Mercure at trec9: Web and Filtering tasks

M. ABcHICHE, M. BouGgHaNEM, T. DKAKI, J. MoTHE, C. SoULE Dupuy, M. TMAR

IRIT-SIG
Campus Univ. Toulouse I11
118, Route de Narbonne
F-31062 Toulouse Cedex 4
Email: trec@irit.fr

1 Summary

The tests performed for TREC9 focus on the Web and Filtering (batch and routing) tracks.
The submitted runs are based on the Mercure system. For one of the filtering routing runs,
we combine Mercure with mining text functionnalities from our system Tétralogie. We also
performed some experiments taking hyperlinks into account to evaluate their influence on the
retrieval effectiveness, but no runs were sent.

Web: We submit four runs in this track. Two elements were tested: a modified Mercure
term weighting scheme and the notion of the user preference on the retrieved document
were tested.

Filtering (batch and routing): our main investigation this year concerns the notion of
non-relevant profile in a filtering system. The filtering consists on, first filtering the doc-
uments using a relevant profile learned from relevant documents, second re-filtering the
selected documents using non-relevant profile learned from non-relevant documents so
that non-relevant documents accepted by the relevant profile are rejected. This notion
of non-relevant profile was introduced by Hoashi [6] in an adaptive system whereas we
use this technique for a batch system.

2 Mercure model

Mercure is an information retrieval system based on a connectionist approach and modeled
by a multi-layered network. The network is composed of a query layer (set of query terms),
a term layer (representing the indexing terms) and a document layer [4],[3].

Mercure includes the implementation of a retrieval process based on spreading activation
forward and backward through the weighted links. Queries and documents can be used either
as inputs or outputs. The links between two layers are symmetric and their weights are based
on the tf — idf measure inspired from the OKAPI and SMART term weightings.

- the query-term (at stage s) links are weighted as follows:

¢ = % if (nqu > qtfui) 1)
w gt fu; otherwise

Notations:

qq(;): the weight of the term ¢; in the query u at the stage s,
qt fui: the query term frequency of ¢; in g,

ngy: query length (number of terms) of ¢,

- the term-document link weights are expressed by:

Ufijx (hy + g log(£))
hs + hy * %+h5*tfij

g

Notations:

d;;: term-document weight of term ¢; and document d;
tfi;: the term frequency of ¢; in the document D;,

N: the total number of documents,

n;: the number of documents containing term ¢;,

h1, ha, hs and hy: constant parameters,

Ay: average document length.

The query evaluation is based on spreading activation. Each node computes an input and
spreads an output signal. The query modification is based on relevance backpropagation. It
consists in spreading backward the document relevance from the document layer to the query
layer [3].

2.1 Query evaluation

A query is evaluated using the spreading activation process described as follows:

1. The query u is the input of the network. Each node from the term layer computes
(

an input value from this initial query: In(t;) = ¢,;s) and then an activation value:
Out(t;) = g(In(t;)) where g is the identity function.

2. These signals are propagated forwards through the network from the term layer to the
document layer. Each document node computes an input: In(d;) = EiTzl Out(t;) x d;;
and then an activation , Qut(d;) = g(In(d;)).

The set of retrieved documents, Qutput, (Out(dy), Out(dy), ...,Out(dy)) is then ranked
in a decreasing order of the activation value.

2.1.1 Query modification based on relevance backpropagation

The top retrieved documents are judged and a relevance value corresponding to the user
preference is assigned to each document (positive for relevant documents, negative for non-
relevant documents and nil for non-judged documents). These values are used to compute
the DesiredQutput vector.

DesiredOutput = (rely,rely, ... rely), rel; =
Coef _rel
Nb_Nrel

Coef rel

Nirel for relevant document and rel; =

for non — relevant document

1. This output is in fact considered as an ”input” in the back-spreading process and
is presented to the document layer. Each document node computes an input value,
In(d;) = rel; and then an activation signal, Out(d;) = g(In(d;)).

2. This activation is back-spread to the term layer. Each term node computes an input
value, In(t;) = Eﬁ-\le(dﬁ * Out(d;)) and then an output signal, Out(t;) = g(In(t;)).

3. Finally, the new query-term links corresponding to the new query are computed as
follows: QU = (g{57Y, g5, ..y gl5) with ¢{) = M, + g3 + My Out(1;)

ut u

Notations:

T: the total number of indexing terms,

N: the total number of documents,

qq(;): the weight of the term ¢; in the query u at the stage s,

t;: the term ¢;,

d;: the document d;,

d;;: the weight of the link between the term ¢; and the document d;,
doclen;: document length in words (without stop words),
avg_doclen: average document length, ¢f;;: the term frequency of ¢; in the docu-
ment D;,

n;: the number of documents containing term ¢;,

gt f: query term frequency,

ng: query length (number of terms),

M, and Mpy: tuned and determined by a series of experiments and set to M, = 2
and M, = 0.75.

Coef_rel (Coef_Nrel): user preference positive value for relevant document and
relevant value for negative document.

3 'Web Track Experiment

3.1 Web methodology

We tested the relevance backpropagation strategy using a user preference. In fact, we consider
that the relevance of the documents are not all the same, but depends on the user satisfaction.
In Mercure system, the user satisfaction is represented by the coef_rel parameter assigned
by the user. Because the user does not judge the document, in the pseudo relevance back-
propagation, the top retrieved documents are assumed as relevant. The “user” preference is

then assigned to a document according to its rank in the retrieved set. For the trec9 exper-
iment, the top 12 documents were assumed to be relevant. The user preference is computed

as follows :

e coef_rel = 1 for the documents ranked from 1 to 5

e coef_rel = .75 for the documents ranked from 6 to 10

e coef_rel = .5 for the documents ranked from 11 to 12

3.2 Results

Four runs based on content only were submitted:

1. Mer9Wt0: simple search using the title field

2. Mer9Wt1: title field 4+ pseudo-relevance feedback based on Mercure relevance back-

propagation.

coef _rel =1

The top 12 retrieved documents are assumed to be relevant and the

3. Mer9WtMr: title field + pseudo-relevance feedback based on Mercure relevance back-

propagation.

coe [_rel are computed using the user preferences as described above.

4. Mer9Wind: simple search using the title4+Description+Narrative fields.

The top 12 retrieved documents are assumed to be relevant and the

Unfortunately, the official results were wrong because of a mistake in our indexing script.
This explains in part the bad results obtained this year by Mercure comparing to those ob-
tained in the previous TREC. This will be modified and the corrected results will be integrated
in the final paper. Consequently to the problem encountered with the indexing process, the
experiments carried out by taking hyperlinks into account could not be done in time and will
be included in the final paper too.

Type Run average precision | Exact precision
Mer9Wt0 title simple search 0.0996 0.1274
Mer9Wt1 title +simple pseudo-rb 0.0114 0.0242
Mer9WtMr | title+simple pseudo-rb basen user preference | 0.0154 0.0307
Mer9WtMr | TDN fields +simple serach 0.0140 0.0295

Table 1: Web component results - 50 queries

4 Batch and Routing Experiments

The batch and routing experiments were performed using Mercure system. The profiles were
learned using the same learning algorithm as before: the relevance backpropagation. The rel-
evance value assigned to each document was used as user preference (2 and 1). It corresponds
to C'oef_rel in the relevance backpropagation algorithm.

The filtering algorithm starts with an initial query, built from all the topic parts, and its
OHSUS87 relevance judgements. A pool of queries based on the learning method was then
selected. The OHSUS88-91 documents were used as test data.

4.1 Batch Filtering

The profiles in the batch task are learned using the relevance backpropagation method. Two
techniques are tested to be compared. The first one corresponds to filtering documents using
learned (positive, relevant) profiles. The second represents filtering documents using relevant
and non-relevant (negative) profiles. These methods are detailed below. We use the phrase
“positive profiles” for relevant learned profiles, and “negative profiles” for non-relevant profiles.
The TREC standard output file of each query was analyzed to build an output file containing;:

< topic >< func >< value >< thresh >< rank >< prec >< recall >< method >

In this section, we detail both the batch filtering methods and the results.

4.1.1 Batch filtering using positive profiles

As it has been done in [7]. The document activation weights which maximizes the utility
function were found and selected as thresholds. Then the queries corresponding to these
thresholds were selected and tested on a set of test documents. The documents weighted by
values higher than the threshold were selected for the corresponding query.

In the first run (mer9bl), we build profiles by learning using relevance backpropagation on
the training dataset, then we apply them on the test dataset.

The following algorithm is used:

For each profile P
1. evaluate P on the training dataset
2. select top 1000, let resulty be the obtained document ranked list

3.2=1

=

repeat

until ¢ = maz _iteration
5. for each r € {1...1000}, ¢ € {0, 1,...maz_iteration}

(a) result;. contains top r documents from result;

(b) evaluate result;. on utility [T9U]

6. select profile P; such as 3r € {0,1...max_iteration} where result;. gives the best
utility [T9U] value

7. apply F; on the test dataset, test_result; is the obtained document ranked list

8. submitted contains documents in test_result; having a rsv at least equal to the rsv of
the r* document

9. submit the selected list submitted

In the experiments, we carried out relevance backpropagation twice. We found that this
number of iterations was enough to learn the profile.

We computed the utility on the top 1000 documents only as this set is likely to contain most
of the relevant documents.

4.1.2 Batch filtering using positive and negative profiles

The second run (mer9b2) is based on negative profile building. We built -in addition to the
positive profile- a negative profile and applied both positive and negative profiles on the test
dataset as detailed below.

A negative profile is a profile aiming at excluding non-relevant documents from the top ranked
ones. A document is filtered when it is potentially relevant compared to the positive profile,
and non-relevant compared to the negative profile. Generally, negative profile is not provided
by the user, but the system can build it by learning. It is built starting from the non-relevant
selected documents.

In our experiments, negative profiles are built by relevance backpropagation. We select the
top 50 non-relevant documents from the filtered ones resulting from training documents eval-
uation. These documents are used as relevant documents in a relevance backpropagation
process, the resulting learned profile is considered as the negative profile. As there is no
initial negative profile, we use different values of Ma and Mb: we assign 0 to Ma and 1 to
Mb and thus, the weight assigned to each term in the negative profile is its output activation
done by this relevance backpropagation process.

Two values are then learned using the training data set, @ and b, used in filtering documents
using positive and negative profiles. « is a multiplicative value of the relevance threshold, it
allows to select more documents, so it is less than 1. b allows to select documents which [posi-
tive profile rsv/negative profile rsv] ratio is higher than b, so it defines [negative rsv/positive
rsv] ratio threshold. Batch filtering document process using negative profiles is described as
follows:

For each document D;

1. compute an rsv value for the positive profile: rsv,(D;)

2. if rsv,(D;) > a * threshold

(a) compute an rsv value to the negative profile: rsv,(D;)

(b) if rsv,(D;) > b * rsv,(D;) filter document D; else reject document D
else reject document D;

We varied a in an interval raised by 1 and b in an interval undervalued by 1, and retained
the values giving the best utility-[7'9U] value. @ should be less than 1 in order to select more
documents, and b is more than 1 to filter documents which are most likely to be relevant to
the positive profile and non-relevant to the negative profile. This algorithm was processed on
the test documents resulting from mer9bl run. Note that if ¢ = 1 and b = 0, mer961 and
mer9b2 are the same.

In our experiments, we selected as positive profiles the profiles applied to mer9b1 run, and
carried out relevance backpropagation using top 50 non-relevant documents from the doc-
ument ranked list resulting from evaluating these profiles on the training dataset. « and b
values were then learned on the dataset. Finally, positive, negative profiles, rsv threshold, a
and b were applied on the test dataset.

4.1.3 Batch filtering results

Table 2 lists the comparative batch results on utility-[7'9U].

TREC batch filtering
Run > median | = max | score =0
mer9bl 38 10 5
mer9b2 22 5 0

Table 2: Comparative batch filtering results

It can be seen that in both mer9bl and mer9b2 runs the results are quite good, 13 best

queries in the first run and 7 in the second run. For 5 queries, no documents were retrieved
using positive profiles only, whereas documents are retrieved for these queries using positive
and negative profiles.
Batch experiments have been performed to show the effectiveness of using negative profiles.
Despite better results using positive profiles only, the first results using negative profiles are
promising. Using negative profiles on the training documents improve results for many values
of @ and b. The best values were chosen and applied on the test documents. Future work
will be devoted to taking into account other parameters in order to obtain significant results
when using negative profiles.

4.2 Routing task

We experiment two methods in the routing track:

e using a similar method then in the batch filtering track

e using the results of a factorial correspondence analysis applied to a sub-collection

In the first method, the queries having the best average precision in the training dataset were
selected as routing queries, and are applied on the test documents.

The second method we experiment expands each query using the training document set
before it is sent to Mercure. To expand the query, we first performed a search on the training
document set and selected the top ranked documents. Then a list of the most representative
terms -either single terms or phrases- is extracted from this sub-collections. Once selected,
the list of terms is used to build a crossing matrix that crosses the terms and the documents:
M = [g;*l;;] where [;; is a local weight that reflect the importance of term ¢ within document
7 and g; is a global weight that reflect the importance of term ¢ within the sub-collection
of documents. A Correspondence Factorial Analysis (CFA) [1][2] is then performed on the
matrix and the relevant factorial axes are selected. A factorial axis is considered as relevant
if it contributes to relevant documents. The terms are then re-ranked according to their
contribution to the selected factorial axes. The top ranked terms are used to expand the
query after altering their weight using the cosines of the angles between them and the relevant
documents within the factorial space.

The main purpose of this method is to evaluate the use of the CFA to find out the dimensions
-parts- of factorial space that are characterized by relevant documents and then to find what
terms contribute most to those dimensions.

4.2.1 Extraction of the sub-collection

CFA is about orthogonal factorization and singular value decomposition of a square matrix
which dimension is the collection document number. Almost all the algorithms used to achieve
these factorization and decomposition are iterative and very time consuming. The overall time
they take mainly depends on the matrix dimension. For this reason we chose to perform the
analysis on a sub-collection rather than on the entire training collection. The sub-collection
contains top ranked documents returned by a first search using the Vigie[5] system. This
system includes the stop word removal and the Porter stemming.

4.2.2 TItems extraction

In order to select terms, we use the term weight presented in the OKAPI system [8]

tf*log(—'l'—N;_fo.g'E’)

25(0.25+0.75x(-2L) +¢ f

Ww;; =

where:

N is the collection document number

n is the number of documents containing the term i

tf is the term frequency within the document j

dl is the document length -size-

avdl is the average document size

the weights are calculated for each pair of term/document and each term is associated to its
second highest associated weight so that we can rank the terms and select the top of them.
This means that the selected terms are representative of at least two documents.

4.2.3 Terms re-ranking strategy and selection

The principal goal of the method is to expand the topic -query- by adding new terms and
modifying the weights of the existing ones. The terms added are the ones that contribute the
most to the factorial axes related to relevant documents. In other words the axes to which the
relevant documents contribute highly. The top ranked terms are used to expand the query.
Using this method, a term can be added more than once. The new query is constituted of
new terms and already existing terms.

The weight of new terms is calculated as bellow: w; = K * p; * Max;cos(T;, D;)

The weight of the already existing is calculated as bellow:

Wi = W; old * K xp; * M(L:L‘]'COS(TZ', D]')

K is a constant that depends on the number of terms and documents,

p; is the number of time term T} is selected to added to the topic,

w; 14 is the initial weight of term 77,

(T3, D;) is the angle formed by relevant document D; and term 7; within the factorial space.

4.2.4 Routing results

Table 3 shows the routing results at average precision.

TREC Routing
run = maz | > median | AvgP
mer9Jrl 6 38 0.235
mer9r2 0 20 0.185

Table 3: Comparative routing results at average precision

In average, mer9rl obtained better precision results than mer9r2.

The average precision obtained in mer9rl is slightly lower than the average precision ob-
tained in TRECS. It can be seen that using the relevance values as user preferences improves
routing results. Thus results could probably be improved more by assigning different rele-
vance values depending on documents.

The results of 10 of the queries that obtained equal or better results than the average using
the second method (run mer9r2) are higher than the one of run mer9rl. The combination of
the two methods has to be explored further.

References

[1] J. P. BeEnzECRI Correspondence Analysis Handbook, MARCEL DEKKER ED., NEW
YORK, 1992.

[2] M. W. BERRY, Z. DrMAC, E. R. Jessup Matrices, Vector Sparces, and Information
Retrieval IN STAM REVIEW VoL. 41. No 2, pp 335-362, 1999.

[3]

M. BouagHANEM, C. CHRISMENT & C. SOULE-DUPUY, Query modification based on rel-
evance backpropagation in Adhoc environment, INFORMATION PROCESSING AND MAN-
AGEMENT, 35(1999)121-139 AprIL 1999.

M. BougHANEM, T. DKAKI, J. MOTHE & C. SoULE-DUPUY, Mercure at trec7, PRO-
CEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON TEXT RETRIEVAL TRECT7,
E. M. VoorHEEs AND HarmaN D.K. (Ep.), NIST SP 500-236, NOVEMBER 1998.

T. Dkaki, B. DousseT, J. MOTHE Analyse d’informations issues du Web avec Tétralo-
gz'e IN PROCEEDINGS OF THE VEILLE STRATE’]GIQUE SCIENTIFIQUE ET TECHNOLOGIQUE
CONFERENCE, PP 159-170, 1998.

K. Hoasni, K. Marsumoro, N. INoue, K. HasHiMOTO Document filtering
method using non-relevant information profile PROCEEDINGS OF THE ACM/SIGIR,
ATHENS,GREECE JuLy 2000

S. ROBERTSON AND AL Okapi at TREC-6, PROCEEDINGS OF THE 6TH INTERNATIONAL
ConNFERENCE ON TExT RETRIEVAL TREC6, HARMAN D.K. (Ep.), NIST SP 500-
236, NOVEMBER 1997.

S. E. ROBERTSON, S. WALKER Okapi/Keenbow at TREC-8 IN PROCEEDINGS OF THE
TREC 8 CONFERENCE, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY,
1999.

10

