Transaction Processing in the Hybrid OLTP&OLAP
Main-Memory Database System HyPer

Alfons Kemper Thomas Neumann Jan Finis Florian Funke
Viktor Leis Henrik Miithe = Tobias Miihlbauer =~ Wolf Rodiger
TU Miinchen, Faculty of Informatics

firstname.lastname @in.tum.de

Abstract

Two emerging hardware trends have re-initiated the development of in-core database systems: ever
increasing main-memory capacities and vast multi-core parallel processing power. Main-memory ca-
pacities of several TB allow to retain all transactional data of even the largest applications in-memory
on one (or a few) servers. The vast computational power in combination with low data management
overhead yields unprecedented transaction performance which allows to push transaction processing
(away from application servers) into the database server and still “leaves room” for additional query
processing directly on the transactional data. Thereby, the often postulated goal of real-time business
intelligence, where decision makers have access to the latest version of the transactional state, becomes
feasible. In this paper we will survey the HyPerScript transaction programming language, the main-
memory indexing technique ART, which is decisive for high transaction processing performance, and
HyPer’s transaction management that allows heterogeneous workloads consisting of short pre-canned
transactions, OLAP-style queries, and long interactive transactions.

1 Introduction

Main-memory or in-core/in-memory database systems have been around since the 1980s (e.g., TimesTen), but
only recently has DRAM become inexpensive enough to render large enterprise applications possible on solely
main-memory-resident data. This has initiated industrial interest in main-memory databases, e.g., SAP’s HANA
[3] or Microsoft’s Hekaton [8]. Along with ever growing main-memory capacities comes a dramatic increase
in compute power through multi-core parallelism. This vast performance increase renders many redundancy-
based optimization techniques like materialized views obsolete, which were designed to avoid scanning large
fragments of a database in an interactive query. The abundance of compute power finally allows to push data-
intensive applications directly into the database server as opposed to the currently employed multi-tier architec-
tures where large amounts of data have to be transferred to the application servers. Retaining all transactional
data in-core is even possible for the largest companies, as a simple “back of the envelope” calculation reveals:
Amazon.com generated a revenue of US$60 billion in 2012. Assuming an average item price of $15 and that
each order line incurs stored data of about 54 bytes — as specified for the TPC-C-benchmark that models such a

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

41

retailer — we derive a total data volume of less than 1/4 TB per year for the order lines, which is the dominating
repository in such a sales application. This estimate neither includes other data (customer and product data)
which increases the volume nor the possibility to compress the data to decrease the volume. Nevertheless it is
safe to assume that the yearly transactional sales data can be fit into the main memory of a large scale server with
a few TB capacity. To unleash the immense computing power of such a multi-core server, a radical reengineer-
ing of database technology is required in several areas: low-overhead data representation, compiled instead of
interpreted code, high-performance indexing and low-cost transaction synchronization are addressed here. Such
a low-overhead database on a multi-core server would not even be saturated by the transaction (Tx) processing as
a simple calculation reveals: On average, Amazon.com has only 127 sales Tx per second (in peak times they re-
port a few thousand), while a main-memory database system like HyPer achieves around 100,000 Tx per second
in the TPC-C benchmark. Thus, besides the mission critical transaction processing there is room for additional
OLAP-style query processing — if they don’t interfere with each other. HyPer allows this via a highly efficient
virtual memory snapshotting mechanism. These virtual memory snapshots are created frequently and shield
the complex OLAP query processing entirely from the mission-critical OLTP processing without any kind of
(software) concurrency control. These snapshots are also leveraged for tentative execution of long transactions
whose effect are then, after validation, applied to the main database as a short install transaction.

2 Transaction Scripting and Compilation

Transactions are implemented in HyPerScript, a SQL-based programming language. The SQL query language
used for OLAP-style queries thereby is a subset of HyPerScript. For illustration purposes, we show the complete
implementation of the well-known newOrder transaction of the TPC-C benchmark [14].

create procedure newOrder (w_id integer not null, d_id integer not null, c_id integer not null,
table positions (line_number integer not null, supware integer not null,
itemid integer not null, gty integer not null),
datetime timestamp not null) // note the TABLE-valued parameter above
{ select w_tax from warehouse w where w.w_id=w_id; // w_tax value used later
select c_discount from customer c // c_discount used in orderline insert
where c_w_id=w_id and c_d_id=d_id and c.c_id=c_id;
select d_next_o_id as o_id,d_tax from district d // get the next o_id
where d_w_id=w_id and d.d_id=d_id;
update district set d_next_o_id=o_id+1 // increment the next o_id
where d_w_id=w_id and district.d_id=d_id;

select count (x) as cnt from positions; // how many items are ordered
select case when count (x)=0 then 1 else 0 end as all_local

from positions where supware<>w_id;
insert into "order" values (o_id,d_id,w_id,c_id,datetime, 0,cnt,all_local);
insert into neworder values (o_id,d_id,w_id); // insert reference to order

update stock

set s_quantity=case when s_qgquantity>qgty then s_quantity-gty else s_quantity+91-gty end,
s_remote_cnt=s_remote_cnt+case when supware<>w_id then 1 else 0 end,
s_order_cnt=s_order_cnt+case when supware=w_id then 1 else 0 end

from positions where s_w_id=supware and s_i_id=itemid;

insert into orderline // insert all the order positions
select o_id,d_id,w_id, line_number,itemid, supware,null, qty,
gty*i_pricex (1.0+w_tax+d_tax)*(l.0-c_discount),
case d_id when 1 then s_dist_01 when 2 then s_dist_02 when 3 then s_dist_03
when 4 ... when 9 then s_dist_09 when 10 then s_dist_10 end
from positions, item, stock
where itemid=i_id and s_w_id=supware and s_i_id=itemid
returning count (x) as inserted; // how many were inserted?

if (inserted<cnt) rollback; // not all ==> invalid item ==> abort

42

x=7
/ NG .
Rl Fz;count(*) : : :.I.-.‘z.;:c:ount(*)
| 1
o 0,23
" I
R, Rs R .2..5

Figure 1: Compiling SQL queries into LLVM Code

The declarative HyPerScript language exhibits the following uncommon constructs that are present in the
above script:

Table parameter. Frequently, a stored procedure is invoked for an entire collection of tuples, each consisting
of several attribute values. Flattening the collection would result in a large number of parameters; a more
elegant solution is provided by HyPerScript’s table parameter that allows to pass an entire table — as
demonstrated by the positions table in the newOrder script.

Reusing query results. In HyPerScript a query result can be reused in subsequent statements by referring to
a prior assigned variable. For example, the first query of our newOrder script determines the tax rate
w_tax of the particular warehouse. This w_tax value is later used in the insert statement that populates the
orderline table with the item’s price including the applicable tax.

Using such a declarative scripting language has a number of advantages: (1) the declarative nature allows for
much more elegant and succinct code than in imperative languages — cf. the complete newOrder script; (2) the
SQL statements can be optimized and executed like regular queries in the same query engine; (3) declarative Hy-
PerScripts are much more amenable for security analysis than imperative programs. Thus, using the declarative
HyPerScript language allows us to safely run compiled transactions within the database server process without
any costly inter-procedural communication and context switching.

Stored procedures as well as regular (stand-alone) SQL queries are compiled into LLVM code [13]. LLVM
constitutes a machine independent assembly language that is then further compiled and optimized for the par-
ticular server machine. The left-hand side of Fig. 1 shows a logical algebra plan for a three-way join including
some selections and an (early) aggregation. Instead of the recently propagated vector-wise processing technique
[2], HyPer’s query engine relies on a data-centric execution model that exploits pipelining as much as possible.
For this purpose, the query evaluation plan (QEP) is segmented into pipelines that end at pipeline breakers. As
shown in the middle of Fig. 1, our example query has four such pipelines: the leftmost pipeline ends at the
hash-table build of the upper join; Ra-tuples are scanned and selected up to the (hash) groupify. From there on,
they are forwarded to the hash-table build of the lower join. Finally, R3-tuples are propelled “in one go” via the
first join all the way up to the upper join and produce output tuples by probing the hash-join table.

Thus, once a data object is accessed it is processed as much as possible. This way the query processing
achieves maximal data locality as an object is transferred to a machine register as few times as possible.

43

integer key bit representation (32 bit, unsigned) byte representation

+218237439 00001101 00000010 00001001 11111111 EEE

key child pointer
’ 0 1 2 3 K 0 1 2 3 K
Nodes [13[120h30] | , | | | | |
J v v
A child index child pointer
0 1 2 3 . 255‘"','.'-:::'.:: """" N T —u
i) P G 3 K

key child pointer

R
() vosess [Te o] g, T, T,][,]
v Y J v
D/ Tl \ Y E T child pointer

0 1 2 3 4 5 6 255
wodezss [0 | [o [mo [mo [| |- [mo]

Figure 2: The Adaptive Radix Tree ART: (left) general idea of different sized nodes, (right) a sample path for
the key 218237439 traversing all four node types

The right-hand side of Fig. 1 illustrates the translation of queries into corresponding LLVM/C++ code.
The typical algorithms of a query engine, such as scans, hash-join table building and probing, grouping and
aggregation, are pre-implemented in the high-level programming language C++. These C++ building blocks are
“glued together” by generated LLVM - as (metaphorically) sketched for the rightmost pipeline of the example
QEP. The generated LLVM code (the chain) makes the C++ query operators (the cog wheels) work together in
evaluating an entire pipeline.

3 ARTful Indexing in Main-Memory Databases

The efficiency of transaction processing largely depends on which index structures are used, as exemplified
by the first three select-statements of the newOrder implementation. In main-memory, dictionary-like data
structures supporting insert, update, and delete are often implemented as hash tables or comparison-based trees
(e.g. self-balancing binary trees or B-trees). Hashing is usually much faster than a tree as it offers constant
lookup time in contrast to the logarithmic behavior of comparison-based trees. The advantage of trees is that
the data is stored in sorted order, which enables additional operations like range scan, minimum, maximum, and
prefix lookup.

The radix tree, also known as trie, prefix tree, or digital search tree, is another dictionary-like data structure.
In contrast to comparison-based structures, which compare opaque key values using a comparison function,
radix trees directly use the binary representation of the key. Although radix trees are often introduced as a data
structure for storing character strings (cf., left hand side of Fig. 2), they can be used to store any data type by
considering values as strings of bits or bytes.

The complexity of radix trees for insert, lookup, and delete is O(k) where k is the length of the key. The
access time is independent of the number of elements stored. Besides the length of the key, the height of a radix
tree depends on the number of children each node has. For example, a radix tree with a fanout of 256 that stores
32 bit integers has a height of 4.

So far radix trees suffered from space underutilization problems as typically an array of 256 pointers was

44

Tx-consistent Snapshot

- Main O

Snapshot
OLAP Queries O
+——@-0 OO e ©®
. -~ Read _C‘>
OLTP Requests /Tx o ® o seee O -t O
- @

.

A @‘) 4 O
. @ =D ® @) O
SN b Q
g 0007

------ ey
Virtual Memory

Figure 3: Virtual Memory Snapshots: (left) to separate OLTP & OLAP; (right) OLAP queries and long Tx
are delegated to the snapshot (A), short transactions are executed on the main (B), long Tx are optimistically
executed on the snapshot (C) and re-executed after validation as an apply transaction (E) on the main

allocated for each node — even though some nodes might have a very low fan-out compared to others. Therefore,
we developed the Adaptive Radix Tree (ART), which uses four different node types that can handle up to (i)
4, (ii) 16, (iii) 48, and (iv) 256 entries. Thereby, a good space utilization of ART-trees is guaranteed while still
being able to achieve a maximum height of k for k-byte keys. That is, 32 bit integers are indexed with a tree of
height 4, 64 bit integers require height 8. These adaptive nodes are exemplified by the sample path for the 32-bit
key 218237439 consisting of the the 4 byte-chunks 13&2&9&255 on the right-hand side of Fig. 2. This path
starts at the root, which happens to be of type Node4, and then covers the three other node types. The structural
representation of these node types varies, as illustrated in the figure. In designing the node structure the trade-off
between space utilization and intra-node search performance was taken into account.

Besides adaptive nodes, we employ two well-known techniques that reduce both the tree height and the
space consumption. First, we build the tree lazily, i.e., any path that leads to a single leaf is truncated. As a
consequence, the leaf is stored higher up in the tree. Only when another key with a shared prefix is inserted, an
additional inner node is created as a “goalpost” between the two leaves. The second technique, path compression,
removes each common path (e.g., “http://” when indexing URLSs) and instead stores the path as an additional
prefix of the following inner node. This avoids cache-inefficient chains of one-way nodes. When indexing
long keys, lazy expansion and path compression are very effective in reducing the tree height. Additionally, the
two optimizations allow to bound the worst-case space consumption per key/value pair to 52 bytes — even for
arbitrarily long keys [9].

4 Isolation of Long Running Transactions

Originally, HyPer focussed on the execution of short, pre-canned transactions and OLAP-style, read-only
queries which are executed on a snapshot of the data that is generated using the UNIX fork-mechanism [7, 10].
The snapshot is kept consistent by the memory management unit (MMU) via the copy-on-write procedure that
will (automatically) detect shared pages and copy them prior to any update, as illustrated on the left of Fig. 3.

In this architecture the OLTP process “owns” the database and periodically (e.g., in the order of seconds
or minutes) forks an OLAP process. This OLAP process constitutes a fresh transaction-consistent snapshot of
the database. Thereby, the OLAP processing is completely separated from the OLTP processing without any
(software) concurrency control mechanism. Whenever an object (such as a in the figure) on a shared page is
modified, the MMU automatically creates a page copy via the copy-on-write mechanism.

The OLTP transactions are executed serially on (partitions of) the transactional database state — as pioneered

45

by H-Store/VoltDB [6, 15]. Even though this yields unprecedented performance, serial execution is restricted to
short and pre-canned transactions.

This makes main-memory database systems using serial execution unsuitable for “ill-natured” transactions
like long-running OLAP-style queries or transactions querying external data — even if they occur rarely in the
workload. In our approach [11], which we refer to as fentative execution, the coexistence of short and long-
running transactions in main-memory database systems does not require recommissioning traditional concur-
rency control techniques like two phase locking. Instead, the key idea is to tentatively execute long-running
transactions on a transaction-consistent database snapshot, that exists for OLAP queries anyway. Thereby, a
long transaction is converted into a short “apply transaction” which is then, after validation, re-executed on the
main database, as illustrated on the right of Fig. 3.

Different mechanisms can be used to separate the workload into short and long transactions. A simple
approach is limiting the runtime or number of tuples each transaction is allowed to use before it has to finish.
When a transaction exceeds this allotment — which can vary depending on the transaction’s complexity or the
number of partitions it accesses — it is rolled back using the undo log and re-executed using tentative execution.

Our approach is optimistic in that it queues and then executes transactions on a consistent snapshot of the
database. This is advantageous as no concurrency control is required to execute short and apply transactions.
Similar to other optimistic execution concepts a validation phase is required which makes some form of moni-
toring necessary.

During the apply phase, the effects of the transaction as performed on the snapshot are validated on the main
database and then applied. This is done by injecting an “apply transaction” into the serial execution queue of
the main database. As opposed to the transaction that ran on the snapshot, the apply transaction only needs to
validate the work done on the snapshot, not re-execute the original transaction in its entirety or wait for external
resources.

Specifically, we distinguish between two cases: When serializability is requested, all reads have to be vali-
dated. To achieve this, it is checked whether or not the read performed on the snapshot is identical to what would
have been read on the main database. Depending on the monitoring granularity, the action performed here ranges
from actually performing the read a second time on the main database to comparing version counters between
snapshot and main.

When snapshot isolation is used, the apply transaction ensures that none of the tuples written on the snapshot
have changed in the main database, therefore guaranteeing that the write sets of both the tentative transaction
as well as all transactions that have committed on the main database after the snapshot was created are disjoint.
This is achieved by either comparing the current tuple values to those saved in the log or by checking that all
version counters for written tuples are equal both during the execution on the snapshot and on the main database.

5 Conclusion and Ongoing Work

The high performance of HyPer is due to several design decisions: (1) compiling SQL queries and HyPerScript
transactions into LLVM assembler code instead of interpreted execution; (2) the new radix tree indexing which
offers performance similar to hash tables while allowing range scans; (3) the virtual memory snapshot mecha-
nism which entirely shields OLTP from OLAP without any (software controlled) synchronization; (4) lock-free
partition-serial execution of short transactions while (5) long transactions are executed optimistically on the
snapshot and then applied to the main database like a short transaction. Currently we are working on paralleliz-
ing the query execution [1], compacting the working set of the transactional database [5], supporting versioned
hierarchical data [4], bulk data loading, and scaling out to processor clusters [12].

46

References

[1]

(2]

(3]

[4]

[5]

[6]

[10]

[11]

[12]

[13]
[14]

[15]

M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in main-memory multi-
core database systems. PVLDB, 5(10):1064-1075, 2012.

P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query execution. In DaMoN,
2005.

F. Firber, S. K. Cha, J. Primsch, C. Bornhovd, S. Sigg, and W. Lehner. SAP HANA database: data
management for modern business applications. SIGMOD Record, 40(4):45-51, 2011.

J. Finis, R. Brunel, A. Kemper, T. Neumann, F. Féarber, and N. May. DeltaNI: An efficient labeling scheme
for versioned hierarchical data. In SIGMOD, 2013.

F. Funke, A. Kemper, and T. Neumann. Compacting transactional data in hybrid OLTP&OLAP databases.
PVLDB, 5(11):1424-1435, 2012.

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden, M. Stone-
braker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a high-performance, distributed main-memory trans-
action processing system. PVLDB, 1(2):1496-1499, 2008.

A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main-memory database system based on
virtual memory snapshots. In ICDE, pages 195-206, 2011.

P-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory databases. PVLDB, 5(4):298-309, 2011.

V. Leis, A. Kemper, and T. Neumann. The Adaptive Radix Tree: ARTful indexing for main-memory
databases. In ICDE, 2013.

H. Miihe, A. Kemper, and T. Neumann. How to efficiently snapshot transactional data: hardware or
software controlled? In DaMoN, pages 17-26, 2011.

H. Miihe, A. Kemper, and T. Neumann. Executing long-running transactions in synchronization-free main
memory database systems. In CIDR, 2013.

T. Miihlbauer, W. Rodiger, A. Reiser, A. Kemper, and T. Neumann. ScyPer: Elastic OLAP throughput on
transactional data. In Workshop on Data analytics in the Cloud (DanaC), 2013.

T. Neumann. Efficiently compiling efficient query plans for modern hardware. PVLDB, 2011.

Transaction Processing Performance Council. TPC-C specification. www.tpc.org/tpcc/spec/
TPC-C_v5-11.pdf, 2010.

VoltDB. Technical Overview. http://www.voltdb.com, March 2010.

47

