PiQASso 2002

G. Attardi A. Cisternino

{attardi, cisterni, formicaf,

F. Formica

M. Simi A. Tommasi*

simi, tommasi}@di.unipi.it

Dipartimento di Informatica
University of Pisa, Italy

Abstract

The University of Pisa participated to TREC 2002’s QA
track with PiQASso, a vertical QA system developed
(except for some of the linguistic tools), entirely within
our research group at the Computer Science department.
The system features a filter-and-loop architecture in which
non-promising paragraphs are ruled out basing on fea-
tures ranging from keyword matching to complex seman-
tic relation matching. The system also exploits the Web
in order to get “hints” at what to look for in the inter-
nal collection. This article describes the system in its
entire architecture, concentrating on the Web exploita-
tion, providing figures of its efficacy.

1 Introduction

Last year’s PiQASso system featured an architecture
similar to that deployed by many systems [1]. Such archi-
tecture is organized in a series of subsequent filters that
rule out paragraphs that are evaluated as not answering
the question.

We kept preprocessing on the collection to a mini-
mum, basing on the following considerations:

e pre-processing the whole collection is an expensive
process;

e ideally, the collection to use as knowledge base to
mine answers should be as large as possible: this
makes systems that perform extensive processing
on the data collection less scalable;

o the collection might even be changing dynamically,

* Alessandro Tommasi would like to thank Microsoft Research,
Cambridge, for supporting his PhD.

which in fact renders such systems unusable under
this assumption;

e in an experimental setup, several different algo-
rithms might be experimented, and re-processing
the whole collection for each experiment is unfea-
sible;

e not assuming any preprocessing on the collection
allows for immediate application to “foreign” col-
lection, e.g. by querying a search engine.

Whenever the following holds:
e the collection is static;
e the set of operations to perform on it is “stable”;

e the implementation of such operations is stable as
well;

e the “enriched” collection size does not exceed disk
space;

nothing prevents from performing all the necessary com-
puting on the collection off-line, obtaining substantial
speed-up.

As with most other systems, analysis of the question
is performed as the first step during the question answer-
ing phase. Within PiQASso, the goals of such analysis
are:

e identify the suitable keywords to perform IR-style
search;

e classify the question onto the expected answer type
(EAT) taxonomy;

e extract a set of “logical” relations connecting the
question’s words;

e assign a weight to each word, proportional to the
“importance” of the word.

Each of these 4 characteristics of the question are
used to rule out sentences from the set of candidate an-
swers.

The overall system architecture can be sketched as
follows. Each question undergoes question analysis. From
the analysis, data is gathered to apply the following se-
ries of cascade filters to the collection:

retrieval IR performed by the keywords extracted from
the query, and in proximity, returning paragraphs;

type filter paragraphs not containing entities of the ex-
pected answer type are discarded;

the indexes are still built over documents (i.e., we did not
consider each paragraph as a separate document search-
wise), allowing for proximity search to span over different
adjacent paragraphs.

Just as it did for paragraph splitting information,
IXE is able to store and handle additional information
about the text being indexed. We are foreseeing mov-
ing part of the “inevitable” (e.g., NE tagging) work to
the index phase, so that it could be exploited by issuing
queries in a richer language (for instance, specifying the
type of the entity sought for).

2.2 Parsing

To perform syntactic parsing of sentences we used Mini-
par [5], a dependency parser developed by D. Lin and

relation matching sets of logical relations between wordsfree for non-commercial use. The parser has several ad-

are extracted from the paragraph and the question
and a matching cost is computed deploying a mea-
sure based on semantic distance between words;

popularity ranking whenever multiple evidences of the
same answer are collected, this boosts its confi-
dence score.

If no answer makes it through this cascade of filters,
the retrieval phase is re-executed by loosening the search,
in a loop.

This article describes each of these steps. In addition
it describes the use of the Web to narrow the IR phase,
along with the results obtained over TREC 2002’s ques-
tion set.

2 Tools deployed

2.1 Indexing

This year’s task was based on a different collection than
2001’s: the AQUAINT collection. We indexed the col-
lection similarly to last year: we deployed IXE [2], an
efficient indexing and search engine based on template
meta-programming and developed within our group?, to
build full-text indexes of the collection. Along with the
full-text, we have stored paragraph splitting information,
obtained by the processing of a Maximum Entropy-based
sentence splitter. This way, by customizing IXE, we are
able to issue queries and have the search engine to return
results as paragraphs rather than documents. However,

1Research supported by Ideare s.r.l.

ditional capabilities that come in very handy for our task;
in particular:

e it identifies logical relationships (subject, object,
complement) rather than grammatical ones;

e it tags words with semantic tags, providing a form
of named entity recognition;

e it partially solves coreference resolution problems;

e the dependency tree it returns turned out to be a
good way of representing text.

In figure 1 we see, for each word, linked to the head
word, its relation to the father, its label, the part of
speech, the morphological root, the semantic tags (in
braces). Also, note, for the word “which”, the “@5”: it
means that the pronoun refers to the word of label 5:
“Messiah”. Some of the tags (for instance, the “quote”
tag) have been added by us to recognize particular en-
tities, in this case quoted entities. For robustness, we
have also added part of speech tags via an external part
of speech tagger (TreeTagger [10]), in order to compare
Minipar’s output with TreeTagger’s. This way we have
greater confidence about the POS tag when both tools
agree on it.

2.3 Named entity recognition

Just as we used an external POS tagger to verify Mini-
par’s tagging, we also used an external NE-Tagger to

_EMPTY ((null) E2 (null) (null) (null))
+--_EMPTY ((null) E1 C fin (null))
+--composed (i 2 V compose VBN)

|
I I +--Handel (s 1
I | +--_EMPTY (subj
| | +--Messiah (obj 5 N the Messiah
| | +--the (lex-mod 4 (null)
| | +--in (mod 7 Prep in

| | | +--1741 (pcomp-n 8 N
I I +--_EMPTY (rel EO C fin

I |

| |

| |

| |

| |

| |

| |

the
IN)

N Handel {person} NN)
E3 N Handel {person}@l (null))

{quote} NP)
{quote} DT)

1741 {date} CD)
(null))

|

|

|

|

| | +--which (whn 10 N which @5 WDT)

| | +--rearranged (i 13 V rearrange VBN)

| | | +--was (be 11 be be VBD)

| | | +--later (amod 12 A 1later RB)

| | | +--_EMPTY (obj E4 N which @5 (null))
| | | +--by (by-subj 14 Prep by 1IN)

| | | [+--Mozart (pcomp-n 15 N Mozart {person} NP)

Figure 1: the tree returned by Minipar for the sentence: Handel wrote ”the Messiah” in 1741, which was

later rearranged by Mozart.

provide additional information about entities that Mini-
par did not recognize. The results of the NE-Tagger
simply “enrich” the annotation provided by Minipar.

The NE-Tagger we chose is based on Maximum En-
tropy [9], whose accurary depends mostly on the quality
of the training set used. The one we used is small and
originally designed for speech recognition tasks. Also
because of this, the entity taxonomy is small: entities
can be: person, organization, location, money, measure,
cardinal, percent, duration, date, time. These categories
are however the standard ones as defined in the relative
MUC task [3].

A mapping among the different taxonomies of the
various tools (Minipar, the NE-Tagger and WordNet) is
required.

2.4 'WordNet

WordNet [8] has been used mainly for: classifying words
(to determine the EAT) and measure the semantic dis-
tance of two words. This second activity has the goal
of returning a score that is higher if the two words are
semantically very close. This “closeness” refers to the
interchangeability of the two words in a sentence. Con-
sider for example the word “cat”. The word “mammal”
is definitely not a synonym of cat, yet it’s a closer term,
semantically, than “lizard”. While this is obviously a

context dependent property, it has been globally approx-
imated.

The type of a word is simply the taxonomy the term
belongs to according to WordNet. This yields to 24 cate-
gories, some of which can be mapped directly onto Mini-
par or the NE-Tagger categories, and others that consti-
tute categories by themselves.

In order to evaluate the semantic distance or to cho-
ose the proper type of a word, the right synset (sense)
of a word must be selected. This is, again, a property
that should take the context into account. However,
for several practical reasons (for instance, because the
question provides too little a context), we have approxi-
mated it more pragmatically, exploiting WordNet’s sort-
ing of senses by frequency. For type identification, we
return for word w, whose ordered senses in WordNet are

{50,...,8n}, the category C that maximizes:
P = :
(,0) = k3" "—La(s))
Jj=0
where
1 iff s;¢€ C

s = {

and k is a constant, presently set to 0.7.
For semantic similarity the various senses of the two
words are weighted, and contribute differently to the

0 otherwise

final score. Word similarity, is computed over nouns,
verbs, adjectives and adverbs, while only the first two
categories were treated last year.

3 Question analysis

The question is parsed. From then on, all further anal-
ysis takes place on the parse tree, which is possibly en-
riched by means of other tools.

3.1 Keyword extraction

The first important thing done on the question is the
selection of those terms in the question that should be
part of the IR-like query. A word is selected as a keyword
if:

e it is not a “forbidden” word like wh-words;

e if it is an informative noun (you, me, something
etc. are non-informative);

e it’s a verb but it is not “to be”;

it is an adjective or an adverb.

The keyword set can be modified in 4 successive, pro-
gressively loosening steps in case no answer is found.
First, morphological variations for each word are added.
Second, synonyms (according to WordNet) are OR’ed to
each keyword. Third, adverbs and first proper names are
dropped. Fourth, verbs are dropped as well, and if more
than 3 keywords are still there, all keywords whose father
(according to the parse tree) is a keyword are dropped.
The empirical justification is that in a dependency parse
tree, the children of a node “modify” the node, that gen-
erally has a more central role in the sentence (the same
rationale drove the word weight assignment, see 3.3).

3.2 Expected Answer Type

The EAT is the type of the entity that is asked by the
question. The taxonomy for the EAT is not very uni-
form, for it reflects the natural taxonomy of questions.
It is composed of the categories: person, organization,
location, time-date, quantity, quoted, language, and
those gathered from WordNet. The person category also
features two subclasses, depending on whether the ques-
tion expects a proper noun or rather a definition. The

EAT can also be person OR organization, for ques-
tions of the kind “who did something”. The category
quoted is meant for titles (of books, songs, movies...),
while the category language is for questions of the kind
“what does something mean/stand for”. The remaining
categories (those referring to WordNet’s taxonomy) are
for the “what” kind of question, that usually provide a
narrower description of the entity they’re asking for by
a focus noun such as “instrument” in “what instrument
did Glenn Miller play?”.

3.3 Weights

In our abstraction, words in the question express rela-
tions (verbs), attributes (adjectives and adverbs), con-
cepts (common nouns) or entities (proper nouns) for
which we expect to find a counterpart in an answering
paragraph. However, not all the words in the question
are expected to be found in the answer paragraph, nor all
of them are sought with the same priority. Therefore, we
assign a weight to each word in the question. This weight
represents the relative importance of the concept asso-
ciated with the word, and will influence the matching
cost between question and answer by which candidate
answers are sorted.

The weight is a number in the [0, 1] interval. Words
that are not initially selected as keywords all have weight
0 (they may happily be missing from the answering para-
graph). For all others, we visit the parse tree recursively.
The first word has weight 1, and the weight halves as
the depth of the node increases. However, nodes that
are tagged with semantic features receive a 10% “bonus”
weight for each feature they have.

The rationale of this heuristic is that nodes closer
to the root (the main verb and its direct complements)
express more “basic” properties of the required entity,
while down deeper in the dependency tree are only ad-
ditional, perhaps “optional” requirements that are less
likely to appear in an answering paragraph.

4 Answer Selection

4.1 Retrieval: Proximity Search

We combine the keywords extracted from the question in
a proximity query. The width of the proximity window
is roughly estimated as being twice the number of nodes
in the parse tree of the question. All paragraphs over

which the resulting text window spans are retrieved as
candidate answers. This allows for “elasticity”: if a par-
ticular paragraph is retrieved, but it does not contain all
the question keywords, we can rest assured that together
with its close context (surrounding paragraphs) it did.

All paragraphs retrieved this way are however con-
sidered independently.

4.2 Type Filter

Of all the paragraphs returned by the retrieval phase, the
top N (we have experimented with N’s ranging from 400
to 1200) are considered. These paragraphs are parsed for
further analysis, the first step of which is the type filter.
The parse tree is visited, looking for at least a node that
is tagged (or that is classifiable) in the EAT category
of the question. Furthermore, it is required that such
node did not occur in the question as well. Consider the
question: “Who killed John Kennedy?”, whose EAT is
person OR organization. All paragraphs containing John
Kennedy (and there will be plenty of these in the search
result) contain a person node; for sure we are looking for
a different person.

Paragraphs that do not contain an entity of the proper
type are discarded.

4.3 Relation extraction

Once the candidate paragraph has passed the type filter,
we want to make sure the paragraph actually supports
its answer. For factual questions like TREC’s, an answer
is an entity that verifies the conditions imposed by the
question. We have issued the following hypotheses:

e the conditions imposed by the question are ex-
pressed by the logical relations among words;

e such relations are found in answering paragraphs.

While verbs are usually considered as relations among
entities expressed by nouns, we have reified them, and
considered them as “concepts” too. This way, the num-
ber of relations is considerably cut down to syntactical
ones, like “subj, obj, p-comp” etc., as output by Minipar.

To achieve better flexibility with respect to the vari-
ous different expressions of the same concepts, we must
perform syntactical normalization. John’s ownership of
a car is expressed by both “John has a car” and “The car
of John”. To make sure we are able to understand that
sentences like these convey the same meaning, we need

to perform normalization, for which we have flattened
the dependency tree to a set of relations (head word, re-
lation, modifier word), which is less strict, and allows us
to insert new relations without messing up the structure.

First, all relations found in Minipar are inserted in
the relation set. From then on, a rule system is applied
to the set, extending it, until the fix-point is reached (no
more relations are added). Rules can be very general,
but are usually in the form: “if A is in relation R; to B,
and B is in relation Ry to C, then add the relation (A,
R3, C)”. With respect to the example above, a rule for
“to have” says that: “if A is the subject of the verb to
have, and C is the object, then A is a specifier of C”.
This way, both example text snippets would “agree” on
the relation (C, specifier, A).

In the current system, we have 19 such rules, all ori-
ented to syntactical normalization.

In a domain as open as TREC’s, it is hard to imag-
ine how semantic rules of the same kind could be added.
However, in principle nothing keeps from adding more
rules for specific domains. In our current system, only
three semantic rules have been added, mainly for testing
purposes: “if A is known as B, then A is B”; “if A di-
rected, composed, wrote, manufactured, produced or in-
vented B, then it A is a specifier of B”, “if A means/stands
for B, than A is B”. These rules are easy to write, and
all they do is enriching the relation set relative to a para-
graph. However, it is impractical to think we could write
rules for all common sense facts.

Relation sets are extracted both from candidate para-
graphs and from the the question, for which we also set
an empty slot, a node that is missing in the question,
and yet it’s in relation with question words. This empty
slot represent the answering entity: the node with sim-
ilar relations to this one in the answering paragraph is
considered to be the had of the answer. The position of
the empty slot in the parse tree (and therefore the re-
lations it has with other words) is usually the position
of the first “missing” node; we look for the first verb
whose subject or object is missing. Special cases correct
“when” and “where” questions, for which such node is
placed as a modifier of the main verb.

4.4 Relation matching

Once the relation sets for question and candidate answer
are determined, we use a matching function to deter-
mine how well an entity in the paragraph matches the

Q: Who was the first person to reach the south pole?

A: Any bright schoolchild can tell you that Roald Amundsen was the first man to reach the South Pole,
but can anybody name the first baseball fan to brave Candlestick?

reach, Amundsen (subj) <-> reach, ANODE ((null))

VROOT, first (post) <-> VROOT first (lex-mod)
reach, Pole (obj) <-> reach, pole (obj)

Pole, South (lex-mod) <-> pole, south (lex-mod)

Figure 2: an interesting case, in which the answer is provided by a question. We show the matching relations
(on the left of <->, the answer relations, on the right, the question ones). ANODE is the empty slot in the
question. Notice how the subject of “reach” in the answer is Amundsen, while the word “first” cannot be
attached to it, and is therefore “pending” (attached to a virtual root VROOT).

question’s requirements, allowing for sorting answering
paragraphs. All paragraphs that are more distant than
a threshold are considered not answering.

The matching algorithm begins by matching the ques-
tion’s empty slot against a node of the required type in
the answer (answering node). The set of nodes in re-
lation with the empty slot is then identified. For each
such node, a node in relation with the answering node
is looked for as “partner”. The algorithm then proceeds
by trying to match nodes of distance 2 from the empty
slot to nodes of distance 2 from the answering node, and
so on. We find the optimal solution, choosing for each
node in the question a partner in the answer so that the
global matching cost is minimal.

The global matching cost is defined in terms of several
properties.

e Nodes in the question that do not have a match in
the answer contribute to the cost proportionally to
their weight (question requirements missing in the
answer);

e For each question node/answer node association, a
contribution to the cost is added proportionally to
the weight of the question node and the distance
of it from the answer node.

The distance from a question node to the correspond-
ing answer node is evaluated basing on the similarity
measure defined on WordNet, and on other properties,
such as:

e the number of semantic features “missing” in the
answer node;

e the difference of modifiers;

e different relation with the father.

An example of the matching returned for a question
and a candidate answer is shown in figure 2, in which
the matching is more compactly shown as associations
between relations extracted from the question and the
answer.

5 Exploiting the Web

5.1 Narrowing the search for the answer

While the type filter and the relation matching phase are
highly semantic filters, the most selective, the one that
reduces the number of paragraphs from the millions to a
few hundreds, is the IR phase. If questions like “What
is an atom?” leave little choice as to what to deploy as
keywords, in several other cases, for more complex ques-
tions, the choice of keywords plays a crucial role. Several
times, morphological variations or adding synonyms does
not help: a honeymoon implies a wedding, but it is not
a synonym.

The difficulty of finding the proper paragraphs for
complex questions is evident from figure 3, in which it is
shown that the system performs considerably better for
short questions. Moreover, keeping at most the top 400
results of every query, over the 500 TREC2002 questions
we retrieved in total about 180.000 paragraphs of which
only about 1 every 30 matched the corresponding an-
swer string (lists of regular expressions matching correct
answers to each question, and kindly provided by Ken
Litkowski [6] to the QA-track mailing list).

Figure 4 shows that the number of questions for which
no paragraph retrieved contained an answer is indeed
high.

| Average words in question: 6.3 |

Shorter questions: 285
Correct: 123

Longer questions: 215
Correct: 44

Figure 3: a comparison between “long” and “short”
questions. Short ones appear to be easier, mainly
because for long ones, it is more difficult to select
the right keywords (TREC 2001 question set, our
best submitted run). The TREC 2002 question set
amplifies this problem, for the average length of a
question increased to 7.6 words per question, still
with 285 questions under the average.

| | # questions | # correct NILs |

0 par. returned 37 14
0 ans. within par. 180 37
1+ ans. within par. 173 //
Figure 4: numer of questions for which: no para-

graphs were returned at all, some paragraphs were
returned but none of them contained an answer
matching Litkowski’s patterns, some paragraphs
matching the patterns was retrieved. On the right
column, the number of questions for which the cor-
rect answer was NIL (TREC 2002 set).

Hypothesis: the Web features such a high redun-
dancy, that it is likely to find a fact stated in a particular
way.

Assuming this fact, we have decided to issue a very
narrow query to a search engine, to see if an answer
could be found on the Web. Such answer (that we call
“Web suggestion”) can then be searched for directly on
the internal collection

5.2 Answer template

During the question analysis, an answer template is con-
structed: a text fragment obtained by turning the ques-
tion into a direct form. Examples of pairs of question
and answer template are provided in figure 5.
Templates are generated simply by turning the main
verb into the direct form, and adjusting its conjugation
(did originate — originated, does have — has).
Additionally, looser templates are obtained from these
ones by simply removing verbs (and therefore breaking
the template in two or more chunks). This is done in

case no suggestion is found on the Web using the stricter
template.

5.3 Google candidates

By means of Google’s API, we issue the answer template
as query to Google, and isolate the resulting excerpts. By
the way Google works, such excerpts contain the text in
the document retrieved that matched the query. In that
respect, it is not dissimilar from the paragraphs we re-
turn by our search engine. Also, because the query asks
for adjacent words, we know that the relative excerpts
must contain a text fragment that is (almost) well con-
structed, and therefore parsable.

Some examples of excerpts are shown in figure 6.

We apply type filtering and relation matching to these
excerpts, in order to obtain actual verified answers out of
the excerpts. Because the search string was the question
turned into direct form, it is usually easier to verify its
correctness.

5.4 Justifying Web suggestions in the col-
lection

Even if the answers gathered from the Web are justified
by their exceprt, it is the case that such excerpts might
indeed be wrong, or that an answer must be found on an
internal, trusted collection.

To do so, and bearing in mind that several irrele-
vant paragraphs were returned by the “standard” search
strategy, we have “doped” the keyword set by adding
the answers found on the Web. This in fact renders the
search much narrower, and hopefully, more likely to find
answers. In fact, we are searching the question’s key-
words along with answers to the same question as found
elsewhere.

In figure 7 some question/suggestions pairs are shown.
From the figure we see that these candidates have a high
rate of correctness, mainly due to the strict template
they were gathered from, and to the answer validation
that is applied to them. In fact, while the template is
often very good by itself in selecting good answers, vali-
dation can rule out cases such as “Galileo was very nice”,
or “Wilt Chamberlain scored 100 points and then show-
ered”, which match the template but do not contain an-
swers.

In the same figure we see another fact that is impor-
tant to consider when looking for answers in the Web.

Question

Template

In what country did the game of croquet originate?

The-game-of-croquet-originated

What year did Wilt Chamberlain score 100 points?

Wilt-Chamberlain-scored-100-points

How many chromosomes does a human zygote have?

A-human-zigote-has

What lays blue eggs?

Lays-blue-eggs

Which vintage rock and roll singer was known as ”The Killer”?

Was-known-as-The-Killer

Figure 5: some questions with the relative answer template. A hyphen between words means that they must

be adjacent (Google syntax).

Google Excerpt

... AP. The following is The Associated Press story filed March 2, 1962, the night Wilt Chamberlain
scored 100 points in a game against the New York Knicks. ...

... March 2 came and went quietly, but was a noteworthy date in sports history ? Saturday was the 40th
anniversary of the day Wilt Chamberlain scored 100 points ...

... 28. The ball was supposedly the one that 7’1" Wilt Chamberlain scored 100 points with on March
2, 1962, in Hershey, Pennsylvania. ...

... The Associated Press. After Wilt Chamberlain scored 100 points in a game in Hershey, Penn.,
Kerry Ryman snatched the ball after the contest. ...

Figure 6: some of the excerpts returned in the first result page of Google for the query “Wilt-Chamberlain-

scored-100-points”.

Question

Web Suggestions

Who was Galileo?

astronomer, scientist, philosopher, son, physicist,
professor, pioneer, egoist

What is an atom?

quantum, block, Raspberry, Lies, part, Friend,
thing, hero, particle, helium, Port, member,
vehicle, constituent, piece, organization, proof

What year did Wilt Chamberlain score 100 points?

1962, 1984

Where did the game of croquet originated?

France

When did Bob Marley die?

1981, May, 1980, 1082

Figure 7: questions and relative candidates, obtained by Google issuing the answer template of each question

as query.

The author of Web pages can be wrong when he as-
sesses something, so for instance he might believe that
Bob Marley died in 1980 (and write so), while he did
in 1981. Sorting suggestions by popularity may help in
these cases.

Web suggestions are treated as additional keywords
to the IR-like query. In case the collection does not
“agree” with the Web, this will result in a query that
returns no candidate paragraphs. In such cases, we can
remove the Web suggestion from the query, and proceed

with the default behavior.

In figure 8, we see some examples of the generated
queries. In bold face, Web suggestions. As it’s easy to
notice, for long queries it is likely that the addition of a
keyword is irrelevant, because few (if any at all) para-
graphs are already returned. However, the addition of
the Web suggestion is very effective for short questions,
where it can narrow and direct the search. After the
first expansion loop, that is if no answer is found, the
system is given the chance to “prove the Web wrong”:

Run CWS
pagas2l | 0.357
pgas22 0.358
paas23 | 0.354
resorted | 0.438

Figure 9: results for the TREC 2002 answer set. The
last run was not submitted, but has still been ob-
tained from NIST judgments.

by removing the Web suggestion, we let open the chance
of finding a different answer. However, we re-insert the
Web suggestion at the last expansion phase, at which,
by experience, usually so many paragraphs match, that
hardly anything useful is ever returned (only the first
400 paragraphs returned by the query are analyzed, in
order to save time). Finally, there is a last “desperate”
query that we called last resort, in which only the Web
suggestion is looked for in the collection.

6 Results

We submitted three runs at this year’s TREC (see figure
9). The difference among the three runs laid in differ-
ent settings for constants and weights that showed little
effect.

However, with respect to these three runs, a big mis-
take was made in sorting the answers. The system is bi-
ased toward precision, therefore every NIL answer (there
are still about 210 NILs!) should be considered as highly
uncertain. Re-sorting the answers so that all the NILs
come later (and keeping the relative sorting), still basing
on NIST judgments, yielded a considerably better result:
a CWS of 0.438.

Interesting results regard the use or not of the Web
to narrow the search during the IR phase. Thanks to
the doping of the search expression by Web suggestions,
the searches for TREC 2002 questions returned about
210.000 paragraphs, of which 1 every 15 in average con-
tained the proper answer string. This is an indication
that Web suggestions were, in most cases, correct.

Particularly relevant is figure 10, which is the same
as figure 4, but modifying the keyword set by adding
the Web suggestions. The figure shows how using Web
suggestions we had the chance to answer correctly to
70 more questions than we did without the use of the
Web. Unfortunately, not all of the paragraphs with the

| | # questions | # correct NILs |

0 par. returned 30 13
0 ans. within par. 110 38
14 ans. within par. 243 //

Figure 10: same as figure 4, this time using Web sug-
gestions in the query.

right answer to these 70 questions made it through all
the remaining filters, and the final result (the unofficial
0.438) is not extremely higher than what we’d obtain
without using the Web (about 0.40).

7 Conclusions and further work

2002’s TREC featured plenty of systems that used the
Web in peculiar ways. PiQASso used it to look for pos-
sible answers, in order to find “confirmation” for them
in the internal collection. Magnini et al. [7] used it
the other way around: to confirm correctness of answers
gathered from the internal collection. Yang and Chua
[11] used it, more similarly to us, to gather additional
keywords to include in the IR-style search.

While we also feature complex semantic answer jus-
tification (not unlikely Harabagiu et al. [4]), it turns out
our cascade structure of the filters is way too strict, at
the point that for more than 200 questions we returned
NIL. This is mostly due to the relation matching filter
being too “strict” (too syntax-concerned). In that re-
spect, techniques like Harabagiu et al.’s lexical chains
seem to be able to lead to significant improvement.

However, as we feel we have improved the search
phase, and further improvements will concern, for in-
stance, the deploying of NE-tagging-aware indexing, the
quality of the semantic filter is on a completely differ-
ent dimension, and can therefore be developed indepen-
dently from the search phase.

Moreover, since Google’s excerpts undergo the same
filters as the paragraphs found in the internal collection,
failures of the relation matching filter affect negatively
also the effectiveness of the Web search. That is, very
often the answer would actually be within the excerpts
returned by Google, but it would be filtered out by either
the type or semantic filters. We therefore expect great
improvements out of the tuning of the last filter, that can
be obtained mainly by better exploitation of WordNet (&

Questions

Queries

Where did the game of croquet originate?

(France) & (originate) & (game) & (croquet))
game) & (croquet croquets))
game biz) & (croquet croquets))

France))

- (
- (
- (
- (
- (
- (

Who was the first person to run the mile
in less than four minutes?

(
(
(France) & (game biz) & (croquet croquets))
(
(

Bannister) & (person) & (run) & (mile) &
(minutes) & (less) & (four) & (first))

- ((person) & (run ran run running) & (
(minutes) & (less) & (four) & (first))

- ((Bannister) & (mile knot mi) & (minutes) &
(first))

- ((Bannister))

mile) &

Who is the Governor of Tennessee?

- ((Alexander Johnson Menkov Pearsall Ronnie
War Hilleary McWhorter)
& (governor) & (Tennessee))

- ((governor governors) & (Tennessee))

- ((Alexander Johnson Menkov Pearsall Ronnie
War Hilleary McWhorter)

Figure 8: examples of question/queries pair, at various expansion levels. Words in the inner parenthesis are
in or, otherwise in and. The query is a proximity query.

la lexical chains).

References

[1]

[3]

[4]

G. Attardi et al., PiQASso: Pisa Question An-
swering System, proc. TREC 2001 Conference,
Columbia, MD, November 2001

G. Attardi, A. Cisternino, Reflection support by
means of template meta-programming, proc. of
Third International Conference on Generative and
Component-based Software Engineering, LNCS,
Springer-Verlag, Berlin, 2001

R. Grisham and B. Sundheim, Design of the
MUC-6 evaluation, proc. of the MUC-6 conference,
Columbia, MD, 1995

S. Harabagiu, Moldovan et al., LCC Tools for Ques-
tion Answering, preliminary proc. of TREC 2002
conference, Columbia, MD, November 2002

D. Lin, LaTaT: Language and Text Analysis Tools,
proc. Human Language Technology Conference, San
Diego, California, March 2001

10

[6]

[7]

[8]

[9]

[10]

[11]

K. C. Litkowsi, Question Answering Using XML-
Tagged Documents preliminary proc. of TREC 2002
conference, Columbia, MD, November 2002

B. Magnini et al., Mining Knowledge from Repeated
Co-occurrences: DIOGENE ot TREC-2002, prelim-
inary proc. of TREC 2002 conference, Columbia,
MD, November 2002

G. Miller, Five papers on WordNet, special issue of
International Lexicography 3(4), 1990.

J. C. Reyner and A. Ratnaparkhi, A Mazimum
Entropy Approach to Identify Sentence Boundaries,
Computational Language, 1997.

G. Schmid, TreeTagger - a lan-
guage independent part-of-speech tagger,
1994. Available: http://www.ims.uni-

stuttgart.de/Tools/Decision TreeTagger.html

H. Yang and T. Chua, The Integration of Lezical
knowledge and External Resources for Question An-
swering, preliminary proc. of TREC 2002 confer-
ence, Columbia, MD, November 2002

