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Electronic health record databases

» Electronic health record databases are increasingly being made
available for conducting health research.

» They offer a number of advantages over performing and
analysing traditional studies:

» The obvious one: the data have already been collected (saving
time and money)

» Difficult to study sub-populations or rare outcomes can be
examined

» Large (sometimes very) sample sizes are available

» They enable assessment of associations and effects in real
clinical practice, as opposed to the often less realistic
environment of designed studies.

» However, with these come a number of challenges, and a key
one is that of missing data.
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Multiple imputation for missing data in electronic health
record databases

» An obvious approach to consider for tackling missing data in
this setting is multiple imputation (MI), which is usually
performed using parametric models.

> Ideally we would follow Rubin’s original paradigm: the
controllers of a database multiply impute missing data, and
release the imputed datasets to analysts.

» The problem (in short): if the imputation model is
misspecified, analysts may obtain biased estimates, and invalid
inferences.

» Moreover, if the imputation model is
uncongenial /incompatible with an analyst's model, the analyst
may obtain biased estimates [3, 4].

> e.g. the analyst fits a non-linear effect which the imputer
assumed was linear.



Nonparametric imputation models

» The obvious solution is to impute using a nonparametric
approach.
» e.g. hot-deck imputation / nearest neighbour techniques [5].

» The problem is that we suffer from the curse of dimensionality
- as the number of variables increases the nearest neighbours
are not very near [2].

» This is particularly acute in electronic health databases where
we have a large number of variables.
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Imputation using machine learning techniques

» Suggestions have been made (as far back as 1996 [6]) that
machine learning methods, such as regression trees, might be
used for imputation.

» These techniques relax the strong assumptions of parametric
models, and so potentially would be very useful for MI.

» In the last few years some papers have taken up this idea
[7,8,9, 1]

» These methods are not truly nonparametric - they make
certain assumptions, although these (as far as | can see) are
often not explicitly stated or even understood yet.

> In the following, | will describe some of the recent proposals

for using tree based methods for multiply imputing missing
data, and investigate their performance in simulations.
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Trees and random forest

» For the moment we leave the issue of missing data aside.
» Our aim is to predict Y using predictors Xi, .., X,.

> | will describe techniques for continuous Y, but the
techniques can be adapted for categorical Y.

» | will focus on the random forest technique, proposed by Leo
Breiman and Adele Cutler [10].

» Random forest is based on regression/classification trees,
which | therefore briefly review.
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Regression /classification trees

» To start, we consider all
predictors X;, j =1, .., p,
and all cut-points s.

» We split the data using the
predictor j and cut-point s
which reduces the total
squared prediction error by
the largest amount.

» The data are then divided
into two branches, into those
with X; < s and X; > s.

x1<-0,597731
t

x2 < -0[662693 x2 < -0{322021

X2 < -1.04825

x1 < 1{76545

-2.7550  -1.3010

X2 <0.

-1.6400 -0.3398

0.7954

99666

4.0320

1.8490
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Regression /classification trees

x1<-0,597731
t

» Within each branch, we then
repeat the process iteratively

until each terminal node is x2.< -olsb2693 x2 < -olazaom
less than or equal to a given
size (eg 5) x2 < -1.04825 x1 < 1|76545

-2.7550  -1.3010

» The predicted value of Y for
a particular combination of
predictor values is taken as
the mean of the
corresponding terminal oot 18450
node.

X2 < 0.899666
-1.6400 -0.3398 4.0320
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Strengths and limitations of trees

» Trees are capable of automatically capturing complex
relationships between variables (e.g. interactions and
non-linearities).

» They should therefore have relatively little bias in terms of
predicting E(Y|X1, .., Xp).

» However they are noisy / highly variable.

» To improve stability, random forest performs ‘bagging’:

» take k bootstrap samples of the data

> grow a tree on each bootstrapped dataset

» for input values xi, .., x,, average predictions from the k trees
to form prediction

» This averaging process reduces the variance of predictions,
without affecting bias.
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De-correlating predictions from bootstrapped trees

» Random forest also modifies the tree growing process in order
to attempt to reduce correlation between predictions from

bootstrapped trees.

» At each node, rather than considering all predictors for
splitting, a random m < p predictors are considered.

» m is chosen in some way. For continous Y, the default is p/3.
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Statistical properties

» Random forest doesn’t start with an explicit statistical model
or even explicit assumptions, and so deducing its statistical
properties is difficult.

» A number of papers have derived results for algorithms which
are modifications of random forest in order to tackle the
problem [11, 12].

» The bootstrapping and covariate selection reduce variance,
although the covariate selection may induce bias [2].

» Despite the lack of exact formal results, Hastie et al state
that it often performs remarkably well [2].
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Using trees for imputation

» Hastie et al first proposed that classification/regression trees
may be useful for imputing missing data [2].

» Specifically, suppose we want to impute missing values in Y

using Xi, .., X, (which for now we assume are fully observed).

» Let y°P and y™ denote the observed and missing values in
Y, and let x°® denote the predictor values corresponding to
bs
yo.

obs

1. grow a tree for predicting Y from X, .., X,, using y°%, x

2. for a subject who is missing Y, find their terminal node based
on their values of Xi, .., X,

3. impute the missing Y using a random sample from the
observed Y's in the given terminal node
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MICE using trees for imputation

» Burgette and Reiter then proposed that this be embedded
within the chained equations (MICE) / full conditional
specification (FCS) technique [7].

» This enables missing data in multiple variables to be imputed.

» Burgette and Reiter used the Bayesian bootstrap within the
terminal node before sampling.

» However, their approach does not appear to incorporate
uncertainty about the node which a given set of predictor
values leads to.
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Simulation results from Burgette and Reiter [7]

» Burgette and Reiter performed a simulation study with
non-linearities and interactions, and missingness in multiple
variables.

> Regression tree imputation was less biased than standard
MICE (ignoring non-linearities and interactions), but Cl
coverage was stated as being poor (coverage results were not
given).
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Random forest for multiple imputation

» Recently, Doove et al proposed using random forest for
multiple imputation, again within the MICE framework [9].
» To impute Y using fully observed Xy, .., X:
1. apply random forest to (y°P*, x°b%), using k bootstraps
2. for a given subject with missing Y with predictor values
X1, .., Xp, take the observed values of Y in the terminal nodes
of all k trees
3. randomly sample one observed value of Y from these as the
imputation of the missing Y

» Again this can be embedded into MICE, and repeated to
create multiple imputations.

» The approach is included in van Buuren's MICE package in R.
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Simulation results from Doove et al [9]

» Doove et al performed simulations with missing values in Y
and a number of fully observed predictors.

» With Y having expectation a quadratic function of predictors,
random forest was less biased than predictive mean matching
imputation.

» However, for some scenarios/parameters, random forest had
large biases, and Cls had coverage below nominal level in
general.

» Qualitatively similar results were found with a model where
predictors interacted in their effects on Y.

» They suggested that biases may be due to the fact that tree
based methods may struggle to recreate smooth, linear
associations between variables.
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Allowing for uncertainty in the (implicit) model parameters

» For given (y°, x°*5) and observed predictor values

(x1, ..,xp), as k — oo, Doove et al 's procedure draws from
obs

y©°% with particular (fixed) probabilties.

» This means that (I believe) uncertainty in the (implicit) model
parameters is not being propagated.

» In simulations and data analysis to follow, | therefore also
consider a slightly modified version, where Doove et al 's
random forest procedure is applied to a bootstrap sample
(yobs,bs’xobs,bs), rather than to (yobs’ Xobs).
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Alternative random forest imputation

» Independently of Doove et al , Shah et al proposed using
random forest for imputation [1].
» For continuous Y, Shah et al use a somewhat different
approach:
1. take a bootstrap sample (y°bs:bs, xobs:bs) from (y°bs, x°bs)
2. standard random forest is applied to (y°>*?*, x°b*:b%), giving
E(Y|X1,.., Xp)
3. missing Y values are imputed by taking a normal draw,
centred on E(Y|Xi, .., X,) and residual variance equal to the
‘out of bag' mean square error

» This is implemented in the R package CALIBERrfimpute.
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Shah et al 's random forest imputation approach

» In simulations, Shah et al found that their random forest
imputation implementation gave estimates with little bias and
good Cl coverage.

» A drawback of the approach however is the assumption of
conditional normality and constant variance.

» The ‘out of bag’ error is also not residual variance — it is
residual variance plus bias [13].

» For both random forest imp. approaches, an open question is
how best to choose of the number of trees k, the size of
terminal nodes in trees (default is 5), and m (number of
variables to consider at each split).
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Simulation study

> Here | report a series of simulations to investigate the
performance of random forest imputation.

» In each, 1,000 simulations were performed, on n = 1,000
subjects.

» One or more predictors X, .., X, are used, and these are fully
observed.

> Y is generated as normal conditional on Xy, .., X, and values
are made missing.

> Missing Y values are imputed 5 times, and a correctly
specified analysis model for Y|Xq, .., X, (or a subset of
predictors) fitted to each.

» Rubin’s rules are used to combine estimates from the 5
imputed datasets.
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Imputation methods

1. Imputation using correctly specified normal imputation model.

2. Imputation using incorrectly specified normal imputation
model, with default assumptions of linearity and no
interactions.

3. Predictive mean matching, using the same default imputation
model as 2.

4. Random forest imputation proposed by Doove et al
(‘RF-Doove’).

5. Random forest imputation proposed by Doove et al with
additional bootstrap (‘RF-Doove2').

6. Imputation assuming conditional normality, with mean and
variance from random forest (‘RF-Shah’).
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Scenario 1 setup

> X ~ N(0,1)
» Y =00+ X+e€ e~ N(0O,1)
» Bo=0 5 =1

v

Y MCAR, with P(R=1) =0.5
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Scenario 1 results

Results shown for 8y =1

Imp. method Mean

Emp. SD Mean SE CI Cov

Norm correct 1.00
PMM 0.99
RF-Doove 1.00
RF-Doove2 1.00
RF-Shah 1.00

0.047
0.047
0.047
0.049
0.048

0.046
0.045
0.038
0.049
0.045

95.1
93.6
90.0
94.2
93.2

» All methods are unbiased.

» The estimated SE from RF-Doove is too small.

> RF results were also good with n =100 and an MAR

missingness mechanism (not shown).
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Scenario 2 setup

v

X ~ N(0,1)
Y = Bo+ X + BaX?+ € e~ N(0,1)
Bo=0,B1=1 B=1

Y MCAR, with P(R =1) = 0.5, or ¥ MAR with
P(R = 1|X) = expit(X).

v

v

v
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Scenario 2 (MCAR, n = 1,000)

Results shown for 8, =1

Imp. method Mean

Emp. SD Mean SE CI Cov

Norm correct 1.00
Norm wrong  0.50
PMM 0.50
RF-Doove 0.97
RF-Doove2 0.97
RF-Shah 0.97

0.035
0.060
0.060
0.045
0.045
0.045

0.033
0.046
0.046
0.032
0.039
0.038

945
0
0
79.8
86.2
84.3

» Default normal imputation is (as expected) badly biased, as is

PMM.

» RF methods now show slight bias. Est SEs are too small, and

coverage is below nominal, but not too badly.
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Scenario 2 (MCAR, with small (n = 100) sample size)

Results shown for 5, =1

Imp. method Mean

Emp. SD Mean SE Cl Cov

Norm correct 1.00
Norm wrong  0.47
PMM 0.47
RF-Doove 0.84
RF-Doove2 0.83
RF-Shah 0.84

0.127
0.173
0.173
0.179
0.182
0.176

0.122
0.151
0.151
0.114
0.132
0.133

96.2
15.8
14.0
70.7
75.6
80.5

» RF methods now show larger bias.

» Without a parametric model, sparsity of data is a problem for

RF, as for other hot-deck approaches.
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Scenario 2 (MAR, n = 1,000)

Results shown for 5, =1

Imp. method Mean

Emp. SD Mean SE Cl Cov

Norm correct 1.00
Norm wrong  0.35
PMM 0.35
RF-Doove 0.88
RF-Doove2 0.86
RF-Shah 0.87

0.040 0.040 95.0

0.052 0.044 0
0.052 0.044 0
0.084 0.036 32.0
0.086 0.064 57.2

0.083 0.063 58.0

» RF methods have larger bias under MAR.

» Under MAR, less data in some regions of x-space, so again we

have sparsity.
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Scenario 3 setup

v

X ~ N(0,1), Z|X ~ N(0.5X,1)

Y = Bo+ B1X + 2Z + 3XZ + €, e ~ N(0,1)
Bo=061=1 po=-1 p3=1

Y MCAR, with P(R =1) = 0.5

v

v

v
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Scenario 3 (MCAR, n = 1,000)

Results shown for 53 =1

Imp. method Mean

Emp. SD Mean SE Cl Cov

Norm correct 1.00
Norm wrong  0.49
PMM 0.54
RF-Doove 0.91
RF-Doove2 0.89
RF-Shah 0.90

0.038 0.038 95.0
0.058 0.049 0
0.061 0.048 0
0.050 0.045 57.7
0.051 0.051 56.4

0.049 0.044 47.9

» Again, RF outperforms mis-specified parametric and PMM

imp. models.

» Here only (p/3 = 2/3) one predictor is chosen at random for
consideration at each split.

> Increasing to m = 2 reduces bias of RF somewhat further.

35/49



Scenario 4 setup

v

X1,.,.Xs0 ~ N(0,1), Corr(X;, Xj:) =0 for j # j'
Y =BX1+¢€ ¢~ N(0,1)

B=1

Y MCAR, with P(R=1) =0.5

The analysis model is regression of Y on Xj.

v

v

v

v
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Scenario 4 (MCAR, n = 1,000)

Results shown for 5 =1

Imp. method Mean

Emp. SD Mean SE Cl Cov

Norm correct 1.00
PMM 0.99
RF-Doove 0.86
RF-Doove2 0.85
RF-Shah 0.85

0.048 0.048 94.0
0.049 0.046 93.2
0.048 0.053 33.7

0.050 0.058 34.0
0.047 0.053 30.2

» RF is now biased. This is likely due to the fact that at each
split, there is only a 1/3 probability of the only X which is
important being considered.

» To alleviate this, we can set m = p, so that all variables are

considered at each split...
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Scenario 4 (MCAR, n = 1,000)

Results shown for 5 =1

Imp. method Mean Emp. SD Mean SE CI Cov
RF-Doove (m=p) 096 0.048 0.043 83.1
RF-Doove2 (m=p) 0.95 0.048 0.049 85.1

RF-Shah (m = p) 0.96  0.050 0.046 86.3

» Choosing m = p here reduces bias considerably, with no cost
in increased variance.
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Scenario 5 setup

v

Xi,.,.X50 ~ N(0,1), Corr(XJ-,XJ-/) =0 for j # j'
Y =320 BX +e e~ N(O,1)

B =1//50=0.141

Y MCAR, with P(R=1) =05

The analysis model is regression of Y on Xj.

v

v

v

v
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Scenario 5 (MCAR, n = 1,000)
Results shown for 5 = 0.141

Imp. method Mean Emp. SD Mean SE Cl Cov
Norm correct 0.139 0.059 0.058 94.5
PMM 0.138 0.058 0.057 94.8
RF-Doove 0.081 0.042 0.056 88.3
RF-Doove (m=p)  0.082 0.044 0.056 86.6
RF-Doove2 0.082 0.043 0.057 89.3
RF-Doove2 (m=p) 0.083 0.044 0.057 88.3
RF-Shah 0.084 0.044 0.052 82.8
RF-Shah (m = p) 0.086 0.045 0.053 85.8

» RF shows downward bias.

» Choosing m = p makes little difference, now that all
predictors are important.
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Scenario 6 setup

v

X1, .,.Xs0 ~ N(0,1), first 25 have mutual correlation 0.5,
second 25 have mutual correlation 0.25, but the two sets are
independent.

Y = Ejzil Xj +¢€ €~ N(0,325) (so that R? = 0.5)
Y MCAR, with P(R=1) =0.5

The analysis model is regression of Y on Xj, which has true
coefficient g = 13.

v

v

v
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Scenario 6 (MCAR, n = 1,000, 100 simulations)

Results shown for § =13

Imp. method Mean Emp. SD Mean SE Cl Cov
Norm correct 13.0 0.78 0.98 98
PMM 12.9 0.79 0.92 96
RF-Doove 11.8 0.69 0.87 75
RF-Doove (m = p) 118 0.70 0.86 76
RF-Doove2 11.9 0.65 0.90 83
RF-Doove2 (m=p) 11.9  0.66 0.92 88
RF-Shah 12.1 0.62 0.84 91
RF-Shah (m = p) 12.2 0.70 0.86 90

» RF shows a downward bias, although proportionately smaller
here.

» Again choosing m = p makes little difference to results here.
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Conclusions

» Imputation based on random forest shows promise, and in
particular in the context of missing data in electronic health
databases may be useful.

» Simulation evidence suggest it may be able to automatically
allow for interactions and non-linearities.

» If imputed datasets are to be released to many researchers,
this would be very useful.

» Limited simulation results not shown also suggest RF may be
useful when p = n, where standard parametric imputation
results in highly variable estimates.
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Conclusions

However, we have also seen in some simple setups that it can
lead to biased estimates.

Small sample sizes, and non-MCAR missingness in particular
seem to lead to bias, since RF cannot extrapolate in the same
way as a smooth parametric model can.

Simulation results show the default choice of m = p/3 for
continuous variables can lead to bias, suggesting that using
m = p, where feasible, may be preferable.

Moreover, further research is clearly needed to better
understand RF's statistical properties, and consequently its
properties when used for multiple imputation.
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