
PiQASso: Pisa Question Answering System 
Giuseppe Attardi, Antonio Cisternino, Francesco Formica, 

Maria Simi, Alessandro Tommasi 
  Dipartimento di Informatica, Università di Pisa, Italy 

{attardi, cisterni, formicaf, simi, tommasi}@di.unipi.it 

 

“ Computers are useless: they can only give 
answers”  – Pablo Picasso – 

 
Abstract 

PiQASso is a Question Answering system based on a 
combination of modern IR techniques and a series of 
semantic filters for selecting paragraphs containing a 
justifiable answer. Semantic filtering is based on several 
NLP tools, including a dependency-based parser, a POS 
tagger, a NE tagger and a lexical database. Semantic 
analysis of questions is performed in order to extract 
keywords used in retrieval queries and to detect the 
expected answer type. Semantic analysis of retrieved 
paragraphs includes checking the presence of entities of 
the expected answer type and extracting logical relations 
between words. A paragraph is considered to justify an 
answer if similar relations are present in the question. 
When no answer passes the filters, the process is 
repeated applying further levels of query expansions in 
order to increase recall. We discuss results and 
limitations of the current implementation. 

1. Architecture 

The overall architecture of PiQASso is shown in Figure 
1 and consists in two major components: a paragraph 
indexing and retrieval subsystem and a question 
answering subsystem. 

The whole document collection is stored in the 
paragraph search engine, through which single 
paragraphs are retrieved, likely to contain an answer to a 
question. 

Processing a question involves the following steps:  
• question analysis 
• query formulation and paragraph search 
• answer type filter 
• relation matching filter 
• popularity ranking 
• query expansion. 

Question analysis involves parsing the question, 
identifying its expected answer type and extracting 
relevant keywords to perform paragraph retrieval. The 
initial query built with such keywords is targeted to high 
precision and to retrieve a small number of sentences to 
be evaluated as candidate answers through a series of 

filters. This approach was inspired by the architecture of 
the system FALCON [5]. PiQASso analyzes questions 
and answer paragraphs by means of a natural language 
dependency parser, Minipar [2]. 

The semantic type filter checks whether the 
candidate answers contain entities of the expected 
answer type and discards those that do not. 

A semantic filter identifies relations in the question, 
and looks for similar relations within candidate answers. 
Relations are determined from the dependency tree 
provided by Minipar. A matching distance between the 
question and the answer is computed. Sentences whose 
matching distance is above a certain threshold are 
discarded. The remaining sentences are given a score 
that takes into account the frequency of occurrence 
among all answers. The highest ranking answers are 
returned. 

If no sentence passes all filters, query expansion is 
performed to increase paragraph recall. The whole 
process is iterated using up to five levels of 
progressively wider expansions. 

PiQASso is a completely vertical system, made by 
linking several libraries into a single process, which 
performs textual analysis, keyword search and the 
semantic filtering. Only document indexing is performed 
offline by a separate program. 

2. Paragraph Search Engine 

PiQASso document indexing and retrieval subsystem is 
based on IXE [1], a high-performance C++ class library 
for building full-text search engines. Using the IXE 
library, we built a paragraph search engine, which stores 
the full documents in compressed form and retrieves 
single paragraphs. However, we do not simply index 
paragraphs instead of documents: this approach is not 
suitable for question answering since relevant terms may 
not all appear within a paragraph, but some may be 
present in nearby sentences. 

Our solution is to index full documents and to add 
sentence boundary information to the index, i.e. for each 
document, the offset to the start of each sentence. A 
sentence splitting tool is applied to each document 
before indexing. 

The queries used in PiQASso consist of a proximity 
query involving the most important terms in the question 



 

combined in AND with the remaining terms. Such 
queries select documents containing both relevant 
context for the question and paragraphs where the 
required words occur. The paragraph engine ranks each 
paragraph individually and extracts them from the source 
document exploiting sentence boundary information. 

The sentence splitter is based on a maximum entropy 
learning algorithm as described in [9]. 

Since sentence splitting is quite time consuming, 
performing it at indexing time improves significantly 
PiQASso performance. On a 1 MHz Pentium 3, a 
paragraph search on the whole Tipster collection takes 
less than 50 msec. Since documents are stored in 
compressed form, accessing the individual paragraphs 
requires an additional amount of time for performing 
text decompression, which depends on the number of 
results. 

3. Text analysis tools 

Our approach to Question Answering relies on Natural 
Language Processing tools whose quality and accuracy 
are critical and influence the overall architecture of the 
system. We performed experiments with various tools 
and we had to adapt or to extend some of them for 
achieving our aims. 

We briefly sketch the main NLP tools deployed in 
PiQASso: 

• the dependency parser Minipar 
• WNSense: an interface to WordNet  
• a Named Entity tagger. 

3.1. Minipar 

Sentences are parsed by means of Minipar [2], producing 
a dependency tree which represents the dependency 
relations between words in the sentence. A dependency 
relationship is an asymmetric binary relationship 
between a word called head, and another word called 
modifier. A word in the sentence may have several 
modifiers, but each word may modify at most one word. 
Figure 2 shows an example of a dependency tree for the 
sentence John found a solution to the problem. The links 
in the diagram represent dependency relationships. The 
direction of a link is from the head to the modifier in the 
relationship. Labels associated with the links represent 
types of dependency relations. Table 1 lists some of the 
dependency relations. 

 

 

Figure 2. Sample dependency tree. 

The root node does not modify any word, and is given an 
empty node type. Other empty nodes may be present in 
the tree. For instance, in the parse tree for sentence “ It’ s 
the early bird that gets the worm” , the word “ that”  is 
identified as the subject of the “gets the worm”  
subordinate phrase, and an empty node is inserted to 

John found a solution to the problem 

subj det mod det 
obj pcomp 

Figure 1. PiQASso Architecture. 

 
 

Sentence 
Splitter 

Query 
Formulation
/Expansion 

Question 
Classification 

WordNet 

MiniPar 

? 

Document 
collection 

Type 
Matching 

Relation 
Matching 

Answer Para 

Popularity 
Ranking 

Answer 
Scoring 

Answer 

Answer 
found? 

Question 
analysis 

Answer analysis 

Paragraph 
Search 
Engine 

WNSense 

Indexer 

MiniPar 



 

represent the subject of the verb “gets” , including a 
reference to the word “bird” . The parser identifies “ that”  
as the subject of “gets”  and “ the early bird”  as an 
additional one. 

This is an instance of the problem of coreference 
resolution: identifying the entity to which a pronoun 
refers. From the dependency tree built by Minipar we 
gather that “ the early bird”  is the subject of “gets the 
worm” , enabling us to answer a question like “who gets 
the worm?” , even if question and answer are stated in 
slightly different syntactic forms. 

Minipar has some drawbacks: its parsing accuracy is 
not particularly high and the selection of dependency 
relations is somewhat arbitrary, so that two similar 
phrases may have quite different, although correct, 
parses. We apply several heuristic rules to normalize the 
dependency tree and to facilitate identifying the most 
essential and relevant relations for comparing questions 
and answers. 

 
Relation Description 

i   main verb  
subj, s   subject of the verb  
obj, objn   object of the verb  
pcomp-n   prepositional complement  
appo   appositive noun 
gen   genitive  
inside   location specifier  
nn   nominal compound  
lex-mod   lexical modifier  
det   determiners  
mod   Modifiers (adjs, advs, preps)  
pred   Predicate  
aux   Auxiliary verb  
neg   negative particle  

Table 1: some relations in Minipar output. 

Minipar is also capable of identifying and classifying 
named entities (NE). Using its own internal dictionary, 
plus a few rules, it detects word sequences referring to a 
person, a geographic location or an amount of money. 

3.2. WNSense  

We built WNSense (WordNetSense) as a tool for 
classifying word senses, assigning a semantic type to a 
word, and evaluating semantic distance between words 
based on hyperonymy and synonymy relations. 
WNSense exploits information from WordNet [7], for 
instance to compute the probability of a word sense. 

3.2.1. Sense Probability 

Senses are organized in WordNet in distinct taxonomies 
(for instance, the word “crane”  has senses in the 
“animal”  taxonomy as well as in the “artifact”  one). 
During sentence analysis PiQASso often needs to 

determine whether a word belongs to a certain category: 
e.g. it is of the expected answer type. This can be 
estimated by computing the probability for the word 
sense to belong to a WordNet category (e.g., the 
probability of the sense of the word “ cat”  to fall within 
the “animal”  category). 

WordNet orders word senses by frequency. Given 
such ordered list of senses { s0, … , sn}  for a word w, we 
compute the probability that the sense for the word 
belongs to category C as follows: 
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and k is a parameter of the heuristics, roughly the 
probability that the first WordNet sense is the correct 
one (currently, k is at 0.7). 

3.2.2. Word Type 

The type for a word w is computed as: 

),(maxarg CwP
TLCC∈

 

i.e. the category C among those in TLC, to which the 
word belongs with the highest the probability. The TLC 
categories used by PiQASso are the 23 top-level 
categories from WordNet corresponding to nouns, from 
the total of 45 lexical files into which WordNet 
organizes synsets. 

3.2.3. Word Distance 

A measure of word distance is used for estimating the 
distance between two sentences, in particular an answer 
paragraph and a question. 

Word distance for hyperonyms is based on the 
distance in depths of their senses in the WordNet 
taxonomy. The depth differences are normalized 
dividing them by the taxonomy depth, so that a depth 
difference of 1 in a detailed taxonomy has less influence 
than a difference of 1 in a coarser one. The depth 
differences for all pairs of senses of two words are 
weighted according to the probabilities of both senses 
and added together. 

Word distance for two synonyms is also computed 
over all their senses, weighted according to their 
probability.The distance between two words, denoted by 
dist(w1, w2),  is defined as either their synonym distance, 
if they are synonyms, or else their hyperonym distance. 



 

3.2.4. Word Alternatives 

Alternatives for a word are required during query 
expansion. They are computed considering the union W 
of all synsets containing the word w. The set of 
alternatives for w is defined as: 

{  s ∈ W | dist(w, s) < th }  

where th is a fixed ceiling, useful to avoids cases where 
a synonym of w has meanings not typically related to w 
(e.g. “machine”  for “computer” ). 

3.3. Named Entity Tagger  

The NE tagger in Minipar can achieve high precision in 
NE recognition, since it is dictionary-based, but it has 
limitations (for instance it does not handle unknown 
names). Therefore we integrated it with an external 
tagger, based on a maximum entropy probabilistic 
approach [3] that uses both a part-of-speech tagger 
(TreeTagger [10]) and a gazetteer to determine word 
features. 

The Named Entity extractor identifies person names, 
organizations, locations, quantities and dates, and 
assigns to them one of the semantic types as defined in 
MUC [4]. 

To maintain uniformity of treatment, the tags 
produced by the NE tagger are integrated within the 
same tree produced by Minipar as additional semantic 
features for the corresponding words. 

4. Question analysis 

Question analysis extracts or identifies the following 
information from the question:  

• the keywords to be used in the paragraph search; 
• the expected answer type; 
• the location of the answering entity. 

These pieces of information correspond to three 
successive steps in the process of question answering: 
keyword based retrieval, paragraph filtering based on the 
expected answer type, and logical relation matching 
between questions and answer paragraphs. 

4.1. Keyword Extraction 

The first step selects words from the question for 
generating a suitable paragraph query. 

PiQASso considers the adjectives, adverbs, nouns 
and verbs in the question, excluding words from a list, 
determined experimentally, which includes: 
• nouns such as “ type” , “sort” , “kind” , “name” , 

frequently occurring in questions but unlikely to 
occur in answers; 

• generic verbs like “be” , rhetorical ones like “call” , 
auxiliary verbs; 

• adjectives that qualify “how”  (as in “how long” , 
“how far” , etc.). 

Words to which the parser does not assign the part-of-
speech tag are discarded: including them did not have a 
clear effect on performance, according to our 
experiments. 

4.2. Question Classification 

The expected answer type is the semantic type of the 
entity expected as the answer to the question. The 
expected answer type is helpful for factual questions, but 
not for questions that require complex explanations. 

Irrelevant sentences can be often discarded simply by 
checking whether they contain an entity of the expected 
type. The TREC 2001 QA main task requires answers 
shorter than 50 characters and this entails that only 
factual questions are asked (no long explanations can be 
returned as answers). 

PiQASso uses a coarse-grained question taxonomy 
consisting of five basic types corresponding to the entity 
tags provided by Minipar (person, organization, 
time, quantity and location) extended with the 23 
WordNet top-level noun categories. The answer type can 
be a combination of categories, like in the case of “Who 
killed John Fitzgerald Kennedy?” , where the answer 
type is person or organization. Categories can 
often be determined directly from a wh-word: “who” , 
“when” , “where” . 

The category for “how <adjective> ”  is determined 
from the adjective category: “many” , “much”  for 
quantity, “ long” , “old”  for time, etc. 

The type for a “what <noun>”  question is normally 
the semantic type of the noun, as determined by 
WNSense. For instance in “what king signed the Magna 
Charta?” , the semantic type for “king”  is person. When 
feasible, the WordNet category for a word is mapped to 
one of the basic question types. The other cases are 
mapped to one of the top-level WordNet categories by 
means of WNSense: “what metal has the highest melting 
point”  has the semantic type “substance” . 

For “what <verb> ” questions the answer type is the 
type of the object of the verb. “What is”  questions, 
which expect a definition as an answer (“what is 
narcolepsy?” , “what is molybdenum?”) are dealt 
specially. The answer type is the answer itself (a disease, 
a metal). However, it is often not possible to just look up 
the semantic type of the word, because lack of context 
does not allow identifying the right sense. Therefore, we 
treat definition questions as type-less questions: entities 
of any type are accepted as answers (skipping the 
semantic type filter), provided they appear as subject in 
an is-a sentence. 



 

4.3. Proper and Common Names 

Questions whose expected answer type is person 
require special treatment. A question like “who is Zsa 
Zsa Gabor?”  expects a definition, and therefore a 
common noun as an answer, while a question like “who 
is the king who signed the Magna Charta?”  expects a 
proper noun. Therefore the rule for the case of a person 
answer type is: if the question contains a proper noun, a 
common noun is expected and vice versa. 

4.4. Relations between Words 

Relations between words in the question are determined 
from the dependency tree built by Minipar. In a question 
like “who killed John F. Kennedy” , Minipar identifies 
the verb “killed”  as having “Kennedy”  as object, and a 
missing subject (represented by an empty node – a node 
with no corresponding word). In a possible answer 
sentence the verb “kill”  may appear with exactly 
“Kennedy”  as object. However the same relation could 
also be stated in a quite different syntactic form, where 
the dependencies are not so explicit, but require more 
complex analysis of the tree, as discussed later. 

4.4.1. Identifying the Answer Node 

In the dependency tree of the question we must identify 
the node that represents the object of the question. We 
call this the answer node, since it can be considered as a 
placeholder to be matched with the answer object in the 
answer paragraph. The answer node will have the answer 
type as determined above. Often this node exists and is 
empty: it corresponds to the missing subject of a verb, as 
in “who killed John F. Kennedy” . In other cases the node 
is not empty: for instance in “What instrument did Glenn 
Miller play?” , the answer node corresponds to the word 
“ instrument” . The answer type of the question is 
“artifact”  and the semantic type of the word 
“ instrument” . In a direct answer like “Glenn Miller 
played trombone” the answer entity (“ trombone” ) occurs 
in the place held by the word “ instrument”  in the 
question. 

 
Head Relation Modifier 

play  obj  instrument  
play  s  Miller  
play  s  Glenn  
Miller  lex-mod  Glenn  

Table 2: relations for  the sentence “ what instrument 
did Glenn Miller play?”  

By experimenting with a number of questions and 
analyzing Minipar output, we noticed that the answer 
node often corresponds to the first empty subject node in 
the question. This is because the main verb in a question 

is often the first one, and because an empty subject 
means that the actual subject is missing. 

An exception to this rule is when the required entity 
does not participate in the action as a subject, as in 
question “ in what year did the Titanic sink?” . In this 
case, the answer is a complement, and the answer node 
is still in relation with the verb, but as a complement 
instead of as a subject. In such cases, there is no such 
node in the output of the parser, and a new one must be 
created. 

These simple heuristics are effective for simple 
questions: dealing with more involved expressions will 
require extending such heuristics, since determining the 
answer node is a critical issue in our approach. 

5. Query Formulation and Expansion 

5.1. Query formulation 

The first iteration in the question answering process 
performs keyword extraction and query formulation. 

A keyword search is performed for selecting 
candidate answer sentences from the whole Tipster 
document collection. Further iterations perform various 
level of query expansion, each allowing larger recall in 
the search. 

PiQASso only addresses the problem of finding 
answers that are fully justified within a single paragraph. 
This simplifies textual analysis, as only one sentence at a 
time needs to be analyzed. 

Although sentence boundaries information is stored 
in the index, search is performed document-wise, in 
order to achieve better recall. Consider two sentences 
like: “Neil Armstrong walked on the moon. Armstrong 
was the first man to walk on Earth’s satellite” . A 
question like “Who was the first man to walk on the 
moon?” would yield the keywords “ first” , “walk” , 
“moon” and “man” . However, while the two sentences 
contain all those keywords, none of them does by itself. 
Instead of looking for keywords within a each individual 
sentence, PiQASso performs a proximity search, looking 
for terms within a specified word position distance. For 
the above example, the query could be:  
 

proximity 100 ((first) & (walk*) & (moon)) 

which looks for the term “ first” , for the prefix “walk”  
and for the word “moon”  within a window of one 
hundred words. Such window would spans across the 
two sentences above, which would be both returned, 
individually, as candidate answers. 

Keyword expansion would hardly propose “satellite”  
as an alternative to “moon” , and therefore the second 
sentence would not be returned if paragraphs had been 
indexed separately. When evaluating the second 
sentence within the last filter, the match between “moon”  



 

and “satellite”  will be given a certain distance as 
hyperonym, allowing the paragraph to pass the filter. 

We use the following criterion for choosing the size 
of the proximity window. In principle question and 
answer lengths are not strictly related: an answer to a 
short question may appear within a very long sentence, 
and vice versa, an answer to a complex question could 
be much shorter than the question itself. However, it 
seems reasonable to expect that the keywords in an 
answer paragraph are not too spread apart. The size of 
the proximity window is twice the number of nodes in 
the question parse tree (including irrelevant or empty 
nodes that may account for complicated sentences). 

The heuristics proposed for keyword extraction is 
adequate for short questions, but returns too many terms 
for long questions. Thus, we split keywords into two 
sets: those that must appear within the proximity 
window and those that must occur anywhere in the 
document. The generated query consists of a conjunction 
of those terms that must be found in the document, and 
of a proximity query. 

Terms are put in either of the two sets depending on 
the distance of the term from the root of the parse tree. 
Terms closer to the root, and therefore more central to 
the question, are required to be appear within the 
proximity window, while the others are accessory: they 
are only requested to occur in the document, but may be 
missing from the sentence. 

5.2. Query Expansion 

The first expansion step tries to cope with morphological 
variants of words by replacing each keyword with a 
prefix search, obtained from stemming the original word. 
Certain prefixes that appear frequently in questions are 
discarded: for instance “ locate” , “ find” , “situate”  in 
questions expecting a location as an answer, “day” , 
“date” , “year”  in questions expecting a date and so on. 
We use about a dozen of such exceptions, which 
correspond to cases in which the type makes these words 
superfluous. 

Stemming is performed using Linh Huynh 
implementation of Lovins’s stemmer [6]. 

In the second expansion cycle we broaden the search 
by adding (in or) the synonyms of the search terms. 
Synonyms are looked up in WordNet by means of 
WNSense. Synonyms are stemmed as well. 

In the third and fourth expansion cycles, we increase 
recall by dropping some search terms. During the third 
cycle, adverbs are dropped. 

During the last expansion cycle, if the query contains 
more than three keywords in conjunctive form, verbs are 
discarded, as well as person’s first names when the last 
name is present. If after such a pruning there are still 
more than three keywords in and, then we also drop 
those keywords whose parent (as from the dependence 

tree) is already within the keywords to be searched. This 
has the effect, if looking for a “black cat” , to perform a 
search for a “ cat” , black being a modifier of cat, and 
therefore depending on it. 

6. Type Matching 

The sentences returned by the query are analyzed and 
checked for the presence of entities of the proper answer 
type, as determined by question analysis. 

Sentences are parsed and recognized entities are 
tagged. The tree is then visited, looking for a node 
tagged with the expected answer type. 

We also check whether an entity which occurs in the 
sentence is already present in the question. A question 
like “Who is George Bush’s wife?”  expects a proper 
person name as an answer. The sentence “George Bush 
and his wife visited Italy”  contains a proper person 
name, but does not answer the question. Such sentences 
occur frequently (the search keywords being “George” , 
“Bush”  and “wife” ), so it is convenient to discard them 
as early as possible. 

Sentences not verifying this condition are rejected. 

7. Relation Matching 

Sentences that pass the answer type filter are submitted 
to the relation matching filter, which performs a more 
semantic analysis, verifying that the answer sentence 
contains words that have the same type and relation than 
corresponding words in the question. 

The filter analyzes Minipar output in order to: 
• determine a set of relations between nodes 

present both in the question and in the sentence; 
• look for relations in the answer corresponding to 

those in the question; 
• compute the distance of each candidate answer 

and select the one with the lower distance. 

In order to simplify the process, not all the nodes in the 
question and in the answer are considered. The same 
criterion used for selecting words as search keywords is 
applied also in this case: nouns, verbs, adjectives and 
adverbs are relevant (including dates and words with 
unknown tag). 

During this analysis, the parser tree is flattened into a 
set of triples (H, r, M): head node, relation, modifier 
node. This representation is more general and allows us 
to turn the dependency tree into a graph. 

In fact it is often useful to make certain relations 
explicit by adding links to the parser tree. For instance in 
the phrase “Man first walked on the moon in 1969” , 
“1969”  depends on “ in” , which in turns depends on 
“moon” . According to our criterion, “ in”  is not a relevant 
node and so it will not be considered. We can however 
short circuit the node by adding a direct link between 
“moon”  and “1969” . More generally, we follow the rule 



 

that whenever two relevant nodes are linked through an 
irrelevant one, a link is added between them. Similarly, 
since the NE tagger recognizes “ 1969”  as a date, it is 
convenient to add a link between the main verb (“walk” ) 
and the date, since the date modifies the action expressed 
by the verb. 

7.1. Extracting Relations 

Questions and answers are analyzed in order to 
determine whether relations present in a question appear 
in a candidate answer as well. 

PiQASso exploits the relations produced by Minipar 
and infers new relations applying the following rules: 

 
Direct link if B is a child of A in Minipar output, A is 

related to B according to their relation in the parse 
tree. 

Conjunctions Relations distribute over conjunctive 
links. For example, in “Jack and John love 
Mary” , the relation between John and Mary is 
distributed over the conj link between John and 
Jack, i.e. a “ love”  relation between Jack and Mary 
is inferred. 

Predicates A and B are related if they are both child of a 
“ to be”  verb, the first with the role of subject, the 
second as predicate (which is the relation between 
them). This is because a question like “who is the 
Pope?” is often answered by phrases such as “The 
Pope, John Paul II, ...”  in which the answer does 
not go through a “ to be”  verb. 

Possession A and B are related with the relation of 
genitive if A is the subject of a verb “ to have”  and 
B is the object. The rule enables matching 
“John’s car”  with “John has a car” . 

Location A and B are in inside relation if there is a 
subj-in relation between B and A (phrase of the 
form “A is in B” ). This allows matching “Paris is 
in France”  with “Paris, France” . 

Inver tible relations Some relations are invertible, so 
that A and B are in relation if B and A are in 
relation as either apposition (a particular case of 
nominal compound) or by the person relation (a 
relation between the first and second name of a 
person). 

Dates Minipar links a modifier (e.g. “ in 1986” ) to the 
closest noun: a relation between the main verb 
(describing the action) and the date is inferred. 

Empty nodes Empty nodes represent an implicit 
element of the sentence. Minipar sometimes can 
determine the word they refer to: in this case we 
add a relation between A and B if there is a 
relation between A and C, and C is an empty node 
referring to B (and dually for the first node in the 
relation). 

Negation A relation between two nodes is discarded if 
both nodes depend from a node with a negative 
modifier. This accounts for negative phrases like 
“John is not a policeman”  and avoids inferring a 
relation between “John”  and “policeman” . This 
rule has precedence over the others. 

7.2. Finding a match 

Suppose the following relations appear in a question: qr1 
= (A, r1, B) and qr2 = (A, r3, C). Suppose the following 
relations are present in a candidate answer sentence: ar1 
= (1, R1, 2), ar2 = (2, R2, 3) and ar3 = (1, R3, 3). All 

matches between triples in the question and in the 
answer are considered, provided that no node is put in 
correspondence with two different nodes: if we match 
qr1 with ar1, we cannot match qr2 with ar2, or node A in 
the question would have to match both nodes 1 and 2 in 
the answer. 

The match with the smallest distance is selected. 

7.3. Matching Distance 

An answer paragraph can be considered as a close 
answer to a question if it contains nodes and relations 
corresponding to all nodes and relations in the question. 
For each missing node the distance is increased by an 
amount that depends on the relevance of the node. To 
represent this relevance we associate a mismatch 
distance, mmd(n), to each node n in the question. For 
instance the mismatch distance is small for the node 
corresponding to the question type (e.g. the node 
“ instrument”  in a previous example), since it may be 
missing in the answer. Nodes depending on other 
relevant nodes have half the mismatch distance of their 
parents: they may express a specification that a correct 
answer need not contain. 

The overall matching distance between a question 
and a candidate answer is computed by summing,                                            
for each node n in the question: 

mmd(n) ⋅ dist(n, m) if n matches node m in the answer 
mmd(n) otherwise 

and similarly for each relation in the question. 

The distance is incremented to account for special 
situations, e.g. when the answer is too specific: for the 
question “Who was the first man in Space?” , “The first 
American in space was …” is not a proper answer, 
contrary to a naïve rule that wants a specific answer 
correct for a general question. 

If the answer sentence does not contain an entity of 
the expected answer type, the distance is set to infinity, 
to ensure that the paragraph is rejected. 

The maximum distance from the question allowed by 
the filter (distance ceiling) may be set to either: a) very 
high, so that any sentence matching the answer node will 



 

pass the filter (recall-oriented); or b) proportional to the 
number of nodes in the question. PiQASso implements a 
simple tightening strategy whereby the ceiling is 
decreased at each expansion iteration, avoiding too much 
garbage in the early phases. 

8. Answer  Popular ity 

After the TREC 2001 submission we introduced a 
criterion for selecting answers based on a measure of 
answer popularity, which proved quite effective. 

Answers are grouped according to the value 
contained in their answer node. A score is assigned to 
each group proportional to the average of the matching 
distances in the group and inversely proportional to the 
cardinality of the group. Groups are sorted by increasing 
score value and only the answer with the smallest 
matching distance in each group is returned. 

The criterion combines a measure of difference to 
the question and a measure of likelihood based on how 
often the same answer was offered. Selecting only one 
answer per group ensures more variety in the answers. 

9. Results 

PiQASso achieved the scores summarized in Table 3, 
expressed as MRR (Mean Reciprocal Rank) of up to five 
answers per question. The official score, computed from 
the judgments of NIST assessors at TREC 2001, ranks 
PiQASSo in 15th overall position. PiQASso achieved the 
same score for both strict evaluation (answers supported 
by a document in the collection) and lenient evaluation 
(answer not supported), since it does not use any 
external source of information. The unofficial score was 
computed by our own evaluation of the results on a new 
run of the system after the addition of the popularity 
ranking.  

 
Run MRR Strict MRR Lenient 

TREC 2001, official  0.271 0.271 
TREC 2001, unofficial  0.32  

Table 3: Scores in the TREC 2001 QA main task. 

A peculiarity of the TREC 2001 questions was the 
presence of a higher than usual percentage (almost 25%) 
of definition questions that could have been answered by 
simple lookup in a dictionary or from other sources (e.g. 
the Web), as some other systems did. For PiQASso we 
concentrated in improving the system ability to analyze 
and extract knowledge from the given document 
collection. 

10. Assessment 

In order to assess the effectiveness of the various filters, 
and how they affect the overall performance we 

performed some measurements using a subset of 50 
questions of the TREC 2001 set. Results are summarized 
in Table 4. For half of the questions (49%), no paragraph 
passed all filters. The great majority of answers are 
obtained from the results of the first IR query. 

 
 % 

Questions for which no answer was found 49 
Questions answered by first query (over all 
answers) 92 
Questions for which no paragraph was 
retrieved 2 

Table 4: Filter  effectiveness. 

The benefits of iterating the process after performing 
query expansion are less than expected. 

Overcoming this limit requires improving query 
expansion to produce more word alternatives or 
morphological variations. This may however complicate 
the task of the relation matching filter, which also needs 
to be refined: the paragraphs retrieved by the initial 
query (without stemming or synonym expansion) are 
simpler to match with the question and produce most of 
the answers. When more complex paragraphs are 
retrieved by the more complex queries, matching is more 
difficult and rarely an answer is found. 

The current system is not capable, for example, of 
matching the sentences “John loves Mary”  and “John is 
in love with Mary” , since their main verbs “ love”  and “ to 
be”  are different. Either deeper semantic knowledge 
would be required or a collection of phrase variants, that 
might be built automatically with the method suggested 
by Lin [10], discovering similarities in paths within the 
dependency graph of the parser. 

11. Conclusions and Future Work 

PiQASso is engineered as a vertical application, which 
combines several libraries into a single application. With 
the exception of Minipar and WordNet, all the 
components in the architecture were built by our team, 
including the special purpose paragraph indexing and 
search engine, up to the tools for lexical analysis, 
question analysis and semantic filtering. 

PiQASso is based on an approach that relies on 
linguistic analysis and linguistic tools, except for 
passage retrieval, where it exploits modern and efficient 
information retrieval techniques. Linguistic tools provide 
in principle higher flexibility, but often appear brittle, 
since implementations must restrict choices to reduce the 
efffects of combinatorial explosions. One way to 
improve their performance would be by providing them 
with large amounts of semantic data in a preprocessed 
form: for instance generating a large number of variants 
from the phrases in the document collection and 
matching them with effective indexing techniques and 



 

statistical estimates, rather than performing sophisticated 
matching algorithms. 

PiQASso is heavily dependent on Minipar since it 
relies on the dependency relations it creates.  Such 
relations are often too tied to the syntactic form of the 
sentence for our purposes, so we had to add specific 
processing rules to abstract from such representation and 
to work around certain of its idiosyncrasies. 

Question analysis could be improved by adopting a 
finer-grained taxonomy for the expected answer type. 
Such granularity requires support by the named entity 
tagger. 

Keyword extraction/expansion would benefit from a 
better identification of the sense of a word, so that fewer 
and more accurate alternatives can be used in the query 
formulation. Current figures show that present keyword 
expansion is not effective, for it either does not add 
results, or it adds too many, returning way too many hits 
for the system to analyze them all. As for about half of 
the questions our system did not find any answer at all 
(which gives us outstanding improvement margins), this 
seems a necessary step. 
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