a dash-dotted I{ive
magenta) and a dashed line (in black), respectively.

Output H,
and j=j+1

4.1. Re-scaled Range method

The estimates by the Re-scaled RangiSjRnethod for the
LRD 1-4 processes are presented in Fig. 2. The dotted line
Figure 1: Flow chart of the Hurst parameter estimator eviina (in red) and the circle line (in cyan) coincide with each othe
which shows that the mean value does not severggctathe
R/S estimator. However, the estimates for LRD 1-2 are bi-
Step 1: Letj =1,k = 1 and the temporary variablés = 0. ased for almost all Hurst parameter values{0H < 1). H
is apparently overestimated at arourde (0,0.6] and under-
Step 2: In the inner loop of the flow chart, 100 replications estimated at around € [0.8,1). In addition, the dash-dotted
of each of the 4 LRD processes are generated. For thgne (in magenta) shows that the estimated Hurst paramaters
k-th generated LRD proces; is estimated by a certain - severely overestimated. Nevertheless, the dashed litéagk)
estimator, and then summed up and storeldJn is severely underestimated. It indicates that ti® Rethod is

Step 3: The final estimated Hurst paramet@r is the average robust neither to the trends nor to the seasonalities.

of the 100 estimates ¢;. _
4.2. Aggregated Variance method

The estimates by the Aggregated Variance method for the
LRD 1-4 processes are presented in Fig. 3. The overlap of the
During the robust evaluation for each Hurst parameter estim dotted line (in red) and the circle line (in cyan) shows tit t
tor, H of LRD 1 is taken as a benchmark for comparison pur-mean value does not influence the Aggregated Variance estima
pose. By following similar evaluation procedures, the figstl-  tor. H of LRD 1-2 is slightly biased at arourtd € (0, 0.7). But
mated Hurst parameters of LRD 2-4 can also be obtained. Then underestimation appears at arotthct [0.7,1). However,

3

Step 4: For the outer loop, Step 2 and 3 will repeat 99 times
until all Hj's are obtained.



the dash-dotted line (in magenta) is generally close to ad a
the dashed line (in black) is far underestimated. It shows th
this estimator has poor robustness performance to LRD pro-
cesses with trends and seasonalities.

4.3. Difference Variance method

The estimates by the Berence Variance method for the
LRD 1-4 processes are presented in Fig. 4. The Hurst es-
timates for LRD 1-2 are generally underestimated and over-
lap with the lower bound of the bias threshold in the range
0 < H < 1. Therefore, the mean value has no influence on
this estimator. However, as shown by the dash-dotted Ime (i
magenta), the estimates are obviously overestimated ahdro
H € (0,0.6)(0.9,1). On the contrary, the estimates are un-
derestimated at arourtd € [0.6, 0.9]. Moreover, as shown by
the dashed line (in black), the seasonalities impose aeayreat
impact on this estimator, artd is extremely biased. Thus, the
Difference Variance method is severeffeated by trends and
seasonalities.

4.4, Absolute Value method

The estimates by the Absolute Value method for the LRD 1-4
are presented in Fig. 5. The estimation performance of the Ab
solute Value method is very similar to the Aggregated Varéan
method. The estimates are nearly unbiased whes around
(0,0.7) but underestimated whéeth is around [07, 1) for both
LRD 1-2. The dash-dotted line (in magenta) is severely over-
estimated and the dashed line (in black) is always under the
reference line. Thus the Absolute Value method exhibits poo
estimation performance to trends and seasonalities.

4.5. Variance of Residuals method

The estimates by the Variance of Residuals method for the
LRD 1-4 are presented in Fig. 6. The dotted line (in red) and
the circle line (in cyan) show that the Variance of Residuals
method estimates the Hurst parameters for both LRD 1-2 accu-
rately given that all estimates lie within the range ofithe0.03

Hurst parameters

02 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
k-th estimation

Figure 2: Estimates of LRD 1-4 by/R method
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Figure 3: Estimates of LRD 1-4 by Aggregate Variance method
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Figure 4: Estimates of LRD 1-4 by Berence Variance method
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Figure 5: Estimates of LRD 1-4 by Absolute Value method



bias thresholds (solid line in green). However, the tremds i 4.8. Whittle estimator
fluence this estimator since overestimation occurs at aoun

H € (0,0.8) as shown by the dash-dotted line (in magenta)
while only slightly biased estimation appears wii¢is around
[0.8,1). The influence of the seasonalities is more severe,
shown by the dashed line (in black). The estimator can hardIYt

give accurate estimates of LRD 4.

0.8

Hurst parameters
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The estimates by the Whittle estimator for the LRD 1-4 are
presented in Fig. 9. From the dotted line (in red) and thdecirc
Iisne (in cyan), it is found that the estimation bf is slightly
iased and only a little underestimated whrs close to zero.
indicates that the Whittle estimator is robust to the nseds
shown by the dash-dotted line (in magenta), the trends slgver
affect the Whittle estimator. The estimateldis overestimated
and generally greater tharD1 The dashed line (in black) shows
that seasonalities have little influence on the Whittlenestor
since the estimates are generally within the range of the bia
thresholds.

4.9. Difusion Entropy method
The estimates by the Busion Entropy method for the LRD

1-4 are presented in Fig. 10. The dotted line (in red) and the
o2 ] circle line (in cyan) show that the estimates are slighthsbkd
""""""""""""" S whenH is around (00.7), and a little underestimated whelns

1 around [07,1.0). The mean value does not severely influence
the Diffusion Entropy method. However, the estimattesire
always in range (8, 1.0) as provided by the dash-dotted line
(in magenta). Thus the Busion Entropy estimator is generally
overestimated with respect to the impact of linear trends. |
addition, the dashed line (in black) shows that the estisfate
LRD 4 are severely underestimated.

A e
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Figure 6: Estimates of LRD 1-4 by Variance of Residuals meéttho

4.10. Kettani and Gubner’s method

4.6. Periodogram method . i
The estimates by Kettani and Gubner’'s method for the LRD

The estimates by the Periodogram method for the LRD 1-4-4 are presented in Fig. 11. The estimates for LRD 1 are gen-
are presented in Fig. 7. The overlap of the dotted line (i) red®r@lly accurate whefi is around (00.9) and only a little un-
and the circle line (in cyan) shows that the mean value does n&érestimated at arourtd < [0.9,1). The mean value does not
affect this estimator. The estimates are slightly biased when &fect Kettani and Gubner's method. Thus the dotted line (in
is around (00.2) for LRD 1-2. However,the linear trends make "€d) and the circle line (in cyan) coincide with each otheswH
the estimation performance poor. As shown by the dash-diotte®Ver, from the dash-dotted line (in magenta) and the dasfred |
line (in magenta), the Hurst parameters are severely averes(in bIacI_<), it is clear that the estimates of LRD 3-4 are selyer
mated. In addition, it can be observed that the seasorsatie ©OVerestimated.
not dfect this estimator. The estimates denoted by the dashed
line (in black) are slightly biased whe is around (@, 1),

only a little underestimated wheth is around (00.2]. 1 N )
12F \'-.\\\ ‘//

4.7. Modified Periodogram method T T T o
0.8 ,f"

The estimates by the Modified Periodogram method for the § .. ,/”/

LRD 1-4 are presented in Fig. 8. The dotted line (in red) and : //‘/

the circle line (in cyan) show tha of LRD 1-2 are a little g o o

underestimated at aroundl € (0.2, 1) since the estimates are 02 /,/’"

very close to the lower bound of the bias threshold. But the = Rt | |

underestimation ofl is more severe wheH is around (00.2] y C LR

given that the estimates are out of the range of the biastthres o -

olds. The estimates shown by the dash-dotted line (in magent o=

k-th estimation

is severely overestimated. In addition, the estimates ey
the dashed line (in black) is consistently underestimateernw

0 < H < 1. Generally, the modified Periodogram method is
severely influenced by the linear trends.

Figure 7: Estimates of LRD 1-4 by Periodogram method
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Figure 8: Estimates of LRD 1-4 by Modified Periodogram method

Hurst parameters

Hurst parameters

-~
”
/
0.8} —r
=
-’
e
-
06 P
) e
’/
-
-
04l -
’/
//
02k o Ref.
- - LRD1
4 LRD2
g
0 —{/’ === LRD3
/ === LRD4

02 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
k-th estimation

Figure 9: Estimates of LRD 1-4 by Whittle estimator
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Figure 10: Estimates of LRD 1-4 by Busion Entropy method

4.11. Abry and Veitch’'s method

The estimates by Abry and Veitch’s method for the LRD 1-
4 processes are presented in Fig. 12. The Abry and Veitch's
method is a wavelet-based Hurst parameter estimator. $n thi
study, the Daubechies wavelet is chosen as the mother wavele
and the number of vanishing moments is 3 for the estimator
evaluation. More detailed explanation can be found in [9]. |
is very interesting to see that three of the estimation aifoe
LRD 1-3 overlap in Fig. 12.H is slightly biased whem is
around (0L, 1.0), and underestimated at arouHde (0, 0.1].
The results indicate that this estimator is robust to thensea
and trends. However, the dashed line (in black) is sevemrly u
derestimated. It is evident that Abry and Veitch’s method is
poor in estimating the Hurst parameters from time seriel wit
seasonalities.

4.12. Koutsoyiannis’ method

The estimates by Koutsoyiannis’ method for the LRD 1-4
processes are presented in Fig. 13. From the dotted line (in
red) and the circle line (in cyan), it is found that the estiesa
of LRD 1-2 are generally accurate at arouidde (0.1,0.9).
However, this estimator tends to be infinite whidnis close
to 1.0 as can be found from the dotted line and the circle line.
The reason for the infinity estimates are given in [16] and,[20
where detailed numerical method in findiRijs also provided
in the two references. In addition, the estimator is vergime
to the linear trends given that the all estimates for LRD 3 are
tends to be infinite. From the dashed line (in black) we find tha
the estimates are in the rangeg®.7) due to the impact of the
seasonalities.

4.13. Higuchi’'s method

The estimates by Higuchi's method for the LRD 1-4 pro-
cesses are presented in Fig. 14. The dotted line (in red)show
that the estimates are generally accurate foHad (0, 1). But
this estimator is severely vulnerable to the means, trends a
seasonalities. The Hurst estimation is constantly equalGo

Hurst parameters
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Figure 11: Estimates of LRD 1-4 by Kettani and Gubner’s métho
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Figure 12: Estimates of LRD 1-4 by Abry and Veitch’s method
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Figure 14: Estimates of LRD 1-4 by Higuchi's method

Table 2: Standard errors of Hurst parameter estimates

for LRD 2-3. On the other hand, the estimates are generally
underestimated in LRD 4.

4.14. Quantitative comparison of the estimation results

From Fig. 2 to Fig. 14 we can roughly compare the robust-
ness performances of the 13 Hurst parameter estimators: In o
der to quantify the robustness, the standard eBa&different
estimations are calculate8.is defined as

.. [S0u(H; - H))?
B n-1 ’

wheren is the number of estimated Hurst parameters by each
estimator anah = 99 in this study. Table 2 gives the standard

()

Estimators | LRD1 LRD2 LRD3 LRD4

R/S 0.0613 0.0613 0.6252 0.4038
Aggregated Variance | 0.0258 0.0258 0.5758 0.5995
Difference Variance | 0.0311 0.0311 0.4395 0.2771
Absolute Value 0.0261 0.0261 0.5750 0.6347
Variance of Residuals| 0.0045 0.0045 0.2514 0.5124
Periodogram 0.0529 0.0529 0.6610 0.0532
Modified Periodogram| 0.0483 0.0483 0.7021 0.1164
Whittle estimator 0.0144 0.0144 0.9040 0.0144
Diffusion Entropy 0.0224 0.0224 0.5307 0.3855
Kettani and Gubner 0.0129 0.0129 0.5131 0.5560
Abry and Veitch 0.0441 0.0441 0.0441 0.9407
Koutsoyiannis N/A N/A N/A 0.2838

Higuchi 0.0062 0.5788 0.5764 0.6006

errors of the estimates for the 4ffdirent LRDs.

In Table 2, we can find that the standard errors for LRD 1-2 ) i ] ]
are generally smaller than the standard errors for LRD 3-4. [0ffSet. Itis also interesting to find that the standard errors fo

indicates that the linear trends and seasonalities terrdgose

LRD 1-2 are the same except for the Higuchi’s method, which

worse dfects to the Hurst parameter estimators than the meafjdicates that the mean values generally have no influert2 to
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Figure 13: Estimates of LRD 1-4 by Koutsoyiannis’ method

of the estimators. In addition, we can also find the best estim
tor for LRD 1-4 by looking up the minimum standard errors in
each column. For instance, the Variance of Residuals method
is the best one for LRD 1-2, Abry and Veitch’s method is the
most suitable estimator for LRD 3 while the Whittle estinraso
recommended to estimate Hurst parameter from LRD 4. How-
ever, it is also clear that none of the estimators consigtpet-
formed a good estimation performance acrossféedint LRD
processes.

5. Conclusion and discussion

In this study, the robustness performances of the 13 Hurst pa
rameter estimators have been evaluated fffedint LRD pro-
cesses with the existence of non-zero means, linear trenttls a
seasonalities. Since only a certain level of the mean noide a
linear trend are added into LRD 1 and not all frequencies of
the seasonalities have been tested in this study, the ciolu
might not be decisive. However, the robustness assessmzent p



cedures developed in this paper are applicable to pracieal
narios, such as the prices in stock markets, residentib eiai
ergy usage, etc., where means, trends and daily seasesaliti
have been exhibited. In addition, the robust evaluationltes
offer useful information in choosing the most appropriate Hurs 4.
parameter estimator for a particular LRD process in order to
avoid misusing of these estimators. For instance, for an LRD >
process with meanftset, the Variance of Residuals method is
highly recommended since the standard error by this estimat

is less than 1%. In addition, if an LRD process exhibits Imea
trends, the Abry and Veitch’s method is suggested to be wsedt ™
estimate the Hurst parameter for this LRD process. Moreover 7.
given an LRD process with seasonalities, the Whittle egtima
proves to be the most suitable estimator for the Hurst palemme
estimation.

Besides all the above-mentioned contributions of thisystud
more remarkable and challenging issues related to this/stud ©-
are raised. These issues are listed in the following andahey
going to be considered and addressed in our ongoing anefutur
work.

Firstly, one may argue that under the real world scenaré, th 11-
mean dfset, the trends and seasonalities are not confined in iso-
lation, for instance, data sampled from the stock marketd, a 15
residential daily energy usage. In this case, an altematay
of estimating the Hurst parameter is to conduct signal decom
position by separating the mean, trend, seasonality anihe
dom component in Time Series Analysis [21]. Theftiogents
of mean, trend and seasonality can be obtained by curvegfittin 14.
and the random component can be modeled as an fBm.

Secondly, the constant variance of the LRD processes ik idea g
but not realistic. To further examine the robustness ofresti
tors for real data, it is plausible to model the variance term
by the Autoregressive Conditional Heteroskedasticity CAR,
the Generalised ARCH model, the stochastic volatility dfudi
sion model if it will be used in capturing the Hurst paraméter
the real data scenarios such as the above-mentioned data fro
stock markets or residential daily energy usage.

Thirdly, some real world data that sampled from the stock
markets or residential daily energy usage, either in fGn orz1o9.
FARIMA type may be in multifractional or multiscales, se@]2
and [23]. In those cases, th&excts of trends and seasonalities
to theH estimators are also worth investigation.
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