
The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 41–50

DIMwid — Decoder Inspection for Moses
(using Widgets)

Robin Kurtz, Nina Seemann, Fabienne Braune, Andreas Maletti
University of Stuttgart, Institute for Natural Language Processing

Pfaffenwaldring 5b, D-70569 Stuttgart, Germany

Abstract
The development of accurate machine translation systems requires detailed analyses of the
recurring translation mistakes. However, the manual inspection of the decoder log files is a
daunting task because of their sheer size and their uncomfortable format, in which the relevant
data is widely spread. For all major platforms, DIMwid offers a graphical user interface that
allows the quick inspection of the decoder stacks or chart cells for a given span in a uniform
way. Currently, DIMwid can process the decoder log files of the phrase-based stack decoder
and the syntax-based chart decoder inside the Moses framework.

1. Introduction

Statistical machine translation is the research area that concerns itself with the de-
velopment of automatic translation systems for natural language text using statistical
processes. The last decade saw significant progress in the translation quality due to
improved models and the availability of huge parallel text corpora. These corpora
are used to automatically obtain translation rules, which are then weighted according
to their usefulness. In this way, the translation model is obtained. In the decoding
step, this model is applied to an input sentence to produce a translation of it. Modern
statistical machine translation systems, such as G T, are widely used
nowadays and offer reasonable access to foreign languages. Naturally, the transla-
tions produced by those automatic systems are not perfect yet, but the gist can often
be understood.

© 2013 PBML. All rights reserved. Corresponding author: kurtzrn@ims.uni-stuttgart.de
Cite as: Robin Kurtz, Nina Seemann, Fabienne Braune, Andreas Maletti. DIMwid — Decoder Inspection for
Moses (using Widgets). The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 41–50.
doi: 10.2478/pralin-2013-0010.



PBML 100 OCTOBER 2013

Frameworks such as M (Koehn et al., 2007) allow the fast and simple devel-
opment of state-of-the-art statistical machine translation systems. The natural first
step towards improving such a system consists of a detailed analysis of the recurring
errors occurring in the baseline system. Once the problematic translations are iden-
tified, we would like to investigate how the translation was obtained from the rules.
Besides the rules that were used in the translation we would also like to identify the
competing rules and check whether a more suitable translation is possible in princi-
ple. Finally, we need to find out why the problematic translation was preferred over
better translations.

These analysis steps are fully supported by the M framework, but require a
manual inspection of the trace log of the decoder. The trace contains all the relevant
information in plain text and can easily be used by experienced M developers,
who know what to look out for. For novices the trace is not accessible at all because of
its cryptic format and its sheer size. Our open-source tool DIMwid addresses this
problem by providing a graphical user interface that displays the trace in a more
user-friendly manner. A chart displays all translation items grouped according to
the source span that they cover. DIMwid can display all standard traces of the M
decoders in this manner and we also added a new trace allowing us to better identify
used rule in the syntax-based chart decoder.

1.1. Design Choices

DIMwid should allow inexperienced M users to identify problematic translations,
inspect the decoder trace to find the problematic rules and even find the competing
rules that would potentially enable a better translation. To this end, DIMwid displays
the trace output, which consists of the decoder stack items or chart items, in a uni-
form chart-based format. Each item is associated to the source span that it covers.
This deviates from the grouping used in the standard stack decoder, but makes the
analysis simpler. In fact, our goal was to make the tool simple enough to be useful for
instructors in class. Naturally, each item typically comes with a variety of additional
information (such as partial scores) and we display this information in the detailed
view. Using this information and knowledge about the general decoding process, we
can reconstruct how the decoder processed the sentence and which alternatives were
considered. To streamline the inspection process, DIMwid can load the trace of multi-
ple input sentences and allows opening several detailed views of items, which allow
an easy comparison.

Besides the core functionality, we aimed to make the tool open-source and avail-
able on all major operating systems, which we achieved using the graphical frame-
work Q and the programming language P, which is one of the most commonly
used programming languages. In addition, P source-code is easily readable and
thus a popular choice for open-source projects. Finally, P also supports our last
goal, which was to build the architecture such that extensions and adjustments can

42



R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

Minimal Version
Language/Framework L MOS W

P 2.7.3 2.7.3 2.7.5
Q 4.8.4 4.8.2 4.0

PQ 3.18.1 4.9.4 4.10.1

Table 1. List of required packages together with their minimal tested versions.

easily be made to support future decoders and to satisfy the specific analysis require-
ments of users.

1.2. Related Work

The statistical machine translation framework J (Li et al., 2009) already offers a
graphical tool (Weese and Callison-Burch, 2009) for analyzing the translations. J
uses a syntax-based translation model and the visualization shows the hypergraph of
the n-best candidate translations obtained during decoding. M is often used for
phrase-based machine translation and we decided to use a CYK-parsing like chart,
which scales better and should be similarly instructive to non-experts.

2. Installation

DIMwid requires the packages P, Q, and PQ. The minimal required (and
tested) versions of these packages are listed in Table 1. On L-based systems
(such as U, F, S), these packages can normally be installed via the
operating system’s package manager. The installation under W requires the
manual download and the execution of the package installers, but the installation is
straightforward. We note that recent W packages for PQ already contain the
Q framework, so W users only need to install P and PQ. The situation
is similar for MOS users. They only need to install a recent P and a binary
package for PQ. We recommend PQX, whose complete installation includes a
compatible version of Q.

DIMwid itself is available on GH at
https://github.com/RobinQrtz/DIMwid

under the  license, which allows DIMwid and its source code to be used freely for
all purposes. DIMwid does not need to be installed or prepared since it only consists
of three P source files. However, to successfully use it we need the trace files of
the decoders inside the M machine translation framework.

43

https://github.com/RobinQrtz/DIMwid


PBML 100 OCTOBER 2013

3. Usage

3.1. Obtaining the Input

DIMwid can process all major output formats that are produced by the decoders inside
the M framework and 2 new custom formats:

• the full decoder trace of the chart-based decoder (-T option) and
• the full decoder trace of the chart-based decoder of the multi bottom-up tree

transducer extension (Braune et al., 2013).
A recent version of the (master) M framework is required for the -T option
and the  branch of M is needed for the second custom format. We
refer the reader to the technical documentation for the use of DIMwid in conjunction
with the , but next we recall how to obtain the required trace files for the
standard decoders.

3.1.1. Standard Moses trace

DIMwid supports the standard M trace outputs for both the phrase-based stack
decoder (Koehn et al., 2003), via the “Phrase” format, and the syntax-based chart de-
coder (Chiang, 2007; Hoang et al., 2009) for hierarchical and tree-based models, via
the “Syntax” format. By default, these traces are obtained by calling the decoders
with the -t (phrase-based) and -T (syntax-based) flags as in:

cat input | moses -f moses.ini -t > out
cat input | moses_chart -f moses.ini -T trace.log > out

These traces only contain information about the best translation for each input sen-
tence and are thus reasonably small. They allow us to reconstruct how the reported
translations were obtained from the rules and the input sentences.

3.1.2. Full stack and chart trace

Sometimes the information about the reported best translations is not sufficient for
a successful analysis. The full stack or chart trace records much more information
about the decoding process. It contains all items that are present in the stacks (used
in phrase-based decoding) or the chart cells (used in syntax-based decoding). Conse-
quently, it allows us to effectively inspect which hypotheses were considered by the
decoder and to investigate the competing hypotheses. Not surprisingly, those traces
tend to be huge.

For phrase-based decoding, the stack trace is obtained by enabling level 3 verbosity
and logging the error output. This is typically achieved by:

cat input | moses -f moses.ini -v 3 2> trace.log > out
Unfortunately, running M with multiple worker threads (option -threads) ru-
ins the desired output, since the outputs are not synchronized. Consequently, the

44



R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

Figure 1. DIMwid presenting the chart and several details of the syntax-based decoder
(display: KDE).

threads-option should not be present (neither in the call nor in the initialization file
moses.ini) or explicitly set to “-threads 1”. The obtained trace contains all transla-
tion options and recombination and stack information organized in a standard parse
chart based on the covered spans. Since the trace is typically huge, it may take DIMwid
a while to load it.

Alternatively, M also offers a flag named -output-search-graph, which out-
puts the entire search-space for the translation. This flag works for the phrase-based
stack decoder and the syntax-based chart decoder. Since the output formats are dif-
ferent, the user needs to select the correct input format:

• “Phrase Stack (search-graph)” for the stack decoder or
• “Syntax Cube (search-graph)” for the chart decoder

in DIMwid when importing these traces.
For the syntax-based chart decoder we are also interested in the source-side of the

used rules. This information is not provided in any of the existing formats, so we
added a new output trace to M, which delivers also this information. The new
flag is called -Tall and is used in the same way as the -T flag. A typical call (with
some advanced options) might be:

45



PBML 100 OCTOBER 2013

Figure 2. Display of the search-graph of a phrase-based decoder (display: Windows).

cat input | moses_chart -f moses.ini
-include-lhs-in-search-graph -n-best-list listfile 100
-T trace.log -Tall traceAll.log > out

The -Tall flag triggers the desired output, while the other flags -n-best-list and
-include-lhs-in-search-graph produce more translation options and include the
left-hand-sides of the rules. However, the output of the chart trace triggered by the
-T and -Tall flags can be surprising. Due to M’ internal decoding process the
source-side nonterminal gets projected onto the corresponding nonterminal of the
target-side. Thus, the reported source-side nonterminal might be different from the
actual source-side nonterminal in the used rule, which should be considered when
identifying the responsible rule. Nevertheless, the -Tall trace offers important infor-
mation and prints — in contrast to the search graph — the correct terminals of the
source-side.

3.2. Graphical User Interface

DIMwid is started by running DIMwid.py. The resulting main window behaves like
any other window of the operating system and can therefore be maximized, mini-
mized, moved around, etc. Keyboard commands are triggered by holding the key-
board’s “Alt” key plus the underlined letter of the button. Next, we show the general
steps needed to display a decoder trace:

46



R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

1. First, we select the correct trace format by clicking on the “Format” button,
which will open a drop-down menu containing buttons labelled with the sup-
ported formats. Once a format is selected, it will be shown on the button (instead
of “Format”).

2. Optionally, we may want to limit the number of items per chart cell using the
text-field next to the “Cell Limit” label. Unless the complete stack or chart in-
formation is essential, a reasonable bound on the displayed items is generally
recommended because DIMwid tends to run slow when huge numbers of items
need to be displayed.

3. Next, we select the trace file by clicking on the “Path” button. The standard file
selection dialog of the operating system will open and will allow the selection
of the desired file. Currently, DIMwid does not auto-detect the trace format, so
if the file format does not correspond to the selection in Step 1, then an error
message is displayed.

4. Once DIMwid finishes loading the trace file, the chart display is available for each
input sentence. Automatically, the chart for the first input sentence, numbered 0,
is displayed. Other input sentences can be selected directly by entering their
number in the input box next to the “GoTo” button and pressing that button.
Alternatively, the “Prev” and “Next” buttons can be used to cycle through the
input sentences.

5. The content of each chart cell is explained in Section 3.3. It can be shown in two
ways: (a) A tool-tip window preview of the chart cell content is displayed when
moving the mouse cursor over the chart cell. (b) A double-click on the chart cell
opens a new window displaying the full cell content. Multiple windows allow
the comfortable comparison of the contents of several cells.

3.3. Chart Display

Once the trace is successfully loaded, a quadratic table is displayed with a blank lower
left triangle (see Figure 2). It has as many rows and columns as there are words in the
selected source sentence. Each chart cell corresponds to a span in the input sentence.
Its row marks the beginning of the span and its column marks the end of the span.
Correspondingly, the entry (m,n) contains the translations of the span [m+ 1, n+ 1]
of the source sentence, which starts at the (m+1)th word and ends at the (n+1)th word.
The diagonal (where m = n) contains the single word translations and the rightmost
cell at the top (the cell (0, 5) in Figure 2) contains the translations for the whole sen-
tence. Spans for which no items are available are marked with a dash “-”.

As a simple example, suppose that the decoder translated
Bob sends Alice a secret message

from English into the German sentence
Bob sendet Alice eine Geheimbotschaft

47



PBML 100 OCTOBER 2013

0 1 2 3 4 5
0 Bob - - - - -
1 sendet - - - -
2 Alice - - -
3 eine - -
4 geheime Geheimbotschaft
5 Nachricht

Table 2. A trivial example chart illustrating DIMwid’s chart display.

Table 2 shows a few (made-up) entries in the chart display for that translation. We
omitted items for clarity. In the actual display the full translation should occur in
cell (0, 5). However, Table 2 shows that “secret message”, the span [5, 6] of the source
sentence, can be translated to “Geheimbotschaft”. Therefore the cell (4, 5) of the chart
contains this translation. In addition, the decoder could also use the translation into
“geheime Nachricht” using the translations of cells (4, 4) and (5, 5).

The actual content of the items in a cell differs based on the trace format. For
example, the items contain the source side in the level 3 verbosity output for phrase-
based stack decoding. The M syntax-based chart decoder typically only outputs
the terminals and the nonterminals of the target-side of the rule. As a minimum,
the span of the source, which is translated, and its translation are always shown. The
additional information depends on the trace format and is very specific and confusing
to non-expert users of M. We decided to preserve this information for expert
users, but most users can probably ignore the additional information. As illustrated
in Section 4, it is very simple to adjust this behavior to accommodate any special needs.

4. Development

As mentioned earlier, we selected P and Q with straightforward adjustability
in mind. P code is usually easy to read, runs on all major operating systems,
and is very common in the programming community. The graphical framework Q
is also freely available for all major operating systems, very common, and has P
bindings, which allows us to exclusively use P for DIMwid.

4.1. Structure

DIMwid consists of three P source files. DIMwid.py creates the application us-
ing the interface designed in DIMterface.py, which sets up the classes related to the
graphical user interface. Finally, DIMputs.py contains all the classes that represent
the different input formats and provides functions for reading those formats.

48



R. Kurtz et al. DIMwid — Decoder Inspection for Moses (41–50)

4.2. Hacking

The simplicity of DIMwid allows for quick changes in the code. It can easily be ad-
justed to display any kind of output sorted into spans. No inside knowledge about
P or the Q framework is required. Let us illustrate this by showing the steps
needed to support a new input format. First, we add a class to DIMputs.py for the
text-format that we want to load. We can follow the example of the other classes
in DIMputs.py. In order to use our new class, the DataInput-class needs a function
which reads the new format and stores the contained information into an object of
the newly created class. At this point the basic functionality is present, but we still
need to enable the new format in the graphical user interface. This is achieved by the
following steps:

1. add a new format button to the Format-Buttons-Drop-Down-Menu,
2. create a new WidgetAction corresponding to this button,
3. connect the WidgetAction with the drop-down menu,
4. create a function that sets the MainWindow’s format to the new format,
5. connect the button to the format-setting function, and
6. add the new format to the setPath-function’s if-else-block.

Since these code blocks exist for the natively supported formats, even non-experts
should be able to perform these changes with the help of simple copy & paste actions.

5. Conclusion and Future Work

Our primary goal during the development of DIMwid was to make the analysis of
the translation process easier. Such an analysis is beneficial for translation engineers
that want to improve their system and to instructors that want to demonstrate the
workings of the decoders in class. The graphical user interface of DIMwid displays
the information of the typically huge and hardly readable trace files in an accessible
manner. Currently, DIMwid supports (all) the trace outputs of both the phrase-based
stack decoder and the syntax-based chart decoder of the M framework. The trace
is uniformly presented in a chart, so all reported information is associated to a chart
cell based on the covered span. Although DIMwid was developed for the traces of
the M framework, it can easily be extended to read outputs of other frameworks
(such as J).

At present, DIMwid shows all items in the order that they occur in the traces. In
future versions, we plan to combine the utility of the standard and full trace by high-
lighting the items that contribute to the best translation in the display of the full trace.
In addition, we plan to add a format auto-detection that would remove the need to
manually select a format. Ideally, we would also be able to graphically link items to
their constituting items (i.e., the subspan items that were combined to form the cur-
rent item). However, this feature has to be carefully implemented as it requires addi-

49



PBML 100 OCTOBER 2013

tional processing of the trace file and can thus potentially lead to major slow-down of
DIMwid.

Acknowledgements

All authors were financially supported by the German Research Foundation (DFG)
grant MA / 4959 / 1-1.

Bibliography

Braune, Fabienne, Andreas Maletti, Daniel Quernheim, and Nina Seemann. Shallow local multi
bottom-up tree transducers in statistical machine translation. In Proc. ACL, pages 811–821.
Association for Computational Linguistics, 2013.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Hoang, Hieu, Philipp Koehn, and Adam Lopez. A uniform framework for phrase-based, hier-
archical and syntax-based machine translation. In Proc. IWSLT, pages 152–159, 2009.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proc. NAACL, pages 48–54. Association for Computational Linguistics, 2003.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proc. ACL, pages 177–180. Association for Computational Linguis-
tics, 2007. Demonstration session.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren N. G. Thornton, Jonathan Weese, and Omar F. Zaidan. Joshua: an open
source toolkit for parsing-based machine translation. In Proc. WMT, pages 135–139. Asso-
ciation for Computational Linguistics, 2009.

Weese, Jonathan and Chris Callison-Burch. Visualizing data structures in parsing-based ma-
chine translation. The Prague Bulletin of Mathematical Linguistics, 93:127–136, 2009.

Address for correspondence:
Robin Kurtz
kurtzrn@ims.uni-stuttgart.de
Universität Stuttgart
Institut für Maschinelle Sprachverarbeitung
Pfaffenwaldring 5b, D-70569 Stuttgart, Germany

50


	Introduction
	Design Choices
	Related Work

	Installation
	Usage
	Obtaining the Input
	Standard Moses trace
	Full stack and chart trace

	Graphical User Interface
	Chart Display

	Development
	Structure
	Hacking

	Conclusion and Future Work

