
PiQASso: Pisa Question Answering System
Giuseppe Attardi, Antonio Cisternino, Francesco Formica,

Maria Simi, Alessandro Tommasi
 Dipartimento di Informatica, Università di Pisa, Italy

{attardi, cisterni, formicaf, simi, tommasi}@di.unipi.it

“ Computers are useless: they can only give
answers” – Pablo Picasso –

Abstract

PiQASso is a Question Answering system based on a
combination of modern IR techniques and a series of
semantic filters for selecting paragraphs containing a
justifiable answer. Semantic filtering is based on several
NLP tools, including a dependency-based parser, a POS
tagger, a NE tagger and a lexical database. Semantic
analysis of questions is performed in order to extract
keywords used in retrieval queries and to detect the
expected answer type. Semantic analysis of retrieved
paragraphs includes checking the presence of entities of
the expected answer type and extracting logical relations
between words. A paragraph is considered to justify an
answer if similar relations are present in the question.
When no answer passes the filters, the process is
repeated applying further levels of query expansions in
order to increase recall. We discuss results and
limitations of the current implementation.

1. Architecture

The overall architecture of PiQASso is shown in Figure
1 and consists in two major components: a paragraph
indexing and retrieval subsystem and a question
answering subsystem.

The whole document collection is stored in the
paragraph search engine, through which single
paragraphs are retrieved, likely to contain an answer to a
question.

Processing a question involves the following steps:
• question analysis
• query formulation and paragraph search
• answer type filter
• relation matching filter
• popularity ranking
• query expansion.

Question analysis involves parsing the question,
identifying its expected answer type and extracting
relevant keywords to perform paragraph retrieval. The
initial query built with such keywords is targeted to high
precision and to retrieve a small number of sentences to
be evaluated as candidate answers through a series of

filters. This approach was inspired by the architecture of
the system FALCON [5]. PiQASso analyzes questions
and answer paragraphs by means of a natural language
dependency parser, Minipar [2].

The semantic type filter checks whether the
candidate answers contain entities of the expected
answer type and discards those that do not.

A semantic filter identifies relations in the question,
and looks for similar relations within candidate answers.
Relations are determined from the dependency tree
provided by Minipar. A matching distance between the
question and the answer is computed. Sentences whose
matching distance is above a certain threshold are
discarded. The remaining sentences are given a score
that takes into account the frequency of occurrence
among all answers. The highest ranking answers are
returned.

If no sentence passes all filters, query expansion is
performed to increase paragraph recall. The whole
process is iterated using up to five levels of
progressively wider expansions.

PiQASso is a completely vertical system, made by
linking several libraries into a single process, which
performs textual analysis, keyword search and the
semantic filtering. Only document indexing is performed
offline by a separate program.

2. Paragraph Search Engine

PiQASso document indexing and retrieval subsystem is
based on IXE [1], a high-performance C++ class library
for building full-text search engines. Using the IXE
library, we built a paragraph search engine, which stores
the full documents in compressed form and retrieves
single paragraphs. However, we do not simply index
paragraphs instead of documents: this approach is not
suitable for question answering since relevant terms may
not all appear within a paragraph, but some may be
present in nearby sentences.

Our solution is to index full documents and to add
sentence boundary information to the index, i.e. for each
document, the offset to the start of each sentence. A
sentence splitting tool is applied to each document
before indexing.

The queries used in PiQASso consist of a proximity
query involving the most important terms in the question

combined in AND with the remaining terms. Such
queries select documents containing both relevant
context for the question and paragraphs where the
required words occur. The paragraph engine ranks each
paragraph individually and extracts them from the source
document exploiting sentence boundary information.

The sentence splitter is based on a maximum entropy
learning algorithm as described in [9].

Since sentence splitting is quite time consuming,
performing it at indexing time improves significantly
PiQASso performance. On a 1 MHz Pentium 3, a
paragraph search on the whole Tipster collection takes
less than 50 msec. Since documents are stored in
compressed form, accessing the individual paragraphs
requires an additional amount of time for performing
text decompression, which depends on the number of
results.

3. Text analysis tools

Our approach to Question Answering relies on Natural
Language Processing tools whose quality and accuracy
are critical and influence the overall architecture of the
system. We performed experiments with various tools
and we had to adapt or to extend some of them for
achieving our aims.

We briefly sketch the main NLP tools deployed in
PiQASso:

• the dependency parser Minipar
• WNSense: an interface to WordNet
• a Named Entity tagger.

3.1. Minipar

Sentences are parsed by means of Minipar [2], producing
a dependency tree which represents the dependency
relations between words in the sentence. A dependency
relationship is an asymmetric binary relationship
between a word called head, and another word called
modifier. A word in the sentence may have several
modifiers, but each word may modify at most one word.
Figure 2 shows an example of a dependency tree for the
sentence John found a solution to the problem. The links
in the diagram represent dependency relationships. The
direction of a link is from the head to the modifier in the
relationship. Labels associated with the links represent
types of dependency relations. Table 1 lists some of the
dependency relations.

Figure 2. Sample dependency tree.

The root node does not modify any word, and is given an
empty node type. Other empty nodes may be present in
the tree. For instance, in the parse tree for sentence “ It’ s
the early bird that gets the worm” , the word “ that” is
identified as the subject of the “gets the worm”
subordinate phrase, and an empty node is inserted to

John found a solution to the problem

subj det mod det
obj pcomp

Figure 1. PiQASso Architecture.

Sentence
Splitter

Query
Formulation
/Expansion

Question
Classification

WordNet

MiniPar

?

Document
collection

Type
Matching

Relation
Matching

Answer Para

Popularity
Ranking

Answer
Scoring

Answer

Answer
found?

Question
analysis

Answer analysis

Paragraph
Search
Engine

WNSense

Indexer

MiniPar

represent the subject of the verb “gets” , including a
reference to the word “bird” . The parser identifies “ that”
as the subject of “gets” and “ the early bird” as an
additional one.

This is an instance of the problem of coreference
resolution: identifying the entity to which a pronoun
refers. From the dependency tree built by Minipar we
gather that “ the early bird” is the subject of “gets the
worm” , enabling us to answer a question like “who gets
the worm?” , even if question and answer are stated in
slightly different syntactic forms.

Minipar has some drawbacks: its parsing accuracy is
not particularly high and the selection of dependency
relations is somewhat arbitrary, so that two similar
phrases may have quite different, although correct,
parses. We apply several heuristic rules to normalize the
dependency tree and to facilitate identifying the most
essential and relevant relations for comparing questions
and answers.

Relation Description

i main verb
subj, s subject of the verb
obj, objn object of the verb
pcomp-n prepositional complement
appo appositive noun
gen genitive
inside location specifier
nn nominal compound
lex-mod lexical modifier
det determiners
mod Modifiers (adjs, advs, preps)
pred Predicate
aux Auxiliary verb
neg negative particle

Table 1: some relations in Minipar output.

Minipar is also capable of identifying and classifying
named entities (NE). Using its own internal dictionary,
plus a few rules, it detects word sequences referring to a
person, a geographic location or an amount of money.

3.2. WNSense

We built WNSense (WordNetSense) as a tool for
classifying word senses, assigning a semantic type to a
word, and evaluating semantic distance between words
based on hyperonymy and synonymy relations.
WNSense exploits information from WordNet [7], for
instance to compute the probability of a word sense.

3.2.1. Sense Probability

Senses are organized in WordNet in distinct taxonomies
(for instance, the word “crane” has senses in the
“animal” taxonomy as well as in the “artifact” one).
During sentence analysis PiQASso often needs to

determine whether a word belongs to a certain category:
e.g. it is of the expected answer type. This can be
estimated by computing the probability for the word
sense to belong to a WordNet category (e.g., the
probability of the sense of the word “ cat” to fall within
the “animal” category).

WordNet orders word senses by frequency. Given
such ordered list of senses { s0, … , sn} for a word w, we
compute the probability that the sense for the word
belongs to category C as follows:

P(w, C) =
�

=

−n

j
js

n

jn
k

0

)(γ

where

γ(sj) = ���� ∈
otherwise

Csif j

0

1

and k is a parameter of the heuristics, roughly the
probability that the first WordNet sense is the correct
one (currently, k is at 0.7).

3.2.2. Word Type

The type for a word w is computed as:

),(maxarg CwP
TLCC∈

i.e. the category C among those in TLC, to which the
word belongs with the highest the probability. The TLC
categories used by PiQASso are the 23 top-level
categories from WordNet corresponding to nouns, from
the total of 45 lexical files into which WordNet
organizes synsets.

3.2.3. Word Distance

A measure of word distance is used for estimating the
distance between two sentences, in particular an answer
paragraph and a question.

Word distance for hyperonyms is based on the
distance in depths of their senses in the WordNet
taxonomy. The depth differences are normalized
dividing them by the taxonomy depth, so that a depth
difference of 1 in a detailed taxonomy has less influence
than a difference of 1 in a coarser one. The depth
differences for all pairs of senses of two words are
weighted according to the probabilities of both senses
and added together.

Word distance for two synonyms is also computed
over all their senses, weighted according to their
probability.The distance between two words, denoted by
dist(w1, w2), is defined as either their synonym distance,
if they are synonyms, or else their hyperonym distance.

3.2.4. Word Alternatives

Alternatives for a word are required during query
expansion. They are computed considering the union W
of all synsets containing the word w. The set of
alternatives for w is defined as:

{ s ∈ W | dist(w, s) < th }

where th is a fixed ceiling, useful to avoids cases where
a synonym of w has meanings not typically related to w
(e.g. “machine” for “computer”).

3.3. Named Entity Tagger

The NE tagger in Minipar can achieve high precision in
NE recognition, since it is dictionary-based, but it has
limitations (for instance it does not handle unknown
names). Therefore we integrated it with an external
tagger, based on a maximum entropy probabilistic
approach [3] that uses both a part-of-speech tagger
(TreeTagger [10]) and a gazetteer to determine word
features.

The Named Entity extractor identifies person names,
organizations, locations, quantities and dates, and
assigns to them one of the semantic types as defined in
MUC [4].

To maintain uniformity of treatment, the tags
produced by the NE tagger are integrated within the
same tree produced by Minipar as additional semantic
features for the corresponding words.

4. Question analysis

Question analysis extracts or identifies the following
information from the question:

• the keywords to be used in the paragraph search;
• the expected answer type;
• the location of the answering entity.

These pieces of information correspond to three
successive steps in the process of question answering:
keyword based retrieval, paragraph filtering based on the
expected answer type, and logical relation matching
between questions and answer paragraphs.

4.1. Keyword Extraction

The first step selects words from the question for
generating a suitable paragraph query.

PiQASso considers the adjectives, adverbs, nouns
and verbs in the question, excluding words from a list,
determined experimentally, which includes:
• nouns such as “ type” , “sort” , “kind” , “name” ,

frequently occurring in questions but unlikely to
occur in answers;

• generic verbs like “be” , rhetorical ones like “call” ,
auxiliary verbs;

• adjectives that qualify “how” (as in “how long” ,
“how far” , etc.).

Words to which the parser does not assign the part-of-
speech tag are discarded: including them did not have a
clear effect on performance, according to our
experiments.

4.2. Question Classification

The expected answer type is the semantic type of the
entity expected as the answer to the question. The
expected answer type is helpful for factual questions, but
not for questions that require complex explanations.

Irrelevant sentences can be often discarded simply by
checking whether they contain an entity of the expected
type. The TREC 2001 QA main task requires answers
shorter than 50 characters and this entails that only
factual questions are asked (no long explanations can be
returned as answers).

PiQASso uses a coarse-grained question taxonomy
consisting of five basic types corresponding to the entity
tags provided by Minipar (person, organization,
time, quantity and location) extended with the 23
WordNet top-level noun categories. The answer type can
be a combination of categories, like in the case of “Who
killed John Fitzgerald Kennedy?” , where the answer
type is person or organization. Categories can
often be determined directly from a wh-word: “who” ,
“when” , “where” .

The category for “how <adjective> ” is determined
from the adjective category: “many” , “much” for
quantity, “ long” , “old” for time, etc.

The type for a “what <noun>” question is normally
the semantic type of the noun, as determined by
WNSense. For instance in “what king signed the Magna
Charta?” , the semantic type for “king” is person. When
feasible, the WordNet category for a word is mapped to
one of the basic question types. The other cases are
mapped to one of the top-level WordNet categories by
means of WNSense: “what metal has the highest melting
point” has the semantic type “substance” .

For “what <verb> ” questions the answer type is the
type of the object of the verb. “What is” questions,
which expect a definition as an answer (“what is
narcolepsy?” , “what is molybdenum?”) are dealt
specially. The answer type is the answer itself (a disease,
a metal). However, it is often not possible to just look up
the semantic type of the word, because lack of context
does not allow identifying the right sense. Therefore, we
treat definition questions as type-less questions: entities
of any type are accepted as answers (skipping the
semantic type filter), provided they appear as subject in
an is-a sentence.

4.3. Proper and Common Names

Questions whose expected answer type is person
require special treatment. A question like “who is Zsa
Zsa Gabor?” expects a definition, and therefore a
common noun as an answer, while a question like “who
is the king who signed the Magna Charta?” expects a
proper noun. Therefore the rule for the case of a person
answer type is: if the question contains a proper noun, a
common noun is expected and vice versa.

4.4. Relations between Words

Relations between words in the question are determined
from the dependency tree built by Minipar. In a question
like “who killed John F. Kennedy” , Minipar identifies
the verb “killed” as having “Kennedy” as object, and a
missing subject (represented by an empty node – a node
with no corresponding word). In a possible answer
sentence the verb “kill” may appear with exactly
“Kennedy” as object. However the same relation could
also be stated in a quite different syntactic form, where
the dependencies are not so explicit, but require more
complex analysis of the tree, as discussed later.

4.4.1. Identifying the Answer Node

In the dependency tree of the question we must identify
the node that represents the object of the question. We
call this the answer node, since it can be considered as a
placeholder to be matched with the answer object in the
answer paragraph. The answer node will have the answer
type as determined above. Often this node exists and is
empty: it corresponds to the missing subject of a verb, as
in “who killed John F. Kennedy” . In other cases the node
is not empty: for instance in “What instrument did Glenn
Miller play?” , the answer node corresponds to the word
“ instrument” . The answer type of the question is
“artifact” and the semantic type of the word
“ instrument” . In a direct answer like “Glenn Miller
played trombone” the answer entity (“ trombone”) occurs
in the place held by the word “ instrument” in the
question.

Head Relation Modifier

play obj instrument
play s Miller
play s Glenn
Miller lex-mod Glenn

Table 2: relations for the sentence “ what instrument
did Glenn Miller play?”

By experimenting with a number of questions and
analyzing Minipar output, we noticed that the answer
node often corresponds to the first empty subject node in
the question. This is because the main verb in a question

is often the first one, and because an empty subject
means that the actual subject is missing.

An exception to this rule is when the required entity
does not participate in the action as a subject, as in
question “ in what year did the Titanic sink?” . In this
case, the answer is a complement, and the answer node
is still in relation with the verb, but as a complement
instead of as a subject. In such cases, there is no such
node in the output of the parser, and a new one must be
created.

These simple heuristics are effective for simple
questions: dealing with more involved expressions will
require extending such heuristics, since determining the
answer node is a critical issue in our approach.

5. Query Formulation and Expansion

5.1. Query formulation

The first iteration in the question answering process
performs keyword extraction and query formulation.

A keyword search is performed for selecting
candidate answer sentences from the whole Tipster
document collection. Further iterations perform various
level of query expansion, each allowing larger recall in
the search.

PiQASso only addresses the problem of finding
answers that are fully justified within a single paragraph.
This simplifies textual analysis, as only one sentence at a
time needs to be analyzed.

Although sentence boundaries information is stored
in the index, search is performed document-wise, in
order to achieve better recall. Consider two sentences
like: “Neil Armstrong walked on the moon. Armstrong
was the first man to walk on Earth’s satellite” . A
question like “Who was the first man to walk on the
moon?” would yield the keywords “ first” , “walk” ,
“moon” and “man” . However, while the two sentences
contain all those keywords, none of them does by itself.
Instead of looking for keywords within a each individual
sentence, PiQASso performs a proximity search, looking
for terms within a specified word position distance. For
the above example, the query could be:

proximity 100 ((first) & (walk*) & (moon))

which looks for the term “ first” , for the prefix “walk”
and for the word “moon” within a window of one
hundred words. Such window would spans across the
two sentences above, which would be both returned,
individually, as candidate answers.

Keyword expansion would hardly propose “satellite”
as an alternative to “moon” , and therefore the second
sentence would not be returned if paragraphs had been
indexed separately. When evaluating the second
sentence within the last filter, the match between “moon”

and “satellite” will be given a certain distance as
hyperonym, allowing the paragraph to pass the filter.

We use the following criterion for choosing the size
of the proximity window. In principle question and
answer lengths are not strictly related: an answer to a
short question may appear within a very long sentence,
and vice versa, an answer to a complex question could
be much shorter than the question itself. However, it
seems reasonable to expect that the keywords in an
answer paragraph are not too spread apart. The size of
the proximity window is twice the number of nodes in
the question parse tree (including irrelevant or empty
nodes that may account for complicated sentences).

The heuristics proposed for keyword extraction is
adequate for short questions, but returns too many terms
for long questions. Thus, we split keywords into two
sets: those that must appear within the proximity
window and those that must occur anywhere in the
document. The generated query consists of a conjunction
of those terms that must be found in the document, and
of a proximity query.

Terms are put in either of the two sets depending on
the distance of the term from the root of the parse tree.
Terms closer to the root, and therefore more central to
the question, are required to be appear within the
proximity window, while the others are accessory: they
are only requested to occur in the document, but may be
missing from the sentence.

5.2. Query Expansion

The first expansion step tries to cope with morphological
variants of words by replacing each keyword with a
prefix search, obtained from stemming the original word.
Certain prefixes that appear frequently in questions are
discarded: for instance “ locate” , “ find” , “situate” in
questions expecting a location as an answer, “day” ,
“date” , “year” in questions expecting a date and so on.
We use about a dozen of such exceptions, which
correspond to cases in which the type makes these words
superfluous.

Stemming is performed using Linh Huynh
implementation of Lovins’s stemmer [6].

In the second expansion cycle we broaden the search
by adding (in or) the synonyms of the search terms.
Synonyms are looked up in WordNet by means of
WNSense. Synonyms are stemmed as well.

In the third and fourth expansion cycles, we increase
recall by dropping some search terms. During the third
cycle, adverbs are dropped.

During the last expansion cycle, if the query contains
more than three keywords in conjunctive form, verbs are
discarded, as well as person’s first names when the last
name is present. If after such a pruning there are still
more than three keywords in and, then we also drop
those keywords whose parent (as from the dependence

tree) is already within the keywords to be searched. This
has the effect, if looking for a “black cat” , to perform a
search for a “ cat” , black being a modifier of cat, and
therefore depending on it.

6. Type Matching

The sentences returned by the query are analyzed and
checked for the presence of entities of the proper answer
type, as determined by question analysis.

Sentences are parsed and recognized entities are
tagged. The tree is then visited, looking for a node
tagged with the expected answer type.

We also check whether an entity which occurs in the
sentence is already present in the question. A question
like “Who is George Bush’s wife?” expects a proper
person name as an answer. The sentence “George Bush
and his wife visited Italy” contains a proper person
name, but does not answer the question. Such sentences
occur frequently (the search keywords being “George” ,
“Bush” and “wife”), so it is convenient to discard them
as early as possible.

Sentences not verifying this condition are rejected.

7. Relation Matching

Sentences that pass the answer type filter are submitted
to the relation matching filter, which performs a more
semantic analysis, verifying that the answer sentence
contains words that have the same type and relation than
corresponding words in the question.

The filter analyzes Minipar output in order to:
• determine a set of relations between nodes

present both in the question and in the sentence;
• look for relations in the answer corresponding to

those in the question;
• compute the distance of each candidate answer

and select the one with the lower distance.

In order to simplify the process, not all the nodes in the
question and in the answer are considered. The same
criterion used for selecting words as search keywords is
applied also in this case: nouns, verbs, adjectives and
adverbs are relevant (including dates and words with
unknown tag).

During this analysis, the parser tree is flattened into a
set of triples (H, r, M): head node, relation, modifier
node. This representation is more general and allows us
to turn the dependency tree into a graph.

In fact it is often useful to make certain relations
explicit by adding links to the parser tree. For instance in
the phrase “Man first walked on the moon in 1969” ,
“1969” depends on “ in” , which in turns depends on
“moon” . According to our criterion, “ in” is not a relevant
node and so it will not be considered. We can however
short circuit the node by adding a direct link between
“moon” and “1969” . More generally, we follow the rule

that whenever two relevant nodes are linked through an
irrelevant one, a link is added between them. Similarly,
since the NE tagger recognizes “ 1969” as a date, it is
convenient to add a link between the main verb (“walk”)
and the date, since the date modifies the action expressed
by the verb.

7.1. Extracting Relations

Questions and answers are analyzed in order to
determine whether relations present in a question appear
in a candidate answer as well.

PiQASso exploits the relations produced by Minipar
and infers new relations applying the following rules:

Direct link if B is a child of A in Minipar output, A is

related to B according to their relation in the parse
tree.

Conjunctions Relations distribute over conjunctive
links. For example, in “Jack and John love
Mary” , the relation between John and Mary is
distributed over the conj link between John and
Jack, i.e. a “ love” relation between Jack and Mary
is inferred.

Predicates A and B are related if they are both child of a
“ to be” verb, the first with the role of subject, the
second as predicate (which is the relation between
them). This is because a question like “who is the
Pope?” is often answered by phrases such as “The
Pope, John Paul II, ...” in which the answer does
not go through a “ to be” verb.

Possession A and B are related with the relation of
genitive if A is the subject of a verb “ to have” and
B is the object. The rule enables matching
“John’s car” with “John has a car” .

Location A and B are in inside relation if there is a
subj-in relation between B and A (phrase of the
form “A is in B”). This allows matching “Paris is
in France” with “Paris, France” .

Inver tible relations Some relations are invertible, so
that A and B are in relation if B and A are in
relation as either apposition (a particular case of
nominal compound) or by the person relation (a
relation between the first and second name of a
person).

Dates Minipar links a modifier (e.g. “ in 1986”) to the
closest noun: a relation between the main verb
(describing the action) and the date is inferred.

Empty nodes Empty nodes represent an implicit
element of the sentence. Minipar sometimes can
determine the word they refer to: in this case we
add a relation between A and B if there is a
relation between A and C, and C is an empty node
referring to B (and dually for the first node in the
relation).

Negation A relation between two nodes is discarded if
both nodes depend from a node with a negative
modifier. This accounts for negative phrases like
“John is not a policeman” and avoids inferring a
relation between “John” and “policeman” . This
rule has precedence over the others.

7.2. Finding a match

Suppose the following relations appear in a question: qr1
= (A, r1, B) and qr2 = (A, r3, C). Suppose the following
relations are present in a candidate answer sentence: ar1
= (1, R1, 2), ar2 = (2, R2, 3) and ar3 = (1, R3, 3). All

matches between triples in the question and in the
answer are considered, provided that no node is put in
correspondence with two different nodes: if we match
qr1 with ar1, we cannot match qr2 with ar2, or node A in
the question would have to match both nodes 1 and 2 in
the answer.

The match with the smallest distance is selected.

7.3. Matching Distance

An answer paragraph can be considered as a close
answer to a question if it contains nodes and relations
corresponding to all nodes and relations in the question.
For each missing node the distance is increased by an
amount that depends on the relevance of the node. To
represent this relevance we associate a mismatch
distance, mmd(n), to each node n in the question. For
instance the mismatch distance is small for the node
corresponding to the question type (e.g. the node
“ instrument” in a previous example), since it may be
missing in the answer. Nodes depending on other
relevant nodes have half the mismatch distance of their
parents: they may express a specification that a correct
answer need not contain.

The overall matching distance between a question
and a candidate answer is computed by summing,
for each node n in the question:

mmd(n) ⋅ dist(n, m) if n matches node m in the answer
mmd(n) otherwise

and similarly for each relation in the question.

The distance is incremented to account for special
situations, e.g. when the answer is too specific: for the
question “Who was the first man in Space?” , “The first
American in space was …” is not a proper answer,
contrary to a naïve rule that wants a specific answer
correct for a general question.

If the answer sentence does not contain an entity of
the expected answer type, the distance is set to infinity,
to ensure that the paragraph is rejected.

The maximum distance from the question allowed by
the filter (distance ceiling) may be set to either: a) very
high, so that any sentence matching the answer node will

pass the filter (recall-oriented); or b) proportional to the
number of nodes in the question. PiQASso implements a
simple tightening strategy whereby the ceiling is
decreased at each expansion iteration, avoiding too much
garbage in the early phases.

8. Answer Popular ity

After the TREC 2001 submission we introduced a
criterion for selecting answers based on a measure of
answer popularity, which proved quite effective.

Answers are grouped according to the value
contained in their answer node. A score is assigned to
each group proportional to the average of the matching
distances in the group and inversely proportional to the
cardinality of the group. Groups are sorted by increasing
score value and only the answer with the smallest
matching distance in each group is returned.

The criterion combines a measure of difference to
the question and a measure of likelihood based on how
often the same answer was offered. Selecting only one
answer per group ensures more variety in the answers.

9. Results

PiQASso achieved the scores summarized in Table 3,
expressed as MRR (Mean Reciprocal Rank) of up to five
answers per question. The official score, computed from
the judgments of NIST assessors at TREC 2001, ranks
PiQASSo in 15th overall position. PiQASso achieved the
same score for both strict evaluation (answers supported
by a document in the collection) and lenient evaluation
(answer not supported), since it does not use any
external source of information. The unofficial score was
computed by our own evaluation of the results on a new
run of the system after the addition of the popularity
ranking.

Run MRR Strict MRR Lenient

TREC 2001, official 0.271 0.271
TREC 2001, unofficial 0.32

Table 3: Scores in the TREC 2001 QA main task.

A peculiarity of the TREC 2001 questions was the
presence of a higher than usual percentage (almost 25%)
of definition questions that could have been answered by
simple lookup in a dictionary or from other sources (e.g.
the Web), as some other systems did. For PiQASso we
concentrated in improving the system ability to analyze
and extract knowledge from the given document
collection.

10. Assessment

In order to assess the effectiveness of the various filters,
and how they affect the overall performance we

performed some measurements using a subset of 50
questions of the TREC 2001 set. Results are summarized
in Table 4. For half of the questions (49%), no paragraph
passed all filters. The great majority of answers are
obtained from the results of the first IR query.

 %

Questions for which no answer was found 49
Questions answered by first query (over all
answers) 92
Questions for which no paragraph was
retrieved 2

Table 4: Filter effectiveness.

The benefits of iterating the process after performing
query expansion are less than expected.

Overcoming this limit requires improving query
expansion to produce more word alternatives or
morphological variations. This may however complicate
the task of the relation matching filter, which also needs
to be refined: the paragraphs retrieved by the initial
query (without stemming or synonym expansion) are
simpler to match with the question and produce most of
the answers. When more complex paragraphs are
retrieved by the more complex queries, matching is more
difficult and rarely an answer is found.

The current system is not capable, for example, of
matching the sentences “John loves Mary” and “John is
in love with Mary” , since their main verbs “ love” and “ to
be” are different. Either deeper semantic knowledge
would be required or a collection of phrase variants, that
might be built automatically with the method suggested
by Lin [10], discovering similarities in paths within the
dependency graph of the parser.

11. Conclusions and Future Work

PiQASso is engineered as a vertical application, which
combines several libraries into a single application. With
the exception of Minipar and WordNet, all the
components in the architecture were built by our team,
including the special purpose paragraph indexing and
search engine, up to the tools for lexical analysis,
question analysis and semantic filtering.

PiQASso is based on an approach that relies on
linguistic analysis and linguistic tools, except for
passage retrieval, where it exploits modern and efficient
information retrieval techniques. Linguistic tools provide
in principle higher flexibility, but often appear brittle,
since implementations must restrict choices to reduce the
efffects of combinatorial explosions. One way to
improve their performance would be by providing them
with large amounts of semantic data in a preprocessed
form: for instance generating a large number of variants
from the phrases in the document collection and
matching them with effective indexing techniques and

statistical estimates, rather than performing sophisticated
matching algorithms.

PiQASso is heavily dependent on Minipar since it
relies on the dependency relations it creates. Such
relations are often too tied to the syntactic form of the
sentence for our purposes, so we had to add specific
processing rules to abstract from such representation and
to work around certain of its idiosyncrasies.

Question analysis could be improved by adopting a
finer-grained taxonomy for the expected answer type.
Such granularity requires support by the named entity
tagger.

Keyword extraction/expansion would benefit from a
better identification of the sense of a word, so that fewer
and more accurate alternatives can be used in the query
formulation. Current figures show that present keyword
expansion is not effective, for it either does not add
results, or it adds too many, returning way too many hits
for the system to analyze them all. As for about half of
the questions our system did not find any answer at all
(which gives us outstanding improvement margins), this
seems a necessary step.

Acknowledgements

Alessandro Tommasi is supported by a PhD fellowship
from Microsoft Research Cambridge.

Cesare Zavattari contributed to various aspects of the
implementation, in particular of the sentence splitter.

12. References
[1] G. Attardi, A. Cisternino, Reflection support by

means of template metaprogramming, Proceedings
of Third International Conference on Generative
and Component-Based Software Engineering,
LNCS, Springer-Verlag, Berlin, 2001.

[2] D. Lin, LaTaT: Language and Text Analysis Tools,
Proc. Human Language Technology Conference,
San Diego, California, March 2001.
http://hlt2001.org.

 [3] A. Berger, S. Della Pietra, and M. Della Pietra, A
Maximum Entropy Approach to Natural Language
Processing. Computational Linguistics, 22(1), 1996.

[4] R. Grishman and B. Sundheim, Design of the MUC-
6 evaluation. In NIST, editor, The Sixth Message
Understanding Conference (MUC-6), Columbia,
MD. NIST, Morgan-Kauffmann Publisher, 1995.

[5] S. Harabagiu, Moldovan et al., FALCON: Boosting
Knowledge for Answering Engines. TREC 2000
Proceedings, 2000.

[6] J. B. Lovins, Development of a Stemming
Algorithm. Mechanical Translations and
Computational Linguistics, 11: 22-31, 1968.

[7] G. Miller, Five papers on WordNet. Special issue of
International Lexicography 3(4), 1990.

[8] J. C. Reyner and A. Ratnaparkhi, A Maximum
Entropy Approachg to Identify Sentence
Boundaries. Computational Language, 1997.

[9] G. Schmid, TreeTagger – a language independent
part-of-speech tagger, 1994. Available:
http://www.ims.uni-
stuttgart.de/Tools/DecisionTreeTagger.html.

[10] D. Lin and P. Pantel, Discovery of Inference Rules
for Question Answering. To appear in the Journal of
Natural Language Engineering, 2001.

