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Abstract

We propose a solution based on first principles and Al to the decades-old problem of data structure design.
Instead of working on individual designs that each can only be helpful in a small set of environments, we
propose the construction of an engine, a Data Alchemist, which learns how to blend fine-grained data
structure design principles to automatically synthesize brand new data structures.
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[1, 10, 37, 31, 63, 65, 97, 98, 22]. For example, we can only Figure 1: Design trade-offs.

utilize an optimized sorted search algorithm if the data is sorted
and if we can maintain it efficiently in such a state.

A Hard, Open, and Continuous Problem. Since the early days of computer science dozens of new data
structures are published every year. The pace has increased over the last decade, with 50-80 new data structures
yearly according to data from DBLP [25]. This is because of 1) the growth of data, 2) the increasing number
of data-driven applications, 3) more fields moving to a computational paradigm where data collection, storage,
and analysis become critical, and 4) hardware changes that require a complete redesign of data structures and
algorithms. Furthermore, for the past several decades, the hardware trend is that computation (e.g., CPUs, GPUs)
becomes increasingly faster relative to data movement (e.g, memory, disks). This makes data structure design
ever more critical as the way we store data dictates how much data an algorithm moves.
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There Is No Perfect Data Structure Design. Each design is a compromise among the fundamental trade-
offs [10]: read, update, and memory amplification. This is depicted visually in Figure 1. Read amplification is
how much excess data an algorithm is forced to read; due to hardware properties such as page-based storage, even
when reading a single data item, an algorithm has to load all items of the respective page. Write amplification is
how much excess data an algorithm has to write; maintaining the structure of the data during updates typically
causes additional writes. Memory amplification is how much excess data we have to store; any indexing that helps
navigate the raw data is auxiliary data. Overall, this complex three-way tradeoff causes each design to be effective
for only specific workloads [10]. For example, a Log-Structured Merge-tree (LSM-tree) relies on batching and
logging data without enforcing a global order. While this helps with writes, it hurts reads since now a single read
query (might) have to search all LSM-tree levels. Similarly, a sorted array enforces an organization in the data
which favors reads but hurts writes, e.g., inserting a new item in a sorted (dense) array requires rewriting half the
array on average. In this way, there is no universally good design. To get good performance, the design of a data
structure has to be tailored to the data, queries, and hardware of the target application.

The Vast Design Space Slows Progress. The design of a data structure consists of 1) a data layout, and 2)
algorithms that support basic operations (e.g., put, get, update). The data layout design itself may be further
broken down into 1) the base data layout, and 2) an index which helps navigate the data, i.e., the leaves of a
Btree and its inner nodes, or the buckets of a hash table and the hash-map. We use the term data structure design
throughout the proposal to refer to the overall design of the base data layout, indexing, and the algorithms together.
A data structure can be as simple as an array or as arbitrarily complex as using sophisticated combinations of
hashing, range and radix partitioning, careful data placement, and encodings. There are so many different ways to
design a data structure and so many moving targets that it has become a notoriously hard problem; it takes several
months even for experts to design and optimize a new structure. Most often, the initial data structure decisions
for a data-intensive system remain intact; it is too complex to redesign a data structure, predict what its impact
would be as workload and hardware change, implement it, and integrate it within a complex system or pipeline.
Along the same lines, it is very hard to know when and why the core data structure within a complex system will
“break”, i.e., when performance will drop below an acceptable threshold.

The Problem In Sciences. For data-driven fields without computer science expertise, these low-level choices
are impossible to make. The only viable solution is using suboptimal off-the-shelf designs or hiring expensive
experts. Data science pipelines in astronomy, biology, neuroscience, chemistry and other emerging data-driven
scientific fields, exhibit exactly those characteristics [88, 89]. Recognizing these needs, new systems with novel
storage schemes appear continuously for targeted problems [28, 75, 82, 83, 96] and exploratory workloads
[54, 92, 39, 45]. However, given the vast design space (we provide more intuition on that later), the likelihood
that a single off-the-shelf data structure fits an evolving and complex scientific scenario with unpredictable and
exploratory access patterns, is extremely small. We include a relevant quote from Efthimios Kaxiras, Prof. of Pure
and Applied Physics at Harvard University: “In chemistry and materials science, there exist a huge number of
possible structures for a given chemical composition. Scientists are struggling to find ways to sort through these
structures in an efficient way. The development of tailored database platforms would open great opportunities for
new research in materials and molecular design.”

The Problem In Business. For both established companies and data-driven startups, the complexity leads to
a slow design process and has severe cost side-effects [14, 18]. Time to market is of extreme importance, so data
structure design stops when a design “is due” and only rarely when it “is ready”. We include a quote from Mark
Callahan, a data systems architect with more than two decades of experience: “Getting a new data structure into
production takes years. Assumptions made about the workload and hardware are likely to change. Decisions
today are frequently based on expert opinions, and these experts are in short supply.”

The Problem In Clouds. In today’s cloud-based world even slightly sub-optimal designs, e.g., by 1%,
translate to a massive loss in energy utilization [61] for the cloud provider and cloud expenses for the user. This
implies two trends. First, getting as close to the optimal design is as critical as ever. Second, the way a data
structure design translates to cost needs to be embedded in the design process, i.e., being able to trade among
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read, write, and memory as the relative costs of these resources change. Furthermore, cost policies can vary
significantly among cloud providers which implies that for the same data, queries, and hardware, the optimal data
structure can be different across different cloud providers. In sciences, for universities and labs that maintain their
own cluster and thus are affected by energy costs, or use cloud infrastructure and thus are affected by operating
costs, it is critical to manage those costs.

The Research Challenge. The long-term challenge is whether we can easily or even automatically find the
optimal storage design for a given problem. This has been recognized as an open problem since the early days of
computer science. In his seminal 1978 paper, Turing award winner Robert Tarjan includes this problem in his list
of the five major challenges for the future (which also included P vs. N P) [90]: “Is there a calculus of data
structures by which one can choose the appropriate data representation and techniques for a given problem?” .
This is exactly the problem we attack. We identify the source of the problem to be that there is currently no
good way to predict the performance impact of new workloads, hardware, and data structure designs; we need
a full implementation and extensive testing. Similarly, there is no good way to enumerate the possible designs
so we can choose among them. We make three critical observations.

1. Each data structure design can be described as a set of design concepts. These are all low-level design
decisions, such as using partitioning, pointers, or direct addressing.

2. Each new data structure can be classified in two ways: it contains a) a new combination or tuning of
existing design concepts, or b) at least one new design concept.

3. By now the research community has invented so many fundamental design concepts that most new designs
are combinations or tunings of existing concepts.

Thesis: If we knew the possible design space of data structures, i.e., the exhaustive set of fundamental design
principles, and the performance properties we get when we synthesize them in arbitrary (valid) permutations,
then we can create an engine that allows us to reason about every design, no matter how complex. The challenge
then translates to being able to search the massive design space.

Data Structure Alchemy. We set out to discover the first prin-

Design Primitives ciples of data structure design and develop algorithms to search

through the massive design space they form. Our goal is to be able
to reason about their combinations, tunings, and the performance
properties they bring. Effectively, the principles and their structure
form a “grammar” with which we can describe any data structure in

@ sign sp ¢ a systematic way, including designs that have not been discovered
92 =~ Z"dce yet. New designs can be “calculated” from the design space given
g = . :;j' é — = constraints such as the expected workload, and hardware environ-
ment. If we focus on understanding and managing the core design
elements, then new designs can be derived and existing designs can
be transformed as if by magic - thus “alchemy”.

The vision and components of the engine we propose are captured in Figure 2. We call this engine the Data
Alchemist. Its functionality is to design a close-to-optimal data structure given a workload and hardware. The
Data Alchemist takes four inputs: 1) the workload (queries and data) for which we would like to design an
effective data structure, 2) a hardware profile where the data structure is expected to live, 3) optional performance
and budget restrictions (e.g., point queries should be answered < .3 seconds), and 4) optional constraints for the
search algorithms such as acceptable distance to the estimated optimal, a cap for the search time, and an initial
design to bootstrap the search. Then, the Data Alchemist outputs the resulting data structure design (abstract
syntax tree) and its implementation in C++ code.

The architecture of the Data Alchemist gives us a clear path and methodology to make a dent in the decades-
old problem of data structure design. Specifically, it boils down to the following contained challenges: 1)

Figure 2: Design from first principles.
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identifying the fundamental design principles, 2) creating methods that can estimate the behavior of full designs
that blend more than one design primitives, and 3) creating practical search algorithms that utilize the previous
two components and input constraints to generate designs automatically. In the rest of this paper, we summarize
our existing work towards the first two goals and we focus on sketching the main research challenges and describe
ideas on how to approach the goal of automated design.

2 Design Space and Cost Calculation via Model Synthesis.

Blending Design Principles. The core idea is that the Data Alchemist contains a library of first principles which
can be synthesized in arbitrary ways to give full data structure designs within a massive design space. We define
the design of a data structure as the set of all decisions that characterize its data layout and algorithms, e.g.,
“Should data nodes be sorted?”, “Should they use pointers?”, and “How should we scan them exactly?”. We define
a first principle as a design concept that is not possible to break into more fine-grained concepts. For example,
consider the design choice of linking two nodes of a data structure with a pointer. While there are potential tuning
options (e.g., the size of the pointer), it is not possible to break this decision further; we either introduce a pointer
or not. We separate design principles that have to do with the layout of a data structure from those that have to do
with how we access the data. The bottom part of Figure 2 shows examples of data layout and access primitives for
the key-value model. Overall, a core part of our effort is in analyzing how fine-grained data structure principles
behave in terms of critical performance metrics: read, write, concurrency, and storage size. We build models
for those behaviors, and then develop methods that synthesize more complex data structure designs by putting
together the models of multiple fine-grained design principles.

We made a step toward towards this goal by introducing the design space of data structures supporting the
key-value model [47]. The design space of data structures is defined by all designs that can be described as
combinations and tunings of the “first principles of data layout design”. As an analogy consider the periodic table
of elements in chemistry; it sketched the design space of existing elements based on their fundamental components,
and allowed researchers to predict the existence of unknown, at the time, elements and their properties, purely by
the structure of the design space. In the same way, we created the periodic table of data structures [46] which
describes more data structure designs than stars on the sky and can be used as a design discovery guide.

Naturally, a design space does not necessarily describe ““all possible data structures”; a new design concept
may be invented and cause an exponential increase in the number of possible designs. However, after 50 years
of computer science research, the chances of inventing a fundamentally new design concept have decreased
exponentially; many exciting innovations, in fact, come from utilizing a design concept that, while known, it was
not explored in a given context before and thus it revolutionizes how to think about a problem. Using Bloom
filters as a way to filter accesses in storage and remote machines, scheduling indexing construction actions lazily
[41], using ML models to guide data access [63], storage [55] and other system components [62], can all be
thought of as such examples. Design spaces that cover large fundamental sets of concepts can help accelerate
progress with figuring out new promising directions, and when new concepts are invented they can help with
figuring out the new possible derivative designs. For example, using models as part of the data structure design is
an exciting recent idea, e.g., to replace the index layer or part of it [63, 62]. Such design options can become part
of the design space for a more holistic design [43].

Algorithm and Cost Synthesis from Learned Cost Models. To fully utilize the knowledge of the vast
design space we need to be able to compare different designs in terms of expected performance. Complexity
analysis explains how the properties of a design scale with data but does not give a precise performance
computation given a workload and hardware. On the other hand, full implementation and testing on the target
workload and hardware provide the exact performance. The combination of both complexity analysis and
implementation gives the complete picture. The problem is that with so many designs possible in the design space,
it is not feasible to analyze, implement, and test the numerous valid candidates. A less explored option is building

50



Input

Partial design

High confidence

T Tomemmommmmmmmes \ Update design

Design Search
Iterative Search

Output

|

.
| |
i i
i i
: : 2 _ 2
3 Elc
” g i i Design Continuums é % S| £
u Workload 3 -3 i East analytical - 8 Reinforcement S 8|S Data structure
£ 8| [ i model optimisation H/W Pruning ° Learni = £ Z design
5z D | o E g ) 52| S
3 ' ' arg min §(x < =
_D_ Hardware 2 1 Sohed ; Expert Rules 8 g 2 %
2 ' ! 5|8
E ! Cs\:)r‘rj::v Not yet solved Is it a design 1 ‘g 2 o AST
g ) continuum? B
Q@ wo @ § e T 54
% £ Nods by nod Systematically evaluate Estimation/ %
Performance 3 ode by node various designs Synthesis Cod:
Constraints £ design process for each node  (X) Y o [ec2d Code
- Initial design s Otherwise
- Time threshold
- Distance to optimal - — -
Layout Primitives Overall Designs Data Access Primitives Cost Synthesizer Equality Scan
. Serial Scan Machine Learnin:
! Data Node (Element) ( N o 9
Design Space : — K Equality Scan ‘ . g Micro-benchmarks train
T : T O models on different hardware | :
Key Value Node has Q (L) : ER S profiles, i Range Scan
Data Structures partitioning? ' AN : H_ Range Scan S -
1 H Q )= <
Node has ’ : 3 Fo! J@)rErretie=n Code
<k v> = ] B\oorrT vhllers? 'Y ‘9) Sorted Search § {3} f(z) = az +b - Generator
Node has - Binary Search L ) Binary Search
Zone maps? /
Random Probe
- Design T Hardware Profiles [} LN =30
: Data Node (Element) Space [ = =3
: Library : -
) : ( Operation Synthesis ( 0
@ : Operation Synthesis (Level 1) Hardware Conscious Synthesis (Level 2)
% s\ &/ Z\? 2 i\' %»D %D Level 1 to g»- %. - Space
D BiTree e ® o 3’: Level 2 Efficiency
! Inters lB’T'eel Design @ i : 00 QD © transiation ?1 ® ® Optimization
: , Internal ook lums  DataPage A : L Put Get Delete Bulk Load Put Get Delete Bulk Load
{ D_EEE_DConcurrency & Updates =—0 } L )
Data Layout anl%lndex Syn hes’if‘ . Generalized Cost and Algorithm Synthesis
1gure 3: The Data Alchemist architecture.

generalized hardware-conscious cost models [70, 97]. Similar to a full implementation, such models provide
results very close to ground truth, and similar to complexity analysis they provide hints on how performance
scales. However, building generalized models is nearly equally hard to a full implementation given the level of
detail and hardware-conscious properties needed [56]. In addition, any change in hardware properties requires
retuning the model. Overall, arguing formally about the performance of diverse data structures designs, especially
as workload and hardware properties change, is a notoriously hard problem [16, 56, 70, 91, 97, 99, 100]. In our
case we want to perform this task for a massive number of candidate designs concurrently.

We have shown that given a data structure definition that describes its layout, it is possible to automatically
design the data access algorithms and compute their cost by synthesizing operations from fundamental access
primitives on blocks of data [47, 48]. There always exists a one-to-one mapping from a basic data layout to a
high-level access pattern, e.g., if a data block is sorted we can utilize a sorted search. However, the performance
that we would get out of a sorted search depends on 1) the exact algorithm (binary search, interpolation search,
etc.), 2) the specific hardware, and 3) the exact engineering (e.g., using a new set of SIMD instructions). The
Data Alchemist will synthesize the detailed algorithm and compute the cost via a hybrid of analytical models,
implementation, and machine learning. We call these learned cost models. For each generic class of access
pattern (e.g., sorted search) on a block of data there exist many instances of algorithms and implementations.
These are short implementations that capture the exact access pattern. For example, for a binary search, the
implementation consists of an array of sorted integers where we perform a series of searches. During a training
phase, this code runs on the desired hardware and we learn a model as data scales (across the memory hierarchy).
Each model captures the subtle performance details of diverse hardware settings and the exact engineering used
to build the code for each access pattern. To make training easier, our models start as analytical models since
we know how these access patterns will likely behave. Using learned cost models, it is possible to compute the
accurate performance even in the presence of skew, capturing caching effects and other hardware and workload
properties [47, 48]. The bottom right part of Figure 2 depicts examples of access principles and cost synthesis.
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3 Learning to Design Data Structures

Once we know what performance we get when we blend two or more design principles, then the next big challenge
is to design algorithms that can try out different combinations to reach a good result in terms of performance (e.g.,
response time, storage space, budget). The design space, however, is not enough. The problem is that the design
space is truly vast. For example, only for the key-value model [47, 48] and without considering the extended
design space needed for updates, concurrency control, and ML models, we estimate that the number of possible
valid data structure designs explodes to >> 1032 even if we limit the overall design to only two different kinds of
nodes (e.g., as is the case for BT tree).

Thus, it is hard even for experts to “see” the optimal solutions even if we give them the design space. We need
search algorithms that navigate the possible design space to automatically design data structures which
are close to the best option (if not the best) given a desired workload and hardware. Using brute force and even
dynamic programming variations leads to either impractical search times or we can only search through a small
part of the design space. We study the properties of the design space as well as the properties of the applications
using data structures to turn the search process into a tractable problem in practice. Our solutions lie in
machine learning based algorithms that utilize model synthesis, hardware-conscious termination triggers, expert
knowledge to lead the search algorithms in the right direction, and when possible closed-form models to quickly
search within sub-spaces of the larger space. Our agenda involves designing four components:

1. Design Continuums that allow us to search fast within pockets of the design space.
2. Performance Constraints that provide application, user, and hardware based bounds.
3. Learned Shortcuts to accelerate a new search by learning from past results.

4. Practical Search Algorithms that utilize continuums, constraints, and shortcuts.

The overall search functionality is depicted at the top of Figure 2 and allows building and experimenting with
many variations of search algorithms, constraints, and continuums. The high-level idea is that these algorithms
treat the design space components of the Data Alchemist (bottom part of Figure 2) as a black box to try out
different combinations of design principles. For each combination, the estimated performance feeds into the
search algorithm’s policy. Next we describe each one of four components in more detail to discuss the vision and
preliminary results.

Design Continuums. A key ingredient in any algorithm is to induce domain-specific knowledge. Our insight
is that there exist “design continuums” in the design space of data structures which can accelerate the search
algorithms. An intuitive way to think of design continuums is as a performance hyperplane that connects a subset
of data structure designs. It can be thought of as a super-structure that encapsulates all those designs by taking
advantage of the notion that those designs are synthesized from the same set of fundamental principles.

A design continuum contains a set of rules to instantiate each one of its members and crucially a cost model
with a single closed-form equation for each one of the core performance metrics (read, write, memory size)
which applies across all member designs. In turn, closed-form models can be computed instantly to reason about
this part of the design space. Thus we can search that part of the design space quickly to augment the search
algorithms.

We introduced the first design continuum that connects a set of key-value structures [40]. Specifically, we have
shown that it is possible to connect diverse designs including Tiered LSM-tree [50, 20, 21, 24, 64], Lazy Leveled
LSM-tree [23], Leveled LSM-tree [73, 20, 27, 30], COLA [13, 52], FD-tree [66], B¢tree [15, 8, 13, 51, 52, 76],
and Bttree [12].

Our goal is to discover and formalize as many design continuums as possible and connect them to our search
algorithms such that when a search algorithm “hits” a continuum, it can instantaneously get the best design within
that space using the closed-form models as shown at the top part of Figure 2. One of the most exciting challenges
here is to formalize design continuums that are based as much as possible on average case analysis as opposed to
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worst case as in [40]. This requires building unifying models that take into account properties such as data and
query distribution as well as the state of the target data structure in a workload that contains a sequence of steps.

Additional opportunities in creating ‘“searchable” pockets of the design space include the use of integer
solvers. This is for small parts of the design space which are potentially hard to formalize in a continuum but
can be modeled as an integer problem. For example, consider partitioning of an array for optimal performance
of a mix of point read, range read, update, delete, and insert operations. This is a small space that needs to
be navigated by most data structures which contain blocks of data and partitioning can be a good option for
each block. Each operation benefits or is hurt by partitioning in a different way, and so finding the right layout
depending on the workload is a delicate balance. This problem can be mapped as a binary integer optimization
problem and assigned directly to an integer solver. The Data Alchemist may contain numerous “searchable
pockets” in the design space each one relying either on closed-form formulas or integer solvers.

Performance Constraints. The larger the number of continuums we manage to create, the more tractable
the search process becomes. However, due to the complexity of the design space, we expect that we will be able
to generate many small continuums rather than few big ones (in terms of the number of designs they contain).
As such, given the astronomical size of the design space, search algorithms will intuitively still have a massive
number of candidates to consider. To provide the next level of speed-up we are working towards performance
constraints that bound search algorithms based on application, hardware and user context.

First, we observe that the ultimate possible performance is limited by the underlying hardware in any
given scenario. For example, if an application or a researcher/engineer enter a query to the Data Alchemist to find
a good data structure design on hardware H, then immediately we can consult the learned models which were
trained on H for the best read, and write performance possible, e.g., reading or writing a single page from disk
for a point read or write. Once a search algorithm finds a design within k% of these hardware imposed bounds, it
can stop trying to improve as no further substantial improvements are possible. Parameter k% can be exposed as
input as it is an application/user level decision.

Another performance constraint is to use a data structure design (full or partial) that the user suggests as
starting point. This allows to induce expert and application knowledge in the search algorithm. The search process
then can auto-complete the design without having to reconsider the initial decisions (this feature can also be
used to detect a “bad” original design). Other examples of constraints include a time bound on the overall time a
search algorithm should run, i.e., returning a best effort result once this time passes as well as returning top-k
results which includes classes of promising design decisions it did not have time to consider. The top left and
central part of Figure 2 shows examples of constraints and how they can be used as part of a search algorithm to
accelerate the search.

Learned Shortcuts. Another critical component to speed up the search algorithms is learning from past
results. We design and employ diverse neural network ensamples which are fed by an embedding generated using
the input query, data, and hardware of every request and then it is “labeled” by the resulting output data structure
design. Our goal is to create shortcuts through supervised learning that can practically instantly answer future
queries without going through the search process, or alternatively the output of the neural network can work as a
good starting point for a search. The top left part of Figure 2 shows how this fits in a search algorithm. Our work
also includes accelerating the training and inference of neural network ensamples to achieve interactive speed and
quick reaction to new workloads [93].

Algorithms. We design black box optimization algorithms that utilize continuums, constraints, and shortcuts
to find a good design as fast as possible given a request. This includes Genetic Algorithms (GA) [44], Bayesian
Optimization (BO), and Deep Reinforcement Learning (DRL). There are numerous challenges. For example, let
us consider reinforcement learning. First, we must formalize the space of actions and rewards in data structure
design. We experiment with both policy-based approaches that design the entire data structure at a time, and
action-based approaches that design individual nodes at a time as well as hybrids. One approach is to model the
design of a data structure as a multi-armed bandit problem. That is, we have a design space of design decisions
that can be synthesized to a massive number of “design elements” as shown in Figure 2. Each element can be
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seen as a bandit that can be chosen for any node of a data structure. Then, the problem is bounded by the number
of different types of nodes we would like to include in the final data structure design. For example, the majority
of the published key-value data structures consist of two node types, the index and the data, with Masstree [71]
and Bounded Disorder [67] being exceptions that consist of three types of node. With the Data Alchemist we
have the opportunity to explore designs with an arbitrary number of node types.

We expect that no single algorithm will be a universal solution. This is because of the core principles
of how these families of algorithms behave in terms of convergence and response time. In the case of GA,
exploration happens through mutation, exploitation is a result of the crossover and the selection process, whereas
history is maintained implicitly through the surviving population. When it comes to BO, exploration happens by
selecting solutions with high variance (i.e., solutions we are less certain about), exploitation, on the other hand,
happens through selecting solutions with high mean (i.e., solutions we are quite sure about). History is maintained
by a combination of the acquisition function and the probabilistic model. Finally, DRL makes conditional choices
to explore the solution space, picks solutions with a high expected reward to exploit existing knowledge, and
history is maintained in a deep neural network. As such, they all behave differently depending on the complexity
of the problem at hand, desired span of the search through the design space, convergence speed, and the desired
properties of the resulting data structure design (robustness vs. ultimate performance). The Data Alchemist
incorporates several algorithms as shown at the top part of Figure 2 and choose the right one depending on the
context.

Learned Models for Complex Patterns. The Data Alchemist constructs the cost of data structure designs
out of fine-grained primitives for which it knows learned models. However, a complex design inevitably loses
accuracy when synthesized out of many models. A solution is to generate the code for sets of design primitives
and learn a single compound model for all of them via on-the-fly experiments during the search algorithm (there
are too many possible compound models to train for all of them a priori). Results can also be cached in the
learned models library for future use. Such compound models can increase the accuracy of the search algorithms,
leading to better data structure designs. We build a compiler to generate this code by directly utilizing the fact
that we already have the code of the individual learned models in the library. This compiler can also be used to
output starter code for the resulting design of a search using the abstract syntax tree of the design and the code of
the learned models that were chosen by the search algorithm. This makes it easier to adopt, extend, and fine-tune
designs.

4 Inspiration

Our work is inspired by numerous efforts that also use first principles and clean abstractions to understand
a complex design space. John Ousterhout’s project Magic allows for quick verification of transistor designs
so that engineers can easily test multiple designs synthesized by basic concepts [74]. Leland Wilkinson’s
“grammar of graphics” provides structure and formulation on the massive universe of possible graphics [95].
Timothy G. Mattson’s work creates a language of design patterns for parallel algorithms [72]. Mike Franklin’s
Ph.D. thesis explores the possible client-server architecture designs using caching based replication as the main
design primitive [29]. Joe Hellerstein’s work on Generalized Search Trees makes it easy to design and test
new data structures by providing templates which expose only a few options where designs need to differ
[37, 6, 7, 58, 57, 59, 60]. S. Bing Yao’s [97] and Stefan Manegold’s [70] work on generalized hardware
conscious cost models showed that it is possible to synthesize the costs of complex operations from basic access
patterns. Work on data representation synthesis in programming languages enables synthesis of representations
out of small sets of (3-5) existing data structures [79, 80, 19, 86, 84, 35, 34, 69, 87]. Work on tuning [49, 17]
and adaptive systems is also relevant as conceptually any adaptive technique tunes along part of the design
space. For example, work on hybrid data layouts and adaptive indexing automates selection of the right layout
[9, 3, 33, 41, 26, 81, 4, 68, 20, 78, 32, 77, 101, 42, 53, 85]. Similarly works on tuning via experiments [11],
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learning [6], and tuning via machine learning [2, 36] can adapt parts of a design using feedback from tests.

S Summary and Future Steps

We describe the path toward automating data structure invention and design from first principles and Al. The
secret sauce is in finding the first principles of design, mapping the design space that they form, being able to
reason about the expected performance of designs, and finally building practical Al algorithms that can navigate
this space to design new data structures. Searching the whole massive space is not likely possible so the key is in
translating as much design and application knowledge into the search algorithms. Our ongoing efforts include
applying this same methodology of first principles and Al beyond traditional key-value structures, focusing on
forming the design space of statistics computation [94], neural networks [93], and sketches [38].
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