Optimization in CLARIT TREC-8 Adaptive Filtering

Chengxiang Zhai, Peter Jansen, Norbert Roma, Emilia Stoica, David A. Evans
CLARITECH Corporation

Abstract In this paper, we describe the system and
methods used for the CLARITECH entries in the TREC-8
Filtering Track. Our focus of participation was on the
adaptive filtering task, as this comes closest to actual
applications. In TREC-7, we proposed, evaluated, and
proved effective two algorithms for threshold setting and
updating—the delivery ratio mechanism, which is used to
obtain a profile threshold when no feedback has been
received, and beta—gamma regulation, which is used for
threshold updating. This year, we explored two ways of
improving filtering performance given these our threshold-
setting algorithms as a basis by (1) allowing profile-specific
anytime updating and (2) optimizing the other filtering
system components, in particular, the retrieval/scoring
mechanism and the profile vector learning. Our results
show that profile-specific frequent updating indeed
improves filtering performance. In addition, they suggest
that optimizing the scoring function and the term vector
learning component independently leads to even further
improvement, providing another indication of the
effectiveness and robustness of our threshold updating
mechanism.

1 Introduction

Our basic approach to filtering is a vector-space-based two-
step procedure similar to the one used in many other
systems: first we compute a relevance score for each
document—profile pair, and then we make a binary decision
to accept or reject the document based on comparison with a
score threshold. When, over time, feedback information
becomes available for the accepted documents for any
profile, the profile term wvector and threshold can be
updated periodically.

A filtering system capable of performing these tasks
consists of the following major components:

1. Aninitial profile term vector creation component

2. Aninitial threshold setting module

3. Ascoring mechanism that computes a relevance score

based on a document vector and a profile vector

4. A profile term vector updating module

5. Athreshold updating module

For TREC-7, we built our filtering system by adapting a
regular retrieval system. This approach has the advantage
that several of the main required components are already
implemented in some form. For example, the creation of an
initial term vector (1) and the scoring mechanism (3) are
naturally supported by any retrieval system, whereas term
vector updating (4) can be achieved by means of any
relevance feedback mechanism. That leaves two
components to be designed and implemented, namely the
two threshold-related components. One component (2) sets
the initial threshold at the beginning, i.e., without any
feedback information, the other (5) updates the threshold
based on the collected user feedback. In TREC-7, we
proposed and evaluated an algorithm for each of these: the
delivery ratio algorithm for initial threshold setting and the

beta-gamma regulation algorithm for threshold updating
[Zhai et al. 1999]. They proved to be very effective as
reported in the evaluation of the TREC-7 filtering track
[Hull 1999].

This year, we examined methods for improving the
overall filtering performance given these basic threshold-
setting algorithms. We considered two directions: (1)
allowing profile-specific “anytime” updating; and, (2)
optimizing the other two components in a filtering system:
the retrieval/scoring mechanism and the profile vector
learning mechanism.

One special challenge in adaptive filtering is the problem
of extremely sparse data. Without reasonably frequent
feedback—at least some of which must be positive—no
effective learning is possible. In our TREC-8 work, we
explored the possibility of improving filtering performance
by performing frequent profile-specific event-driven
(anytime) updating. More specifically, we wanted to allow
each profile to update after some small number of new
documents were accepted by that profile (2 or 4 in the
official experiments). It was here, however, that the
limitations imposed on us by the use of a retrieval engine
became significant, and this eventually prompted us to a
complete redesign of the system.

The second hypothesis we tested in TREC-8 is that we can
improve the filtering performance by improving individual
filtering system components independently. Somewhat
simplifying the classification given above, we can view the
filtering problem as consisting of three facets: (a) scoring
and ranking, (b) term vector learning, and (c) threshold
regulation. We were interested in seeing how techniques
for optimizing the scoring function and the term vector
learning module would interact with techniques for
optimizing threshold learning. To test the hypothesis that
the positive effects of the optimization of each individual
module would outweigh and supersede any negative effects
or interference, we held the beta-gamma variables constant
while varying other components of the system. In particular,
we varied (1) the TF formula (maximum-frequency TF
normalization vs. the BM25 TF formula [Robertson et al.
1994; Robertson & Walker 1994]), which mainly affects the
scoring function, and (2) the coefficients in Rocchio vector
learning [Rocchio 1971] (static, fixed coefficients vs.
dynamic coefficients that depend on the (growing) number
of positive examples).

In the following sections, we first describe the new
evaluation system we used for our TREC-8 experiments.
We then describe our adaptive experiments and analyze the
adaptive filtering results. In Section 4, we briefly discuss
our batch filtering runs.

2 The CLARIT Adaptive Filtering Evaluation
System (CAFES)
Our system for TREC-7 was essentially based on the

retrieval-oriented CLARIT toolkit, which formed the core of
all our past TREC efforts [Evans & Lefferts 1994; Milic-

Frayling et al. 1998; Zhai et al. 1999]. Though powerful, this
toolkit did not allow for easy implementation of profile-
specific updating, and offered only limited experimental
flexibility in other respects.

Hence, to support the experiments we intended for the
current TREC evaluation, we built an entirely new
evaluation system only minimally dependent on the
CLARIT toolkit—the CLARIT Adaptive Filtering Evaluation
System (CAFES). Like most of CLARIT, CAFES is based on
the standard vector space model, and written in C++. It
consists of many independent modules that interact with
each other, allowing maximum flexibility and efficiency in
experiments. The algorithms that are implemented include
the standard vector-space retrieval algorithms [Salton 1988],
supporting various kinds of TF formulas, dot-product
similarity measure, the cosine measure, and Rocchio term
vector learning [Rocchio 1971], as well as our new delivery
ratio and beta-gamma threshold regulation methods [Zhai
et al. 1999]. On the downside, the system contains as of yet
no support for the use of CLARIT constraints and
subdocuments (used for example in our TREC-8 Ad Hoc
submission).

The Rocchio learning algorithm is implemented with the
flexibility of using different TF weighting methods. Clearly,
the choice of TF may affect the centroid vector. Although it
is not a-priori clear whether Rocchio learning is compatible
with the BM25 TF formula, which was derived based on a
probabilistic retrieval model, in practice they appear to
work together very well. The Rocchio learning method
makes it very easy to update a vector at any time: since we
maintain a vector accumulator over time, we simply need to
compute the average of the accumulator and then merge the
new vector with the original profile vector. Note that, as we
allow the IDF to be updated over time, the incremental
Rocchio accumulator could contain the sum of document
vectors weighted using different IDFs.

The system offers the option to normalize each example
document vector (i.e., scale the vector to unit length) before
adding it to the accumulator. This gives each example an
equal weight in its contribution to the angle/direction of the
centroid vector. Without the normalization long vectors
dominate, which may be undesirable in some situations,
such as when a document treats multiple topics.

When the selected terms are merged into the existing
profile vector, the truncated vector formed by the selected
terms and the existing profile vector are both first
normalized to unit length, after which the new term vector
can be rescaled by a parametrized coefficient (the merged
weight will be the sum of the original weight (or zero, if the
term does not exist in the original profile) and the new term
weight multiplied by this coefficient). We provided two
ways to assign this coefficient: (1) constant and uniform for
all profiles or (2) dynamic, i.e., depending on the number of
examples from which the terms are extracted. The dynamic

formulais: C = Cp,*a+(1-a)* Cpay » Where a=e N The
dynamic coefficient is essentially a weighted average of a
minimum coefficient and a maximum coefficient in which
the weight is determined by the number, N, of examples
used and a parameter 8 that controls the “sensitivity” to N.

When B is zero,a=1,s0 C =C_;,. When 8 is non-zero, it
determines how quickly the coefficient approaches
C =C,x asthe number of examples increases.

To estimate an initial profile threshold, we implemented
the “delivery ratio” method, which was described in [Zhai
et al. 1999]. The idea is to set the initial threshold in such a
way that the filter can be expected to accept a given ratio or
proportion of documents from the stream. The acceptance
ratio, or delivery ratio, essentially serves as a substitute for a
utility function in the absence of relevance judgments. The
actual threshold is estimated by using a small reference
corpus.

For threshold updating we implemented the beta-gamma
adaptive threshold regulation method proposed in [Zhai et
al. 1999]. This method selects a threshold, 6, by
interpolating between an “optimal” threshold, &y, and

“zero” threshold, 6,y,. The optimal threshold is the

threshold that yields the highest utility over the
accumulated training data, given the current profile term
vector. The zero-threshold is the highest threshold below
the optimal threshold that gives a non-positive utility over
the training data under the assumption that all documents
that were rejected are non-relevant. The interpolation factor
is sensitive to the number of judged examples used for
computing the threshold. The actual formula is

6 = A + (L= 0oy , Where a= S+ (1- fle™™ .

The parameter [corresponds to a correction factor for the
training score bias, and y expresses our confidence in the
optimal utility threshold based on the number of judged
examples, N, to compute it.

The beta-gamma threshold regulation method requires the
scoring of the training examples. Doing this for all of the
examples would be very expensive, but fortunately this is
not necessary. All we need are the documents with scores
either above or closely below the threshold point. Thus, in
CAFES, we maintain a “sample set” of training documents
for precisely this purpose. Specifically, we keep track of
only the documents above a reference threshold, usually a
certain fraction of the regular threshold (e.g., one half).
Naturally, when a threshold is updated, the reference
threshold will also be updated. The effect is that the sample
for threshold training consists of all the documents above an
adaptive reference threshold. To control the use of sample
documents, we introduced a few additional parameters. For
example, we can restrict the actual sample used for
threshold training to those that are not “K-documents
older” than the current document, unless there are too few
samples, where “too few” is defined by other parameters.
This gives us the flexibility to emphasize recent documents
in certain ways.

One of the most significant features of CAFES is that it
allows profile-specific anytime updating. The updating
time is an important parameter in profile-specific updating.
In our system, a profile (both the vector and the threshold)
will be updated when one of the following conditions is
satisfied:

1. It has accepted enough new documents, where enough
is defined by a parameter.

2. It has not been updated for a long time, where the
length of time elapsed is specified by a parameter. This time
elapse will be referred to as the maximum update delay
(MUD).

The idea behind the first condition is to allow us to control
the update timing based on the amount of feedback
information, which can be measured by the number of

documents accepted for the profile. Alternatively it can be
measured by the number of relevant documents accepted,
which we will explore in the future. The idea behind the
second condition is to address the problem of under-
delivery (e.g., when the initial threshold is set too high), by
allowing a profile to update even if it has not accepted any
documents. These two conditions also allow us to move
smoothly between the uniform/chunk-based updating
strategy and the profile-specific strategy. If the “enough”
parameter is very big, then the update timing is similar to
chunk-based or uniform updating, as every profile is
updated after the same interval, determined by the elapsed
parameter. If the lapse is very long, on the other hand, then
the updating time is determined solely by the amount of
delivery for each profile, which provides profile-specific
timing for updating.

Of course, the threshold must be updated whenever the
term vector is updated, because the old threshold (trained
using the old vector) would no longer be compatible with
the new vector.

3 Adaptive Filtering Experiments

3.1 Experiment design and official submissions

Preprocessing. All documents, including the testing
documents and the reference documents, and all topic
descriptions are pre-indexed by all the single words
occurring in noun phrases as well as all the two-word noun
phrases, as recognized by the CLARIT Parser [Milic-
Frayling et al. 1998]. Preprocessing only eliminated the
“<PROFILE>”, “<DATE>”, “<PUB>”, and “<PAGE>"
fields, so the controlled-language fields remained in the
corpus and were used for indexing.

IDF Statistics. The IDF statistics are needed for term
weighting, which affects both scoring accuracy and Rocchio
term vector learning. Because we cannot use IDF statistics
collected from the testing documents, we constructed our
initial IDF statistics from all the 1991 Financial Times
documents (FT91) (~14MB, 5368 documents), which are not
part of the testing set. Ideally, we would like to update the
IDF statistics by gradually mixing the initial statistics with
the term counts in the actual documents seen over the
stream, as the system sees more and more documents.
However, our preliminary experiments on AP and FBIS
data indicate that doing so does not seem to have as much
impact on the overall filtering performance as other factors.
Hence, we decided to use the initial IDF statistics
throughout.

Initial profile term vector. An initial profile vector is
built from the original topic description (using all fields).
The profile terms are assigned TF-IDF weights. There are
two different TF formulas that we tried. One is the standard
maximum frequency normalized TF score (MaxNorm TF)
used in the CLARIT system (i.e., 0.1 + 0.9 x TF(t)/MaxTF(d))l.
The other is the BM25 proposed by Robertson and
colleagues [Robertson et al. 1994; Robertson & Walker 1994].
For the BM25 TF formula, since we cannot use the average
length as computed over the testing documents, we simply

' We changed the constant coefficients for this TF formula with
respect to the ones used in earlier CLARIT experiments (0.5 + 0.5 x
TF(t)/MaxTF(d)) because we found this to work slightly better in
the context of the CAFES system.

set it as a parameter. In all the BM25 TF experiments, the
average document length is set to 1,000 (tokens). The
parameter k and b in BM25 are set to 1 and 0.5, respectively.
The length for the query BM25 formula is set to 20.

Scoring algorithm. Two document profile matching
formulas are considered: one is the cosine measure, and the
other is simply the dot product. Since only the dot product
makes sense for the BM25 TF, we always use dot product
when the TF formula is BM25. When the TF formula is
MaxNorm, we always use the standard cosine measure.

Initial profile threshold. We use the same initial
threshold setting algorithm and the same parameter value
as we used in TREC-7: the delivery ratio threshold method
with a delivery ratio of 0.0005. That is, our initial threshold
corresponds to accepting one out of every 2,000 documents.
The initial threshold is estimated based on the FT91 data.

Threshold updating. We use the same threshold
updating algorithm as we did in TREC-7: the beta-gamma
threshold regulation algorithm. Beta was always set to 0.1.
We chose a value of 0.1 for gamma (instead of the 0.05 we
used for TREC-7), because, in our preliminary experiments
with AP and FBIS data, this was found to be a more robust
setting. The reason for this difference might be that, instead
of using examples only from the previous chunk, we now
used all the past examples for each profile for threshold
updating. In other words, the meaning of N in our beta-
gamma method has changed slightly. Threshold updating
involves the use of all past examples up to 1,000 samples. If
more than 1,000 samples are used, we forget any sample
older than 30,000 documents. The sample is collected by
using a second reference threshold, which is set to half of
the regular threshold. The profile-specific updating time is
either of two or four new accepted documents. A profile
also must be updated if it has not been updated for more
than 3,000 documents in the testing stream.

Term vector updating. We use Rocchio term vector
learning, but only positive examples are used to expand the
profile. Specifically, a centroid vector accumulator is
updated whenever a profile accepts a relevant document.
The terms in an example document are weighted by TF-IDF
weighting. The TF formula is the same as the TF formula
used in scoring. So, if BM25 is the TF formula used for
scoring, then it is also used to weight the terms for the
purpose of Rocchio learning. When the profile term vector
is to be updated, this centroid accumulator is used to select
the top 20 highest scored terms to add to the original profile.
We tried two different methods for setting the coefficient:
(1) fixed coefficient (0.1) and (2) dynamic coefficient
(Cmin=0.1, Cmax=2, b=0.1) [see Section 2].

Official submissions. We submitted six runs for the
adaptive filtering task, including four runs optimized for
LF1 and two other runs optimized for LF2 and NF1
respectively. The parameters used in each run are shown in
Table 1.

Run TF Rocchio coeff Updating

formula Interva
CL99afL1a MaxNorm Dynamic 4
CL99afL1b BM25 Dynamic 4
CL99afL1c BM25 Dynamic 2
CL99afL1d BM25 Static 2
CL99afL2 BM25 Static 2
CL99afN1 BM25 Dynamic 2

Table 1. Official runs

3.2 Results Analysis
3.2.1 Effect of frequent profile-specific updating

The updating time can be an important parameter in
adaptive filtering. Intuitively, we want to update as
frequently as possible to take advantage of any feedback
information as early as possible. However, with little
training information, overly frequent updates may mislead
the system, as the training algorithm may show divergent
behavior. In our preliminary experiments on AP and FBIS
data, we compared uniform updating at every N documents
with (in addition) profile-specific updating at every new
accepted document. We observed that profile-specific
frequent updating is most beneficial for avoiding over-
delivery, and usually does not hurt the performance of
good-performing topics. Thus, we adopted profile-specific
updating for all our official runs, but we varied the
updating time. Specifically, CL99afL1b and CL99afL1c are
essentially the same, except that CL99afLlb updated
profiles every four new accepted documents, while
CL99afL1c updated profiles every two new accepted
documents. Since the only difference is the use of different
updating intervals, the comparison of these two runs will
show the effect of frequent profile-specific updating. The
results are shown in Table 2.

Time LF1(Int2) #Int2>Int #Int2<Int4 #Int2=Int4
92 112 23 2 25
93 0.44 3 Q 47
94 0.42 4 1 45
92-94 1.98 23 2 25

Table 2. Effect of frequent profile-specific updating

It is clear that more frequent updating consistently
improves performance. We also see that the greatest
difference comes from the difference at the time period 92.
For periods 93 to 94, there is no difference for most topics.
We suspect that this is largely the effect of stopping over-
delivery.

Figure 1 shows the effect of different updating intervals (1,
2, & 4) when the MUD constraint is not used.

LFL increase due to more frequent threshold updating (based on amount of delivery)

w© 391

ollgepn af| 11 Jﬂnnnﬂﬂnrﬂ mﬂ”nﬂ,ﬂmﬂ.ﬂ.&ﬂnﬂnnﬂnﬂ Fmﬂ,ﬂ,ﬂ,ﬂ,mﬂm,ﬂn

Topic (in the descending order of interval 4 LF1value)

Figure 1. Effect of updating frequency on LFI

We see that a high updating frequency is generally better.
Even so, the spectacular increase for topic 391 by 89 points
for LF1 from an updating interval of 4 to one of 2 is
unexpected. After examining the experiment trace, we
found that this is because when the interval is 4, the
threshold was raised to a high value quite early in the
stream leading essentially to a shut-off of this profile.
Specifically, at the second updating point (i.e., after
accepting 8 documents), the training set contained two very
high-scoring non-relevant documents, and this boosted the
threshold up to a value at which it rejected almost all of the
subsequent documents. With an interval of 2, the updating
points were different, the slightly different threshold
accepted a few more documents, and though the threshold
was still high, it was low enough for the beta-gamma
algorithm to be able to regulate the threshold within an
appropriate range. This example shows that with frequent

updating the performance is more sensitive to the initial
training examples, and that unreliable initial feedback
information may cause long-term damage to the profile. It
also warns us to be careful about interpreting the results,
i.c., the large 'improvement’ for topic 391: indeed, had we
updated the profile with a much lower frequency, we would
not have suffered from the accidental bias in the training
sample at all!

We also looked at the effect of the Minimum Update
Delay. We observed that while using the MUD seems to
have a positive effect when the interval is 2 or 4, it generally
has a negative effect when the interval is 1. Our original
intent of using the MUD for coping with under-delivery did
not work very well.

3.2.2 Effect of TF weighting

The use of different TF formulas affects the filtering
performance in several ways: (1) through the scoring
function, which affects score range and ranking accuracy
and (2) through vector updating, as different terms might be
selected or a term may receive a different weight. The
difference in score range may also affect the effectiveness of
threshold setting, since the parameters in our threshold
method might be sensitive to the actual score range. Since
we found the BM25 TF formula to be generally more
effective for retrieval, we were curious whether it would
also improve filtering performance. Some of our official
submissions were designed to measure this effect.
Specifically, CL99afLla (MaxNorm TF) and CL99afL1b
(BM25) differ only in the TF formula they use. (Note that
this also implies the use of different similarity measures, as
the BM25 TF formula is best used with the dot product
[Robertson & Walker 94], whereas the MaxNormTF formula
is used with the cosine similarity measure.)

The results of the comparison of CL99flLla and
CL99afL1b are shown in Table 3. In the table, we have
shown the number of topics for which one TF formula is
better than, the same as, or worse than the other. We also
show the difference of average utility.

Time LF1(BM25)- #BM25> #BM25< #BM25=
Period LF1(MaxNorm) MaxNorm MaxNorm MaxNorm

92 -0.64 19 27 4

93 0.3 12 9 29

94 0.62 9 6 35

92-94 0.28 20 24 6

Table 3. Topic count comparison between MaxNorm TF and
BM25 TF formulas

It appears that at the beginning (i.e., for 1992 documents),
MaxNorm outperforms BM25 both by average utility and by
topic count, but for the later time periods BM25 is better.
Overall for all three years of documents, BM25 is better for
the average LF1 utility, while MaxNorm is better for more
topics. We can also see that most of the difference results in
the beginning period. Indeed, for 93 and 94, there is no
difference at all for a majority of topics. There are a few
topics (e.g., 391) for which BM25 significantly outperforms
MaxNorm in all three periods.

It would be interesting to see if the TF formula has
contributed to the utility increase by producing a better
ranking. In other words, we want to know if there is a
correlation between the utility increase and the ranking
accuracy improvement.

In Figure 2, we show, for each topic, the increase of LF1
utility value (i.e., LF1(BM25) - LF1(MaxNorm)) over the

whole 92—94 period, along with the scaled increase in the
average precision, i.e.,
100 x (avg_pr(BM25) — avg_pr(MaxNorm))

Some topics were excluded because their average precision
was not very reliable (for those topics neither TF formula
retrieved more than three relevant documents over 92—94).
The average precision over all 50 topics is much better for
BM25 than for MaxNorm (0.26 vs. 0.19).

LFLdiff/ Scaled Avgpr difference vs. utility difference (LFL, 22:04)
100+(avg_pr diff)
80
=1L F1(BM25)-LF1(MaxNorm)
© R | 100" (avgPr(BM25)-avgPr(MaxNorm)) ‘

. /1
» r\ A o [}

ANV I ATV VAW, avAVI
D T

~40

Topic

Figure 2. Ranking accuracy and utility increase

The correlation between the increase of average precision
and the increase of LF1 utility is clear, but not perfect. In our
system, the TF formula has a more complicated influence
than just contributing to the scoring function, as it also
affects the Rocchio term vector updating. Further study is
needed to fully understand the effect of TF in filtering.
However, it is clear that a certain minimum ranking
accuracy is required if we are to expect positive utility
values. If this minimum cannot be achieved it is better (in
terms of utility) to return no documents at all.

3.2.3 Effect of vector updating

In our adaptive filtering model, updating the profile takes
two steps. First, the term vector is updated to improve the
ranking/scoring accuracy; second, the threshold is updated
to optimize the decision cutoff point. Presumably, the
(sparse) feedback information can benefit both wvector
updating and threshold updating. Howvever, it is not a-priori
clear that the score bias introduced by vector updating
(because of the training documents receiving a higher score)
as no negative effect on the effectiveness of threshold
updating. Thus, it is interesting to evaluate whether the
combination of vector and threshold updating improves the
performance over either component separately.

We compared the official run CL99afLla with an
unofficial run that is the same as CL99afL1a, except that no
vector updating was performed (i.e., only doing threshold
updating), and found that using vector updating leads to
occasionally significant changes in utility, which for some
topics even turned a negative utility to a positive one. This
suggests that the vector updating has indeed helped
improve the ranking/scoring accuracy and thus made it
possible to set a threshold to produce a positive utility.

3.2.4. Effect of dynamic Rocchio coefficient

One parameter in the Rocchio algorithm is the coefficient
applied to the positive centroid vector. This coefficient
controls how much weight we put on the centroid as
opposed to the original term vector constructed from the
topic description. Intuitively, we want to trust the centroid
more if the centroid is computed using more examples.
Thus, in some of our official runs, we tried a heuristic
dynamic coefficient that is greater when there are more
positive examples to learn from. Our official runs CL99afL1c

and CL99afL1d differ only in that CL99afL1d uses a fixed
coefficient (0.1), while CL99afL 1c uses a dynamic coefficient,
ranging from 0.1 to 2.0. The two runs are compared in
Figure 3 along with the corresponding difference in average.
We can see a certain correlation between them, but there are
also cases where a decrease in utility accompanies an
increase in average precision, indicating a possibly harmful
interaction between scoring and threshold updating.

LFlinc/avgprinc LF1lincrease and Scaled avg-pr
(*100)

1 == | F1 increase (CL99afL 1c-
CL99afL1d)

—*—100*(avgPr-increase)

. I
I

JAL A J.\Af\ e

\lrww “““““ “‘./

Topic

Figure 3. Utility difference vs. avg. precision difference

This effect may be due to the fact that a larger coefficient
tends to increase the score bias, as, indeed, the recent
training examples receive a higher weight in the centriod.
As a result, the trained threshold is too high. Thus, a higher
coefficient is less desirable from the point of view of
threshold learning, as any benefits resulting from the use of
an adaptive coefficient may be cancelled out. As evidence
to support this, we observe that the average number of
documents accepted for the dynamic coefficient is less than
that for a fixed coefficient (7.4 vs. 10 documents/topic).

4 Batch Filtering Experiments

Our batch filtering experiments were designed mainly for
validating our threshold updating mechanism. We did no
preliminary experiments, but instead simply copied the
parameters for threshold updating from our adaptive
filtering runs. The initial threshold was trained using FT92,
also with the same threshold setting parameters. To see
how much value our adaptive threshold setting algorithm
can add on top of initial training over FT92, we compared
the batch filtering results with an alternative LF1
experiment in which no updating of either vector or
threshold was performed over FT93-94. Updating turned
out to be better for 16 topics and less good for 19 topics. For
the remaining 15 topics there was no difference. The average
LF1 utility value is better for the updating run (CL99bfL1)
by 0.7.

This difference is disappointing, although, for some topics,
adaptive updating does in fact significantly increase
performance. For example, topic 389, exhibiting the largest
increase, jumps from 83 to 122. The updating run accepted
more documents for this topic than the run without
updating (44 vs. 31) suggesting that our initial threshold
may have been too high, and the adaptive updating helped
to lower it over time.

Unfortunately, our experimental setup had a few mistakes
with large consequences. For example, the runs were
unable to make use of the FT92 training examples during
the adaptive updating phase, and looked only at examples
collected from the testing stream (FT93-94). This problem
could explain the lack of benefit from adaptive filtering. In

addition, our run for LF2 used the wrong initial threshold
(optimized for LF1).

Even so, some conclusions and suggestions appear
warranted, based on an examination of those topics for
which the system performed adequately. One observation
is that our threshold setting may be generally too
conservative (too high). If this is the result of score bias
(artificially high score on the training documents), then
increasing the value of beta in the beta-gamma algorithm
should help here. Another possibility is to divide the
training data in two parts, one of which is used for vector
training, and the other for threshold setting. The penalty for
this approach, of course, is a less effective use of training
examples.

Many more analysis and experiments suggest themselves,
and they are on our list for future work.

5 Summary and Further Work

We explored two approaches to improving adaptive
filtering performance given the threshold setting algorithms
we proposed in TREC-7. First, we tried to allow more
frequent and profile-specific updating in the hope that this
would result in a more efficient use of the sparse examples
available in adaptive filtering. Second, we tried to improve
the other two filtering system components—the scoring
function and the term vector learning module—
independently, with the additional aim of gaining
understanding of how these two components interact with
the threshold component.

Our results show that the more frequent profile updating
does indeed consistently improve filtering performance.
Our results also show that the improvement of scoring and
term vector learning module generally leads to an
improvement of filtering performance, but the relationship
is more complex than can be understood from these
experiments alone. One clear conclusion is that term vector
updating increases the benefit of threshold updating and
results in an often significant increase in utility. The effect
of the TF formula is less clear: some topics are more strongly
affected than others, and differences occur both in scoring
and term vector learning. Finally, the term coefficients used
in0 Rocchio learning do not seem to have a great impact on
performance.

Based on these experiments and our experiments in TREC-
7, we believe that our threshold setting and updating
approach is effective, robust, and practically useful. In fact,
our method of adaptive filtering is very general. Our
approaches to establishing thresholds—both initial
thresholds (using delivery-ratio threshold setting) and
dynamically updated thresholds (using beta-gamma
threshold learning)—could be applied in any vector-space
filtering system and combined with any document-profile
scoring function, as well as any term vector learning
method. Moreover, our methods are also general enough to
work with any utility function, including non-linear utility
functions. An optimal choice of parameters may depend on
the context, but we have reason to believe the general
approach is robust.

In our future research, we intend to explore other possible
threshold updating methods, e.g., based on logistic
regression. We also hope to pay some more attention to the
batch filtering task, and to study how to optimize the beta-
gamma threshold regulation method in that setting.

References

[Evans & Lefferts 1995] Evans, David A., and Robert G.
Lefferts, “CLARIT-TREC-Experiments”. Information
Processing and Management, Vol. 31, No. 3, 1995, 385-395.
[Hull 1999] Hull, David A., “The Trec-7 Filtering Track:
Description and Analysis”. In Voorhees, E.M., and Harman,
D.K., (Editors), The Seventh Text REtrieval Conference (TREC-
7). NIST Special Publication 500-242. Washington, DC: U.S.
Government Printing Office, 1999, 33-56.

[Milic-Frayling et al. 1998] Milic-Frayling, Natasa,
Chengxiang Zhai, Xiang Tong, Peter Jansen, and David A.
Evans, “Experiments in Query Optimization, the CLARIT
System TREC-6 Report”. In Voorhees, E.M., and Harman,
D.K. (Editors), The Sixth Text REtrieval Conference (TREC-6).
NIST Special Publication 500-240. Washington, DC: U.S.
Government Printing Office, 1998, 415-454.

[Robertson et al. 1994] Robertson, Steve E., et al. “Okapi at
TREC3”. In Harman, D.K., (Editors), Overview of the Third
Text REtrieval Conference (TREC-3). NIST Special Publication
500-226. Washington, DC: U.S. Government Printing Office,
1994, 109-126.

[Robertson & Walker 1994] Robertson, Steve E., and S.
Walker, “Some simple effective approximations to the 2-
Poisson model for probabilistic weighted retrieval”. In:
Croft, W.B. and van-Rijsbergen, C.J., (eds), SIGIR’94, Dublin,
1994, 232-241.

[Rocchio 1971] Rocchio, JJ., "Relevance Feedback in
Information Retrieval”, In: Salton, Gerard (Editor), The
SMART Retrieval System, Prentice-Hall, Englewood NJ.
1971, 313-323.

[Salton 1988] Salton, Gerard, Automatic Text Processing,
Addison-Wesley, Reading, MA, 1988.

[Zhai et al. 1999] Zhai, Chengxiang, Peter Jansen, Emilia
Stoica, Norbert Grot, and David A. Evans, “Threshold
Calibration in CLARIT Adaptive Filtering”, In Voorhees,
E.M., and Harman, D.K., (Editors), The Seventh Text REtrieval
Conference (TREC-7). NIST Special Publication 500-242.
Washington, DC: U.S. Government Printing Office, 1999,
149-156.

