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Abstract

This report describes the joint work by Kyoto University and the University of Melbourne for the
TREC Genomics Track in 2007. As with 2006, the task for this year was the retrieval of passages from
a biomedical document collection. The overall framework of our system from 2006 remains unchanged
and is comprised of two parts: a paragraph-level retrieval system and a passage extraction system. These
two systems are based on the vector space model and a probabilistic word-based aspect model, respec-
tively. This year, we have adopted numerous changes to our 2007 system which we believe corrected
some problems.

1 Introduction

Kyoto University and the University of Melbourne participated together for the TREC Genomics Track in
2007. As with last year’s task, this year’s aim was to retrieve passages from a full-text HTML collection
of biomedical journals (see Hersh et al. [2006] for further details). While the collection this year remains
unchanged, new queries were employed as well as modifications to the scoring scheme for passages.

Last year, we introduced our system for passage retrieval made of a paragraph-level retrieval system
and a passage extraction system [Wan et al., 2006]. Since our performance last year was unsatisfactory,
we re-designed parts of the system using what we learned from 2006. In Section 2, we begin with a brief
description of our method. Section 3 describes our 2007 system by comparing against our 2006 system.
Section 4 covers our three officially submitted runs and an additional set of runs that was performed after
our results were released. Finally, we summarize this report in Section 5.

2 Method

The main task is to select passages from a collection of biomedical articles which are relevant to a query.
Both the 2006 and 2007 tracks used the same collection of full papers from HighWire Press. Each article is
in HTML and segmented into paragraphs (as indicated by the HTML <p> tags). Passages are sections of
contiguous characters that do not include any of these paragraph boundaries. Performance is measured in
terms of aspect, document, and passage retrieval.

Our method consists of two parts working together: a paragraph-level retrieval system and a passage
extraction system. Based on the vector space model (VSM), the paragraph-level retrieval system constructs



an index off-line. When given a query, a ranked list of relevant paragraphs are identified and passed to the
passage extraction system. By using scores obtained from a probabilistic word-based aspect model derived
from word-pair co-occurrences, the contiguous sequence of words (a passage) from each paragraph that is
most relevant to the query is returned. The paragraph score and the passage score are aggregated for passage
re-ranking as the final step.

In the remainder of this section, we describe the two parts of this method in general terms. Implementa-
tion details are deferred to the section after.

2.1 Notation

We begin by defining some notation. The requirements of the Genomics Track makes it necessary to view
the document collection as having a hierarchical structure. The document collection D is composed of a set
of documents d, which are each made up of paragraphs r ∈ R. We assume that within a paragraph r, there
is at most one relevant passage p. The set of words in D is W and the set of words that form a query q is Q.
All words in the query are assumed to also be in the collection (i.e., Q ∈ W ).

A word is represented as i for a query and j for a paragraph, such that q = {i} and r = {j}. The
paragraph frequency or the number of paragraphs that contain j is fj . The within paragraph frequency of
word j in paragraph r is fr,j . Note that our terminology differs slightly from the information retrieval field
since we are operating primarily at the paragraph-level. That is, even though the collection is based on
articles, we view it as a collection of paragraphs.

The word-based aspect model makes use of the co-occurrence of two words. We make a distinction
between the co-occurrence n(i, j) and the co-occurrence scores c(i, j). The co-occurrence n(i, j) is the
observed frequency of appearances of both i and j in the same paragraph throughout D. These values are
used as input into our aspect model. The co-occurrence scores are the outputs from this process. In both
matrices, n(i, j) and c(i, j) are undefined when i = j. The maximum co-occurrence score is denoted cmax.

2.2 Vector Space Model

The paragraph-level retrieval engine employed as the first component of our system has two functions: a)
to generate the primary statistics needed for calculating the co-occurrence scores between pairs of terms,
and b) to produce the first-round result list to each query, which will be further refined by the aspect model.
The major function is the second one, where each original query is processed as a ranked query using the
impact-based ranking approach.

The impact-based ranking approach is essentially a variation of the vector space model, where each
distinct term of the collection is represented as a dimension in the n-dimension vector space (where n is
the number of distinct terms in the collection). In this space, each document or query is represented by a
vector, whose coordinates in a dimension is interpreted as the “importance” of the corresponding term in
the document (or query). Traditionally, the coordinates are computed in a quantitative way and are floating-
point values, and the level of similarity between a document and a query is defined as the cosine of the angle
between the two respective vectors. In the impact-based approach, however, the coordinates (called impacts)
are produced in a qualitative manner, and are integers values between 0 and (in this case) 8. Moreover, the
level of similarity is now defined as the scalar product of the document and the query vector. Anh and Moffat
[2005] describes the motivations and the details behind impact-based ranking.

2.3 Aspect Model

The aspect model (also, latent semantic analysis) has been proposed by others to associate words to docu-
ments [Deerwester et al., 1990, Hofmann et al., 1998]. As summarized by Deerwester et al. [1990], one-



mode factor analysis consists of a matrix of associations between all pairs of a single type of object. Deer-
wester et al. applies two-mode factor analysis where a matrix of two different types of objects is constructed.
In their case, it is a term by document matrix which indicates the number of times term i occurs in document
j. Using singular value decomposition, they reduce this matrix into k-dimensional space, and in doing so,
show how latent semantic analysis (LSA) can be useful for document retrieval. Probabilistic latent semantic
analysis (PLSA) [Hofmann, 2001] adds a probabilistic model to this earlier work by employing an iterative
approach using the Expectation-Maximization (EM) algorithm [Dempster et al., 1977].

For our method, we return to one-mode factor analysis and combine this with PLSA. Instead of con-
structing a matrix of documents against documents, we build a matrix of words against words. We reduce
this matrix to k clusters or latent states, where k is much less than the number of unique words in the
collection (i.e., k ¿ |W |).

The co-occurrence score c(i, j) for the word pair (i, j) is obtained by summing across all of the latent
states Z, which is of size |Z| = k:

c(i, j) =
∑
z∈Z

p(i|z)p(j|z)p(z), (1)

The parameters of this aspect model can be estimated using the EM algorithm by iterating between the
following E-step and M-step:

E-step:

p(z|i, j) =
p(i|z)p(j|z)p(z)∑

z′∈Z p(i|z′)p(j|z′)p(z′)
(2)

M-step:

p(i|z) =
∑
j∈W

n(i, j)p(z|i, j) (3)

p(j|z) =
∑
i∈Q

n(i, j)p(z|i, j) (4)

p(z) =
∑
i∈Q

∑
j∈W

n(i, j)p(z|i, j). (5)

Initial values are generated at random using a uniform distribution. The output from the word-based
aspect model (AM) is a set of scores c(i, j) such that c(i, j) = c(j, i), where i 6= j. Instead of assigning a
score to c(i, j) when i = j, we consider variations on the maximum co-occurrence score cmax.

3 TREC 2007 System Description

The organization of our system this year is shown in Figure 1. The inputs to the system are the document
collection D and a query q. The output is a ranked list of passages. In the figure, “indexing” and “querying”
refer to the paragraph-level retrieval system, while “passage extraction” and “score derivation” are parts of
the passage extraction system. Re-ranking of passages by aggregating their paragraph and passage scores is
performed as the final step, “score merging”.

The parts of the paragraph-level retrieval system are self-explanatory. Score derivation refers to the use
of the aspect model to assign scores to pairs of words. Passage extraction uses these scores to identify the
words in the paragraph that are most relevant to the query. After the passages are extracted, as a requirement
of the Genomics Track, their character positions in their respective documents are calculated using the
Smith-Waterman sequence alignment algorithm [Smith and Waterman, 1981].
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Figure 1: Our system includes a vector space model and an aspect model which include four components:
indexing, querying, passage extraction, and score derivation. A final score merging steps performs passage
re-ranking.

Feature 2006 System 2007 System
Aspect model collection-level (off-line) query-level (on-line)
Indexing level article/paragraph paragraph only
Look-up to external databases yes no
Stemming algorithm Lovins simplified stemming
Number of passages/paragraph > 1 1

Table 1: Differences between our 2006 and 2007 systems.

3.1 System Differences

The main differences between our two systems are shown in Table 1 (see Wan et al. [2006] for a description
of our last year’s system.). After reporting our 2006 results, there were bugs in our system that were found
and corrected for our 2007 system. We believe these problems affected the reliability of the co-occurrence
scores produced by the aspect model.

The most significant difference this year is how the aspect model is used. Previously, the scores c(i, j)
were obtained off-line. Using last year’s stemming rules, there were 1,299,308 unique words. At this
size, the corresponding matrix and associated data structures for the aspect model would require significant
amounts of memory. We address this issue by selecting a co-occurrence matrix of size n by n, where
n ¿ |W |. Last year, we chose all words that appeared in at least 1% of the collection of 162,259 articles
(n = 13,895).

While last year’s method has the advantage of employing the aspect model off-line, it was found that
much of the co-occurrence matrix was unused. Since the purpose of the matrix is to score a paragraph
against a query in order to trim it to a more concise passage, applying this step on-line would be more
sensible. Thus, the dimensions of the matrix chosen this year was m by n, where m = |Q|. Moreover, if
one of the dimensions of the matrix is reduced, then the other dimension can be increased to |W |. This idea
forms the basis of our implementation this year. The co-occurrence matrix is calculated on-line on a per-
query basis instead of a per-collection basis. Unfortunately, this approach would make real-time querying
infeasible.

Last year, we investigated both paragraph and document-level indexing in the retrieval system. Our re-
sults showed that document-level yielded poor effectiveness results. Because of this, we focused exclusively
on paragraph-level retrieval.

We made extensive use of external databases in 2006 to expand the query through the addition of syn-
onyms. We used the Biomedical abbreviation server, Entrez Gene, and Medical Subject Headings to expand



query terms for both querying and passage extraction (see Chang et al. [2002], Maglott et al. [2005], Nelson
et al. [2004] for details about these sources of biological synonyms). While we no longer use these ideas
this year, they remain possible options for our system in the future.

However, words are parsed in the same way as last year. A word is a contiguous sequence of alphabetic
or numeric characters, but not a mix of both. So, “CD44” and “CD-44” are both divided into the two words
“CD” and “44”. Case-folding is also employed, as well as a stop-word list of 471 words. Instead of using the
Lovins stemming algorithm [Lovins, 1968], we chose a simplified algorithm which considers only regular
endings such as -s, -es, -ed, -ly, and -ing.

In addition to these differences, the formula used for scoring passages was completely changed, as we
describe next.

3.2 Scoring Passages

We re-designed the scoring mechanism so that it more closely resembles work by others in information
retrieval (see Witten et al. [1999] for details). The basic idea remains the same. Instead of calculating a
single value (such as the cosine similarity) between the paragraph and the query, our aim is to assign a score
to each paragraph word relative to the query words. If the two words match exactly, then some constant
score is added to the paragraph. Otherwise, a smaller score is added for a mismatch. A passage is obtained
from the paragraph by isolating the highest scoring section.

Last year’s method for paragraph scoring involved breaking the paragraph into sections, where each
section begins or ends with punctuation marks such as full stops and semi-colons. Then, every possible
contiguous group of one or more sections is tested against the query. At the TREC 2006 conference, it was
noticed that most groups extracted only one passage per paragraph. As our approach yielded little benefit
and was too time consuming, we restrict each paragraph to produce only one passage this year. Punctuation
marks are still used, but their use is deferred until later when character positions are calculated.

The score for a word j in paragraph r against the query q is defined as:

s(q, r, j) =
|R|
fj

× (1 + log fr,j)
∑
i∈q

c̄(i, j). (6)

where |R| is the number of paragraphs in the collection and c̄(i, j) is the score between two words i and
j. We investigated two methods for calculating this score: Methods 1 and 2. Each method consists of two
cases based on whether or not i = j.

Method 1 c̄(i, j) =

{
cmax if i = j

c(i, j) otherwise
(7)

Method 2 c̄(i, j) =

{
ln(1 + |R|

fi
) × cmax if i = j

ln(1 + |R|
fi

) × c(i, j) otherwise
(8)

The requirement of both methods is to keep the values between the two cases relatively close. If the
constant score for a match is much larger than a mismatch, then the usefulness of the co-occurrence scores
is minimized and the scoring scheme resembles a simple count of terms that appear in both the paragraph
and the query. Because of this, we keep the match score to be the maximum value in the entire co-occurrence
table (cmax). Method 1 is our baseline where cmax and c(i, j) are used without modification as the match and
mismatch scores, respectively. Method 2 applies a scaling factor based on the inverse document frequency
(IDF) of the query term fi.



If each paragraph word’s score was used immediately for isolating a passage, then each passage would
be the longest contiguous sequence of words whose endpoints are words also found in the query (since they
would have the highest scores). To rectify this, we update the score of each word j using its neighboring
scores. We simply added half the score of each word’s two immediate neighboring words and one quarter of
the score of the two words which are two words away j, as depicted by Equation (9). In the future, we hope
to investigate scoring mechanisms which employ a multiplication factor which decreases with increasing
distance from j.

s′(q, r, j) = s(q, r, j) +
1
2

(s(q, r, j − 1) + s(q, r, j + 1)) +
1
4

(s(q, r, j − 2) + s(q, r, j + 2)) (9)

With these updated scores, we obtain a passage by locating the two highest scoring words in the para-
graph to act as endpoints of the passage. Note that “highest scoring words” can be any word and not
necessarily words that are also query terms. The score of this passage p against the query q is divided by its
length in words, according to Equation (10):

s(q, p) =
1
|p|

×
∑
j∈p

s′(q, j) . (10)

Since punctuation marks are more natural boundaries for English texts, the final passage returned extends
both endpoints to the nearest punctuation mark. However, the score of the passage excludes these extra
characters. The last step is to map each passage to character positions using the Smith-Waterman algorithm.

4 Results

Hersh et al. [2006] reports that the collection consists of 12,641,127 legal spans (sequences of characters
which did not contain any HTML paragraph tags). However, when indexed by our paragraph-level retrieval
system using the case folding, stop-word list, and stemming rules described above, the number of paragraphs
was |R| = 10,234,783. Thus, many documents were “empty” according to our system and were excluded.
The number of unique words was W = 1,480,399. Both of these values are larger than last year due in part
to our simplified stemming algorithm.

For all of the experiments described in this section, the parameters for the aspect model remained un-
changed. The number of clusters was k = 100 clusters. The stopping condition of the EM algorithm was
either a maximum number of iterations of 50 or when the difference in maximum likelihood between two
consecutive iterations differed less than 0.0001. The Smith-Waterman algorithm was used using 1, −1, and
0 for the scores for a match, mismatch, and a gap, respectively.

Three submissions were evaluated as part of our participation in the Genomics Track. Also, we per-
formed an additional set of runs which examined the effect from several variables.

4.1 Submitted Runs

The parameters for our official runs are shown in Table 2. We assign a name to each run in the first column.
While the Genomics Track requires 1,000 results per query, our paragraph retrieval system can pass more
than 1,000 paragraphs to the passage extraction system. The number of results provided is shown in the
second column. Two scoring mechanisms were described in the previous section, and both were applied, as
shown in the third column.

Both parts of our system assign a unique score. The paragraph-level retrieval system assigns a score to
the entire paragraph. The passage retrieval system, though, assigns a score to the returned passage. These



ID
Number of results Scoring

VSM:AM
from VSM method

kyoto1 1000 2 100 0
kyoto2 5000 2 0 100
kyoto3 5000 1 50 50

Table 2: The three official runs submitted by our group.

ID Document Aspect Passage Passage2
kyoto1 0.1892 0.1208 0.0474 0.0209
kyoto2 0.1191 0.0302 0.0235 0.0054
kyoto3 0.1022 0.0312 0.0204 0.0065
Minimum 0.0329 0.0197 0.0029 0.0008
Median 0.1897 0.1311 0.0565 0.0377
Mean 0.1862 0.1326 0.0560 0.0398
Maximum 0.3286 0.2631 0.0976 0.1148

Table 3: The results for our three official runs and additional statistics from all 66 official runs submitted to
the TREC Genomics track for evaluation.

two scores are normalized and weighted such that the total weight is always 100%. A run with a weight of
100% is using only one of the systems to rank the final results.

Table 3 shows the results from our official runs as well as some statistics covering all 66 runs that were
submitted for pooled evaluation. Retrieval effectiveness was measured in terms of document, aspect, and
passage retrieval mean average precision (MAP) across all 36 queries using at most 1000 passages per query.
Two methods of calculating passage retrieval were used. “Passage” is identical to last year’s scheme, while
“Passage2” is the official passage retrieval measure for this year.

Out of our three runs, kyoto1 performed the best, but only average compared with runs by other groups.
Our document retrieval performance was close to the median, while our other three scores were well below.
The performance of the other two runs were significantly worse. From these results, we hypothesized that
the cause of the problem with these two runs were the number of results from VSM, the scoring method, or
the weight for score merging. We examined these three parameters with an additional set of runs which we
call Varied-Method-2.

Also, after the submission of our official runs, we realized that there were problems in our implemen-
tation of the passage extraction system. There were errors in the scoring mechanism used by the passage
extraction system and the alignment of passages to character positions using the Smith-Waterman algorithm.
These problems were fixed and the changes are reflected in Varied-Method-2.

4.2 Additional Runs

A additional set of runs called Varied-Method-2 varied three different parameters. The results for the
four measures are shown in Figure 2 with MAP plotted against the VSM percentage (0% means that AM
is used exclusively to rank passages). Each of the three lines in each graph indicate the number of results
supplied by the paragraph-level retrieval system. The horizontal gray line indicates the median MAP as
reported in Table 3.

Our results for our official runs are also plotted on the graphs even though they are obtained from a
system that had errors in it and thus, may not be comparable. Unfortunately, it would appear that fixing the
problems actually degraded our system’s performance. The only noticeable improvement was our Passage2



0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

VSM percentage

D
oc

um
en

t M
A

P

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

VSM percentage

A
sp

ec
t M

A
P

kyoto1
kyoto2
kyoto3
10,000
5,000
1,000

(a) Document MAP (b) Aspect MAP

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

VSM percentage

P
as

sa
ge

 M
A

P

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

VSM percentage

P
as

sa
ge

2 
M

A
P

(c) Passage MAP (d) Passage2 MAP

Figure 2: Mean average precision versus VSM percentage for the three sets of additional runs.

results. Combining the results of Table 3 and the trend of all of the lines, kyoto3 should perform better
than kyoto2. Since it does not, it implies that Method 1 performs worse and using the inverse document
frequency seems required.

Excluding the Passage measure, all of our measures approach or slightly pass the median. The results
show that an increase in the VSM percentage yields improved MAP in all cases. The optimal percentage
appears to be around 95% or 100%. That is, the scores from the aspect model adversely affect the final
ranking and are worse than the scores provided by the impact-based vector space model. Also, having less
results from the VSM is better since the dotted line always performs the best in all four graphs. When more
results are available to the passage extraction system, its scoring scheme moves irrelevant paragraphs into
the top 1,000 passages for scoring, reducing our effectiveness.



5 Summary

In this report, we have described our work for the TREC 2007 Genomics Track. The two most notable
changes to our system compared to last year was a shift to a query-based, on-line aspect model and a change
in the passage scoring mechanism. Overall, our performance is average compared to other participants with
MAP scores close to the median. An additional set of runs with a corrected system show that, unfortunately,
our effectiveness has worsened slightly.

It would appear that the weight attributed to the VSM or the AM is one of the most significant factors
affecting our method. The ranking provided by the VSM seems more useful, indicating that more work is
required on the scoring regime used by the AM.

In the future we wish to examine both parts of the system more closely. So far, we have not investigated
the effect from varying the parameters of the paragraph-level retrieval system. Variations, such as stemming
rules, could have a noticeable effect on passage retrieval effectiveness. As for the aspect model, we have not
properly evaluated varying values for the many parameters, such as the the number of latent states. Other
future considerations include reducing the running time and the use of external biological databases to im-
prove effectiveness.
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