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1.  Introduction  
 
The Clairvoyance team participated in the Filtering 
Track, submitting two runs in the Batch Filtering 
category. While we have been exploring the question of 
both topic modeling and ensemble filter construction (as 
in our previous TREC filtering experiments [5]), we had 
one distinct objective this year, to explore the viability of 
monolithic filters in classification-like tasks.  This is 
appropriate to our work, in part, because monolithic 
filters are a crucial starting point for ensemble filtering, 
and it is possible for them to contribute substantially in 
the ensemble approach.  Our primary goal in 
experiments this year, thus, was to explore two issues 
in monolithic filter construction: (1) term count selection 
and (2) filter threshold optimization. 
 
In fact, our pre-TREC experiments were conducted in a 
brief period and we were unable to complete all the 
tests we had planned.  Our official submissions reflect 
essentially our first, baseline results.  They are overall 
poor in comparison to other results reported this year. 
 
However, an additional focus of our work relates to the 
general problem of exploiting training data, in particular, 
where there are only a few positive-example documents 
for a topic.  We regard such cases as more realistic 
(e.g., in commercial settings) than the categorization-
oriented tasks we have seen in TREC filtering in the 
past, e.g., based on the Reuters collection.  Thus, in a 
series of follow-up experiments, we explored the 
strengths and limitations of classifier-based approaches 
(using kernel methods) and CLARIT-IR-based ones on 
the fifty TREC-2002 “Assessor” Topics. 
 
In our CLARIT-IR-based experiments, we aimed to 
establish a more accurate baseline than the one 
reflected in our official submissions.  We also sought to 
vary the term-extraction techniques we used, to 
optimize performance on a topic-by-topic basis. 
 
In our kernel-based (SVM) experiments, we used non-
mathematical (non-QP) based approaches to learning 
SVMs.  We used both NLP-based features and simple 
white-space-delimited ones; and we developed a 
preliminary approach to thresholding the classifier 
margin. 
 

In the following sections we first describe our official 
submitted runs and results and then present in greater 
detail the post-TREC experiments that we conducted.  
 
2.  Official Batch Filtering Runs 
 
Our official batch filtering runs reflected a straight-
forward extraction of term vectors from positive training 
documents, the setting of thresholds based on 
calibration of the term vectors over the training data, 
and the use of the term vectors to score (retrieve/rank) 
documents in the test collection. 
 
2.1.  Preparing Filters and Testing 
 
As a general approach to handling the available 
training data, we divided the training corpus equally 
into two parts, one half of which we used for 
constructing filters (i.e., extracting terms, assigning 
weights, and determining the optimal term profile 
cutoff), the other half of which we used for validation 
(including score-threshold setting).  We constructed 
monolithic filters for each topic automatically, based on 
the positive examples of each topic.  In fact, we used a 
slightly modified version of the training database:  we 
added two additional, identical positive example 
“documents” for each topic.  These were created by 
the system from the topic’s title and its short and long 
descriptions, with all meta-language (“Retrieve 
documents which…,” “Find documents that…”) 
automatically removed.  We chose to add these 
artificial documents to increase the number of training 
documents and to emphasize terms that we 
anticipated would be especially useful in the filter. 
 
Terms for all topics in this combination of positive 
examples and artificial documents were generated by 
CLARIT NLP (yielding morphologically normalized 
single words, phrases, and sub-phrases), then 
weighted, ranked, and selected for extraction (to 
represent the term profile in the filter) using our 
thesaurus extraction method “Prob2” (as given in 
Figure 1). We used Prob2 as our default and only 
term-extraction method based, in part, on our 
observations of Prob2’s overall robust performance 
compared to other term-extraction methods in our 
TREC 2001 experiments.  While keeping the method 
of selecting terms for topics constant, we 



  
 

 

experimented with optimizing the number of terms for a 
given topic. 
 
We investigated several techniques for determining how 
many terms to include in the filter for a given topic.  We 
settled on a method based on the 2nd derivative of a 
topic’s term weight profile (w″).  In short, this approach 
examines a set of terms ranked according to term 
weight, and disregards all terms occurring after the 
point where the term weight profile begins to level off.  
This point is determined by the condition 0 > w″ > ε.  (In 
our case, we set ε to 0.01.)  In this way, all terms that 
did not show evidence of being particularly 
characteristic of a topic (according to their rank in the 
term weight profile) were disregarded.  We applied this 
method of term count selection to construct filters for 
each topic.  We imposed the additional condition that no 
topic filter use fewer than five terms.  For each of our 
submitted runs, the average number of terms in a filter 
was 26, and the maximum was 104. 
 
Once we established which terms (and how many) to 
use in constructing a filter, it remained for us to 
determine the threshold for each topic.  This was one of 
the chief issues we wanted to explore, and so we took a 
different approach for each of our submissions.  In our 
runs CCT11BFC and CCT11BFD, the filter was applied 
to the entire training corpus.  That is, the threshold was 
optimized over both the first half of the corpus, which 
we used for constructing the filter, as well as the second 
half, which had thus far been unused.  For CCT11BFC, 
the filter’s threshold was set using the beta-gamma 
method on normalized linear utility, T11SU, to decrease 
the likelihood that we would over-fit the training data. 
(Cf. [13;14] for discussion of the beta-gamma threshold 
setting method.)  For this run, beta-gamma values were 
0.1 and 0.4, respectively.  To further decrease the 
possibility of over-fitting the training data, we employed 
an additional “global threshold multiplier” that relaxed 
the optimal threshold a bit further.  For run CCT11BFC, 
this global multiplier was set to 0.95. 
 
Our other submission, CCT11BFD, was identical to 
CCT11BFC, with two exceptions.  For this run we 
employed no beta-gamma regulation at all, and instead 
lowered the global threshold multiplier to 0.85.  Finally, 
all filters for both CCT11BFC and CCT11BFD were run 
on the full testing set. 
 
2.2.  Official Test Results 
 
Table 1 presents a summary of various batch filtering 
runs in terms of normalized linear utility (T11SU) and F-
Beta.  Row one of this table gives the median of all 
submitted runs from all groups for TREC-2002 batch 
filtering.  The second and third rows summarize the 
results for our two submitted runs.  The remaining rows 
show results for other unofficial runs we completed, 
including an Adatron SVM [1;6;11] run. 
 

 

Figure 1.  Term-extraction formulae 

 
Run Description T11SU F-Beta 

Median for all Submitted Runs 0.316 0.129 
CCT11BFC 0.186 0.147 Submitted 

Results CCT11BFD 0.184 0.145 
CCT11BFA 0.147 0.130 
CCT11BFB 0.165 0.129 

Unofficial 
Results 

Adatron 0.328 0.035 

Table 1.  Results of official and pre-TREC batch 
experiments (on all 100 topics) 

2.3.  Observations on Official Runs 
 
On the whole, our official results were unsatisfactory.  
Our failure to perform well may have been due to 
several factors.  We may have selected terms poorly 
for various topics, and therefore had a poor 
characterization of these topics.  It was also possible 
that we chose appropriate terms, but too many or too 
few of them.  Finally, we may have correctly chosen 
our terms and term counts, and still have performed 
poorly on various topics due to poor thresholding.  We 
did several analyses to see which of these factors 
actually was responsible for our weak performance. 
 
As we investigated topics where we performed poorly, 
we saw little indication that we had grossly erred in our 
method of choosing which terms to extract from 
positive examples.  Thus, our decision to use a single 
feature-extraction method (Prob2) that had performed 
well and robustly in the past does not seem to have 
harmed our effort significantly. 
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Additionally, there was little evidence that our term 
count optimization was faulty.  We conducted post-
submission experiments where we added terms to 
(poorly performing) topic profiles in which we had 
originally used relatively few terms.  We likewise did 
experiments where we removed terms from topic 
profiles in which we had originally used many terms.  In 
neither case did we see a dramatic change in the 
performance of filters upon the addition or removal of 
terms from the profile. 
 
We did see, however, that setting filter thresholds 
improperly had a remarkable impact upon a filter’s 
performance.  In particular, we observed that for many 
of the topics where we performed poorly, we had set 
the filter threshold much too low, thereby allowing for 
the retrieval of many non-relevant documents.  Results 
of our post-submission experiments indicate that the 
negative effects of poor thresholding far outweigh the 
positive effects of good term and term count selection. 
 
We saw this principle at work, for example, in Topic 
144, Mountain Climbing Deaths, which was one of the 
topics on which we performed extremely poorly.  Upon 
examining the actual terms (and number of terms) in 
the profile, we could see that they were a fair 
characterization of the topic.  Our recall figure was quite 
high (0.965—we retrieved 55 of 57 total relevant), and 
initial precision was quite high: roughly the first third of 
the documents we retrieved were relevant—a good 
indication that our terms and term weights were on 
target.  The explanation for such poor performance, 
then, can be found in our set precision figure (0.026): 
we retrieved far too many non-relevant documents 
(2048 out of 2104). 
 
Furthermore, we observed the positive effect that 
conservative thresholding can have in overcoming the 
lesser negative effects of poorly chosen terms or term 
counts.  We saw this in some topics where we 
performed quite well in comparison to the TREC 
median (T11SU), even though many of the highly 
ranked documents were not relevant.  Our good 
performance (relative to the median) is likely the result 
of choosing terms that were at least adequate, and, 
especially, having a threshold that was conservative 
enough to prevent over-delivery of non-relevant 
documents. Topic 122, Symptoms Parkinson’s Disease, 
was one topic where we observed this behavior. 
 
The results of our analyses, then, clearly demonstrate 
that having good terms and term counts is outweighed 
by setting an improper threshold.  On the other hand, 
accurately choosing a proper threshold helps even in 
instances where term and term count selection are not 
especially good.  The greater danger lies in using a 
threshold that is too relaxed rather than setting too 
conservative a threshold.  Thus, our decision to 
override and lower the threshold for each topic set 
automatically on the training data was the principal 
cause of our poor overall performance. 
 

3.  Post-TREC Experiments: IR-Based Filters 
 
We were naturally interested in assessing the problem 
of threshold setting in our post-TREC follow-up 
experiments.  In particular, we wanted to establish our 
baseline performance in threshold setting and to look 
more closely at the problem of term selection. 
 
We confined our evaluation to the first fifty (“Assessor”) 
topics, because they proved to be the most valuable 
(and valid) ones in the test suite, and because these 
topics also seem more realistic than the artificially 
generated “Intersection” topics.  In our subsequent 
analysis, we report both our post-TREC results and 
official TREC results on Assessor topics only. 
 
3.1.  Revised (Corrected) Term/Threshold Selection 
 
In our first post-TREC experiment, we repeated our 
basic TREC runs with “normal” threshold setting.  That 
is, we did not force the threshold (set on the training 
data) to be more relaxed when running on the test 
collection.  This experiment used only the simplest 
approach to term selection (based on Prob2 extraction 
and 2nd-derivative term-count selection), threshold 
calibration on the full training database (using beta-
gamma threshold setting), and direct ranking of the 
test collection.  We called this run Prob2-2D. 
 
In our second post-TREC experiment, we first split the 
training data into halves and used one half (including 
approximately half the positive examples) for candidate 
term selection and the other half for validation.  In this 
approach, we were interested in trying several different 
term-extraction methods and predicting which method 
would give the best terms for each topic.  Thus, we 
used each method (and 2nd-derivative term-count 
selection) on the positive training documents for a topic 
in the first half of the training corpus to create a term 
vector for each topic, and then tested the performance 
of each vector against the second half of the training 
corpus.  Based on which vector gave the best 
performance (T11SU score), we chose the term-
extraction method used to create that vector as the 
“best” for that topic.  We then repeated the procedure 
in our first post-TREC experiment, but with the term-
extraction method set to the “best” method for each 
topic.  We called this run Opt-2D. 
 
The steps in our process are given in Figure 2.  Note 
that the split of the training data into halves (or any 
other arbitrary proportion) to yield a sub-corpus for 
topic modeling (term extraction) and a sub-corpus for 
validation (testing a model), is based on a pseudo-
random assignment of documents to one or the other 
portion.  This means that, in the case of some topics, 
there might be very few positive examples of a topic in 
any one of the training sub-corpora.  A paucity of data 
can lead to poor training, of course, but we decided not 
to intervene to insure optimal splits in training data 
precisely because we wanted to assess, as well, the 
robustness of our generalized topic-modeling process.



  
 

 

 

Figure 2.  Procedure for creating a CLARIT filter profile 

The formulae for our term-extraction methods—Prob2, 
Rocchio, RocchioFQ, and GlobalLocal2 (GL2)—are 
given in Figure 1.  In both experiments, we used the full 
training corpus as the reference corpus. Processing 
time for these filters averaged 17 seconds per topic for 
training and testing combined.  Filter length for Prob2-
2D averaged 33.34 terms and for Opt-2D 15.76. 
 
3.2.  Post-TREC Experiment Results 
 
As can be seen from the results in Table 2, both Prob2-
2D and Opt-2D clearly out-perform our submitted 
(official) runs.  (The values in Table 2 for our official 
runs reflect our performance on the Assessor topics 
only.)  Compared to the median reported for the group 
on Assessor topics, both Prob2-2D and Opt-2D have 
lower T11SU scores.  However, in terms of F-Beta, both 
post-TREC runs show rather impressive performance. 
 
In our Opt-2D runs, the Prob2 extraction method was 
chosen only 6 times, whereas Rocchio was chosen 30 
times, RocchioFQ 8 times, and GL2 6 times.  In terms 
of individual-topic results, Opt-2D gave significantly 
better performance (>0.10 absolute difference in score) 
than Prob2-2D on 10 topics for T11SU and 9 topics for 
F-Beta.  In contrast, Opt-2D was significantly worse on 
11 topics for T11SU and on 7 for F-Beta.  In the 
aggregate, however, the effect of term-extraction 
method optimization appears to be negligible. 
 

Run Description T11SU F-Beta 
Median for all Submitted Runs 0.377 0.234 

CCT11BFC 0.243 0.259 Submitted 
Results CCT11BFD 0.243 0.259 

Prob2-2D 0.309 0.323 Post-TREC 
Experiments Opt-2D 0.315 0.326 

Table 2.  Results of post-TREC-batch experiments 

We note, however, that our choice of an optimum 
method was based on the performance of a candidate 
filter on half the training corpus.  In those cases where 
we had poor training splits, our choice was not well 
informed.  Clearly, this is an area for further work. 
 
The overall strong performance on F-Beta for both 
runs confirms our hypothesis that the basic method we 
have used is robust and practical.  It also confirms that 
the poor results in our official runs were due to 
improper threshold setting, in particular, our decision to 
relax the threshold values that were determined for 
filters on the training corpus. 
 
4.  Post-TREC Experiments: Kernel-Based Filters 
 
In addition to our IR-based runs, we decided to expand 
our evaluation of kernel techniques for batch filtering in 
a series of post-TREC experiments.  The essential 
questions we focused on include how well kernel 
methods perform on topics with limited training data 
and how flexible the learned thresholds can be when 
data is sparse.  We explored both our kernel-Adatron 
and a new version of an SMO algorithm. 
 
4.1.  General Note on Kernel (SVM) Methods 
 
Support vector machines (SVM) are a general purpose 
machine learning approach [2;12], with our interest 
being principally in learning classification models from 
labeled data. Our batch filtering SVM study was limited 
to learning a binary SVM classifier for each topic 
(positive and negative class). This corresponds to 
searching for (or learning) a hyperplane that provides 
maximum separation between the positive and 
negative training examples. Since text classification 
problems are of high dimensionality (which are 
generally linearly separable), it is sufficient to search 

1. Split the training set.  First, sort (scramble) the document ids.  (For a database with 10 docs, such 
"scrambling" might produce: 0 2 4 6 8 1 3 5 7 9.)  Next, apply the desired Training/Validation split.  (For the 
TREC experiments, the split is 50/50, based on choosing every other document for a split.)  Pick one split for 
Training, one for Validation.  (In the TREC experiments, the 2nd half (“odd” documents) was chosen for 
Training/term-extraction and the 1st half (“even” documents) was chosen for validation/optimization.)  The pre-
scrambling makes it possible to select any subset with reduced bias.  (If one chose a 60/20/20 split for the 10-
document collection, above, the system would deliver the subsets "0 3 6 9 1.4", "7 2," and "5 8".) 
 
2. Choose extraction method. If the extraction method is fixed (e.g., Prob2), skip this step and go to Step 3. 
For each candidate extraction method (e.g., Prob2, Rocchio, RocchioFQ, and GL2), create a filter using the 
Training half of the training corpus.  Optimize the term count by applying the 2nd derivative method.  Choose 
Max(MinimumTermCount, 2ndDerivTermCount). (The MinimumTermCount used in post-TREC experiments is 
10.)  Truncate the term vector to the specified term count.  Set the threshold using beta-gamma optimization 
(β=0.1,γ=0.4) over the entire training set. Retrieve over the Validation half of the training set (using the 
optimized threshold) and compute utility (T11SU).  Choose the extraction method with the highest score.  
 
3. Extract final filter. Extract terms from the entire training set using the chosen method. Optimize the term 
count (using 2nd derivative, as described above), subject to the MinimumTermCount. Truncate the vector to 
that count.  Set the threshold on the entire training set using beta-gamma optimization. 



  
 

 

for this hyperplane in the term/word space, thus 
avoiding the use of more complex feature spaces that 
can be induced easily using kernel (non-linear 
similarity) functions. Hyperplane selection is based 
upon ideas from statistical learning theory [12], where 
the hyperplane that is furthest away (has maximum 
margin) from all training data and that provides 
(tolerable) class separation is chosen.  Large margin 
separation has been theoretically shown to lead to 
improved generalization. 
 
More formally, SVM models or classifiers denote a 
separating hyperplane between two classes, whereby 
datapoints falling on one side of the hyperplane denote 
one class and datapoints falling on the other denote the 
other class.  In linear kernel-based SVMs, hyperplanes 
are typically represented in primal form as follows 
(where <.,.> denotes inner/dot product): 

( )��������	
���
�� +=  

where W is a weight vector, and b is the bias or 
threshold. See Figure 3 for a graphic depiction of a 
hyperplane for a linearly separable dataset.  An 
alternative and more general representation of a 
hyperplane that is commonly used in SVMs is the 
following dual representation: 








 += ∑
=

bX,XyαSignClass(X) ii

L

1i
i

 

Here, the alphas (αi) denote the Lagrange multiplier 
associated with each example.  This representation 
permits the learning of such classifiers using well-
known optimization techniques such as quadratic 
programming.  After learning, only a small percentage 
of the training data will have non-zero Lagrange 
multipliers.  These examples are known as the support 
vectors. For dot-product (linear) kernels the dual 
representation of a hyperplane can be mapped to the 
primal form, thus, yielding a computationally more 
efficient model, akin to the more traditional information 
retrieval model.  The above dual representation of a 
hyperplane can be further generalized by considering 
different forms of the similarity function or kernels such 
as polynomial, LSI Kernels [4], and String Kernels [9]. 
For our current purposes of text classification, linear 
kernels were deemed to be sufficient. 
 
4.2.  Learning SVMs 
 
Support vector machines are commonly trained using 
either mathematical programming (MP) approaches 
such as quadratic programming or by strategies that 
avoid the use of the MP techniques. The latter 
techniques have the added attraction of being easier to 
implement, while providing similar levels of performance 
as their MP counterparts.  For our experiments, we 
implemented and evaluated two non-MP based 
approaches: the kernel-Adatron (KA) algorithm [1;6;11] 
and variations of the sequential minimal optimization 
(SMO) algorithm [10;7].  Both of the algorithms are 
outlined briefly below. 

Figure 3.  A linearly separable dataset in a two-
dimensional space for a two-class problem (where 
the “o”s correspond to one class, and the “x”s 
denote the other) 

Kernel-Adatron Learning Algorithm.  One of the 
simplest strategies for learning a support vector 
machine is to update the Lagrange multipliers, α, 
associated with each example iteratively. This 
approach has been taken in the kernel-Adatron 
algorithm proposed by various researchers (cf. [6] and 
[11]). The Adatron was originally proposed by Anlauf 
and Biehl [1] in the field of statistical mechanics. It is 
an on-line learning algorithm for learning perceptrons. 
In [1], it was proved that the Adatron converges to a 
maximum margin solution; that is, the discovered 
hyperplane is a fixed point of the adaptive algorithm for 
linearly separable data. In [6] and [11], the Adatron 
algorithm was extended to learn the dual 
representation of a separating hyperplane in which the 
dot product is replaced with the more general kernel, 
thereby expanding the domain of application of the 
Adatron to non-linear problems. (A simplified version of 
the pseudo-code for the kernel-Adatron algorithm is 
presented in Figure 4.)  We limited our implementation 
to training hard-margin SVMs. 
 
SMO Learning Algorithm.  The Sequential Minimal 
Optimization (or SMO) algorithm is an alternative 
method for training SVMs [10].  Traditionally, training 
an SVM required the solution of a very large quadratic 
programming (QP) optimization problem.  SMO breaks 
this large QP problem into a series of the smallest 
possible QP problems, where only two Lagrange 
multipliers, αI, are optimized at each iteration. Since 
only two parameters are considered at a time, while all 
others are fixed, it is possible to derive an analytical 
solution as opposed to the numerical methods used in 
MP solutions. This avoids using a time-consuming 
numerical QP optimization as an inner loop in the 
algorithm.  On each iteration, SMO chooses two 
Lagrange multipliers to optimize jointly (typically the
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Figure 4.  Partial pseudo-code for Kernel-Adatron algorithm 

 

Figure 5.  Partial pseudo-code for SMO algorithm 

Decision Variable Explored Values 
Learning Algorithm Adatron, SMO, SVMLight  
C (Upper bound for Lagrange multipliers) 3, 10 
Learning Rate (Adatron) 0.75 
Tolerance 0.001  
Type of kernel Linear 
Class Ratio 1:4, 1:10 , use all training data 
Sampling Strategy Random 
Term type NLP; single words 
Term Ranking Algorithm • Use all terms 

• Mutual Information: Use k terms that have highest MI for each topic 
Number of terms k k = 1,000, 10,000, All  
Term weighting  Normalized TF∗IDF 

Table 3.  Decision variables and explored values for current experiments using SVM text classifiers 

1. Given Training data S where each example i is of the form (xi,1,…, x i,n,yi), and a learning rate η  
2. Set α vector to zeros; (could use bo=0)  
3. For i = 1 to |Train| 

XXyz ii
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i
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||
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4. For i = 1 to |Train|  

1. Let δi =η(1-yi zi) be the proposed change to the multiplier αi 
2. If ((αi + δi) ≤ 0)    set αi to 0  else αi := αi + δi  

5. (if b used, b=0.5 (min(zi+) + max(zi-)) where zi+ denotes those patterns i with class label +1 and zi- 
denotes those patterns i with class label -1)  

6. If maximum number of presentations of the pattern set (epoch) has been exceeded OR (min(zi+) - 
max(zi-)) == 2.0  

  then stop otherwise goto step 1                                                 

1. Given Training data S where each example i is of the form (X1,y1,…, Xn,yn) 
2. Set α vector to zeros; bo=0 (the bias term);  
3. ExamineAll = true 
4. Compute error vector E; Ei= – yi   
5. If ExamineAll then      //loop thru all examples 

For (int i =0; i < TrainDB.count; i++) 
Set i2 to I; Use heuristics to find a partner i1 
Try to optimize(alpha[i1], alpha[i2]) 

Else    //loop thru all examples with non-bounded alphas  
For (int i =0; i < TrainDB.count; i++) 

If alpha(i) > 0 and alpha(i) < C 
  Set i2 to I; Use heuristics to find a partner i1 

Try to optimize(alpha[i1], alpha[i2]) 
If (ExamineAll), then ExamineAll= false 
Else if (NumberOfUpdates == 0), then ExamineAll =1 

6. if more alpha updates are possible (i.e., ExamineAll or NumberOfUpdates > 0) Goto step 5 



  
 

 

examples that have the largest polar error), finds the 
optimal values for these multipliers analytically, and 
updates the SVM to reflect the new optimal values.  (A 
simplified version of the pseudo-code for the SMO 
algorithm is presented in Figure 5.)  For our 
experiments, we implemented two variants of the SMO 
algorithms proposed by Keerthi et al. [7] that provide 
better heuristics for determining which pair of Lagrange 
multipliers to update next and that provide better 
stopping criteria. For our current study, two variations of 
the SMO algorithm were implemented and evaluated: 
SMOK1 and SMOK2, corresponding to modification 1 
and modification 2, respectively, as proposed in [7]. 
 
4.3.  Preprocessing 
 
We examined two representations of documents: one 
using CLARIT NLP-based (single or multi-word) terms 
and the other using single white-space-delimited words. 
The latter approach involved the following steps: 
replace all numbers and punctuation by spaces; 
eliminate stopwords such as articles and prepositions, 
etc.  In both preprocessing approaches each term is 
associated with a TF∗IDF weight, where TF denotes the 
frequency of a term in a document, and IDF is 
calculated based on the distribution of the term in the 
training corpus. The TF∗IDF weights were then 
normalized leading to documents vectors of unit length. 
 
For some of our experiments we chose a subset of 
terms in the term-space of the training corpus.  In such 
cases, we ranked terms based upon their mutual 
information with the class label and the k terms with 
highest mutual information were selected to represent 
each document. The mutual information MI(xi, c) 
between a feature, xi, and a category or topic, c, is 
defined as follows: 
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Following feature selection, the document vectors were 
again normalized to unit length. 
 
A learning step follows where for each topic/class/ 
category a topic-specific binary classifier is learned from 
the training data that models the topic (positive class) 
and the not-topic (or negative class). While it is possible 
to learn a topic SVM classifier by using all available 
training data, it is computationally attractive to reduce 
the number of training data, especially the number of 
negative examples.  We currently achieve this through 
random sampling of the negative class, though all 
explicitly labeled negative documents are used.  
Typically, given n positive training examples for a topic, 
we chose m∗ n negative documents.  We explore 
different values of m in our experiments. 
 
4.4.  Experiment Results using SVMs 
 
For each of our experiments, we trained a linear 
TF∗IDF kernel-based SVM (i.e., linear kernel, where 
each term is weighted using TF∗IDF) for each topic 

using the training data.  For most machine learning 
processes, with SVM-based approaches being no 
exception, there are many parameters and decisions 
that need to be made in order to generate a model that 
performs well on unseen data.  Some of these are 
domain specific (e.g., text vs. images), while others are 
algorithm specific (e.g., the upper bound for Lagrange 
multipliers, C).  The domain-specific decision variables 
for text include the following: (1) the number of terms 
used to represent each topic; (2) the number of on-
topic training documents; (3) the ratio of positive to 
negative documents; (4) the sampling strategy for the 
negative class; and (5) the representation of a 
document using single words or NLP-based terms. In 
an ideal setting one could potentially chose the optimal 
configuration for a topic using, for example, n-fold 
cross validation.  However, due to time limitations, we 
were unable to carry out such experiments in our post-
TREC work.  Instead, we report results where the 
different experiment variables are set to equivalent 
values across all topics for a particular experiment. 
The decision variables and explored values for our 
experiments are presented in Table 3. 
 
The results of the more interesting experiments are 
presented in Table 4, where each row denotes one 
experiment on 50 Assessor topics.  We report the 
T11SU and F-Beta measures for each experiment.  
For our some of our experiments we used different 
document sampling strategies.  One was based upon 
a sampling of positive to negative documents (denoted 
as a ratio in Table 3).  The other was based on using 
all labeled documents and fixed sample size of all 
unlabeled documents in the training size (denoted as 
an integer in the Class Ratio column in Table 4).  
Experiments on the 50 Intersection topics were not 
carried out, apart from one experiment, which was 
performed with the kernel-Adatron algorithm using all 
NLP-based terms and a 15,000 sample of the training 
set, yielding a T11SU performance of 0.328 (and 0.342 
on the fifty Assessor topics). 
 
For each experiment, training a battery of 50 binary 
classifiers (one classifier corresponding to each 
Assessor topic) took approximately twenty minutes (or 
approximately 24 seconds per topic), while evaluation 
took approximately two to three hours.  The CC SVM 
toolkit is developed in Java and experiments were 
carried out under Linux and Windows XP on a 866-
MHz Pentium III computer with 1 gigabyte of RAM. 
 
Among the results, the best overall performance was 
given by an SMOK2 run (SMOK2-θ.45) representing 
one of our first experiments in thresholding the margin 
scores given by the SVM. In particular, we found the 
margin that gave optimal T11U utility on a resample of 
the training corpus, MarginMaxU, and used the following 
formula to compute the new threshold, θOpt,,, where 
ThresholdDiscount was set to 0.45 for this run: 

( ) 11MarginiscountThresholdDθ MaxUOpt −+∗=



  
 

 

Algorithm C Class Ratio Term Type # Terms T11SU F-Beta 
SMOK1 3 4 SingleWds 1000 0.347 0.144 
SMOK1 3 10 SingleWds 1000 0.356 0.129 
SMOK1 3 4 SingleWds 10000 0.367 0.173 
SMOK1 3 10 SingleWds 10000 0.368 0.170 
SMOK2 10 14125 NLP All 0.356 0.077 
SMOK2 10 14125 SingleWds All 0.373 0.142 
Adatron N/A 14125 NLP All 0.341 0.053 
Adatron N/A 14125 SingleWds All 0.366 0.149 
SMOK2 10 7605 SingleWds All 0.376 0.147 
Adatron N/A 7605 SingleWds All 0.363 0.154 

SMOK2-θ.45 10 7605 SingleWds All 0.408 0.271 

Table 4.  Results of SVM experiments on 50 Assessor topics 

Post-TREC Experiments--Performance on T11SU
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Figure 6.  T11SU comparative results for SVM-and IR-filters on topics ranked by TREC median performance 

Post-TREC Experiments--Performance on F-Beta
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Figure 7.  F-Beta comparative results for SVM-and IR-filters on topics ranked by TREC median performance
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Figure 8.  Comparison of SVM-based and IR-based filters: T11SU scores x Topic x Training Data 
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Figure 9.  Difference from TREC med F-Beta-scores x Topic x Training Data, ranked by Prob2-2D�TREC med

4.5.  Observations on SVM Filters 

Overall, the performance of the learnt SVM classifiers 
is good compared to the submission results for other 
groups.  The T11SU utility measure is average, while 
the F-Beta measure is low, apart from the SMOK2-
θ.45 run with its more reasonable performance of 
0.271.  The lack of higher performance for the SVMs 
is partly due to the experimental setup, which did not 
employ cross-validation; i.e., for each experiment, 
each topic SVM was trained using the same 
parameter settings, thereby limiting potential 
performance of the learnt SVMs.  Allowing the 
determination of a customized setting (potentially 
optimal) for each topic should lead to improved 
performance.  In addition, our preliminary work on 

thresholding the margin value of the SVM output has 
given very encouraging results.  This is consistent 
with results form other groups for this particular 
dataset [3].  However, for some other datasets in the 
past, this did not improve performance [8]. 

Given the results of our limited experiments, we can 
make the following observations: 

• Using a simple tokenizing-based representation of 
a document (in lieu of NLP) actually boosts 
performance. 

• Sampling negative class documents does degrade 
evaluation performance, while it improves the 
efficiency of classification and learning. 

• Using all available terms gives the best 
performance, though sampling terms does not 



  
 

 

degrade performance substantially, while it 
improves the efficiency of classification and 
learning. 

• The kernel-Adatron algorithm gives a very 
reasonable performance, though it is a much 
simpler algorithm that the examined SMO 
variations. 

• Using cross-validation for customizing the 
parameters of learning should improve the quality 
of the learnt SVM classifiers. 

• Our simple thresholding results are encouraging. 
Using a principled approach to thresholding (such 
as beta-gamma or other distribution based 
approaches) may prove practical and effective. 

 
5.  Concluding Thoughts 
 
As the additional analyses in Figures 6–9 show, our 
experiments on the TREC Assessor topics 
underscore the comparative strengths and differences 
in the two filter types we have developed.  For IR-
based filters, we see responsiveness and delivery of 
relevant documents even when there are limited 
training data.  They also were very fast to train and 
run and generally required only a handful of features 
(cf. Figure 10).  The IR-based filters failed to return 
relevant documents in only one case out of fifty 
topics.  However, a measure that rewards the delivery 
of no documents, such as T11SU, penalizes the IR-
based approach.  In contrast, we see consistent 
positive (or neutral) performance from SVM-based 
filters, giving high precision, if under-delivery, on 
unseen data.  However, for many of the SVM runs (on 
on more than twenty topics) there were no documents 
returned at all. 
 
The challenge in many practical (commercial) 
applications is limited training data and the need to 
optimize performance in virtually real time. 
Some of the best methods for classifier training, such 
as kernel-based approaches, require significant 
amounts of data and may depend on sensitive 
parameter tuning.  However, we see in our own 
experiments that kernel methods can give high 
precision and accuracy.  If we can overcome their 
high-precision bias using thresholding or uneven-
margin-based learning and adapt them to sparse 
data, they may become an attractive solution.  We 
also see the robustness and generally good 
performance of IR-based approaches.  Perhaps the 
ideal application will combine features of both and 
optimize the choice of classifier—IR or SVM—for 
each topic on a case by case basis 

convict child rapist (40.4) child rapist (39.6) 

convict child rapist marc dutroux (39) eefje (38.1) 

rapist marc dutroux lambrecks (37.6) marchal (38.1) 

child rapist marc dutroux (37.6) lambrecks (37.6) 

eefje lambrecks (37) dardenne (37.3) 

Figure 10.  CLARIT terms/weights for topic 103 
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