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Abstract
Language models (LMs) are an essential element in statistical approaches to natural lan-

guage processing for tasks such as speech recognition and machine translation (MT). The ad-
vent of big data leads to the availability of massive amounts of data to build LMs, and in fact,
for the most prominent languages, using current techniques and hardware, it is not feasible to
train LMs with all the data available nowadays. At the same time, it has been shown that the
more data is used for a LM the better the performance, e.g. for MT, without any indication yet
of reaching a plateau. This paper presents CloudLM, an open-source cloud-based LM intended
for MT, which allows to query distributed LMs. CloudLM relies on Apache Solr and provides
the functionality of state-of-the-art language modelling (it builds upon KenLM), while allow-
ing to query massive LMs (as the use of local memory is drastically reduced), at the expense of
slower decoding speed.

1. Introduction

Language models (LMs) are an essential element in statistical approaches to natu-
ral language processing for tasks such as speech recognition and machine translation
(MT). The advent of big data leads to the availability of massive amounts of mono-
lingual data, which could be used to build LMs. In fact, for the most prominent lan-
guages, using current techniques and hardware, it is not feasible to train LMs with all
the data available nowadays. At the same time, it has been shown that the more data
is used for a LM the better the performance, e.g. for MT, without any indication yet
of reaching a plateau (Brants et al., 2007).
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Our aim in this paper is to build a cloud-based LM architecture, which would
allow to query distributed LMs on massive amounts of data. Our architecture is called
CloudLM, it is open-source, it is integrated in the Moses MT toolkit1 and is based on
Apache Solr.2

The rest of the paper is organised as follows. In Section 2 we provide an overview
of the state-of-the-art in huge LMs. Next, Section 3 details our architecture. This is
followed by a step-by-step guide to CloudLM in Section 4 and its evaluation in terms
of efficiency in Section 5. Finally, we conclude and outline avenues of future work in
Section 6.

2. Background

Brants et al. (2007) presented a distributed architecture with the aim of being able
to use big data to train LMs. They trained a LM on 2 trillion tokens of text with sim-
plified smoothing, resulting in a 5-gram language model size of 300 billion n-grams.
The infrastructure used in their experiment involved 1,500 machines and took 1 day to
build the LM. It is worth mentioning that the infrastructure is scalable, so one could
use more machines to train LMs on larger amounts of data and/or LMs of higher
n-gram orders.

Talbot and Osborne (2007) investigate the use of the Bloom filter, a randomised
data structure, to build n-gram-based LMs. Compared to conventional n-gram-based
LMs, this approach results in considerably smaller LMs, at the expense, however, of
slower decoding. This approach has been implemented in RandLM,3 which supports
distributed LMs.

More recent work explores the training of huge LMs on single machines (Heafield
et al., 2013). The authors build a LM on 126 billion tokens, with the training taking
123 GB of RAM, 2.8 days wall time, and 5.4 CPU days. A machine with 1 TB RAM
was required to tune an MT system that uses this LM (Durrani et al., 2014).

Memory mapping has been used to reduce the amount of memory needed by huge
LMs, at the expense of slower MT decoding speed (Federico and Cettolo, 2007). In the
experiments conducted in that work, memory mapping led to decrease the amount
of memory required in half at the cost of 44% slower decoding.

The most related previous work to ours is Brants et al. (2007). There are two main
differences though: (i) that work relied on a simplified smoothing technique to en-
hance efficiency while CloudLM uses state-of-the-art smoothing techniques and (ii)
our work is open-source and is integrated in the Moses statistical MT toolkit.

1https://github.com/jferrandez/mosesdecoder/tree/cache-cloudlm
2http://lucene.apache.org/solr/
3http://randlm.sourceforge.net/
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3. Architecture

This section describes the architecture of CloudLM. First we cover the represen-
tation of LMs in Apache Solr (Section 3.1). Then we detail the implementation of
CloudLM in the Moses toolkit (Section 3.2). Finally, we describe two efficiency en-
hancements that have been added to CloudLM, a cache and queries (Section 3.3).

3.1. LMs in Solr

In order to have LMs in Solr, we need to represent in a Solr schema the fields of an
ARPA LM entry,4 namely: (i) the n-gram, (ii) its probability, (iii) its back-off weight
and (iv) its order. We define these fields in a Solr schema as shown in Figure 1.

<field name="ngram" type="string" indexed="true" stored="true"/>
<field name="prob" type="float" indexed="false" stored="true"/>
<field name="backoff" type="float" indexed="false" stored="true"/>
<field name="order" type="int" indexed="true" stored="true"/>

Figure 1. ARPA fields in Solr schema

The fields ngram and order are indexed (indexed="true") as those are the ones we
use to query the LM. All the fields are stored (stored="true") meaning that they can
be returned by queries.

3.2. Cloud-based LM in Moses

CloudLM is implemented as a new module in Moses that builds upon KenLM (Hea-
field, 2011). In short, we adapt KenLM’s functions that query n-grams on ARPA or
binary files so that they query our cloud-based model instead and we remove any
other files that are not required for querying LMs (e.g. build and binarise LMs, trie
models, quantise, etc.). As a result, given a query and a LM, the output produced by
CloudLM and KenLM are exactly the same.

CloudLM provides two main advantages as a result of its distributed nature: (i)
there is no loading time and (ii) memory requirements in the machine where decoding
takes place are considerably reduced. That said, there is an important disadvantage,
in that its use results in slower MT decoding speed.

4http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node213_mn.html
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3.3. Efficiency Enhancements

In order to mitigate the main disadvantage of CloudLM (its lower querying speed),
we implement two efficiency enhancements, a cache (Section 3.3.1) and a block query
(Section 3.3.2).

3.3.1. Cache

Caches are known to be useful in any network dependent process (thus subject to
high latency) that requests repeated queries. In CloudLM we implement a cache in
order to avoid several queries requesting the probability for the same n-gram.

Intuitively, the advantage of the cache is that it should save time due to network
latency. However, the data stored in the cache structure should lead to higher re-
quirements of memory.

Our selected cache strategy is least recently used (LRU), in which the least recently
used items are discarded first. In the way that Moses queries the LM, LRU guarantees
that the most recently requested n-grams will be found in the cache.

3.3.2. Block Query

As we adapt KenLM querying functions only with respect to the repository where
the LM is stored (from local files to Solr), queries are still submitted individually for
each n-gram. For example, given the 2-gram “we are”, three queries would be sub-
mitted to the LM: one for the bi-gram “we are” and two for the 1-grams “we” and
“are”. Our first approach for using the cache is to store the probability returned for
this 2-gram.

In order to minimise the amount of queries sent to Solr (and saving network la-
tency), we implement a block n-grams query. When the LM receives a phrase, we
extract all its possible n-grams and prepare a query that contains them all. For in-
stance, for the previous example, we prepare a query with the 2-gram “we are” and
the 1-grams “we” and “are”. In this way we can retrieve the three probabilities with
one single query.

4. Step-by-Step

In this section we provide a step-by-step guide to use CloudLM in Moses. We as-
sume we have a Moses system (Koehn et al., 2007) trained (translation and reordering
models), e.g. according to Moses baseline guide,5 an LM ready in ARPA format, e.g.
trained with KenLM, and an installation of Apache Solr. The steps are as follows:

1. Configure Solr.

5http://www.statmt.org/moses/?n=Moses.Baseline
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The LM can be placed in the local machine, in a remote one, or be distributed
across a number of machines. We cover each of these cases in the following:

• Local machine. While the main advantage of using Solr relies in its dis-
tributed nature, we can still use it locally, where Solr’s advantage will be
its lower use of memory (as the LM is not loaded completely in RAM).

• Remote machine. In this case Solr is used from one remote machine. This
can be useful when the local machine does not have enough resources for
the LM but we have access to a remote machine with enough resources.

• Distributed architecture. Solr allows to have the LM distributed across a
number of machines.6 This can be useful when we have access to a number
of remote machines and we have to deal with a huge LM that does not fit
on any of those machines alone.

2. Upload LM to Solr. This is done with a script included with CloudLM that reads
an ARPA file, converts it to Solr Schema (cf. Section 3.1) and uploads it to a Solr
installation.

python add-language-model-from-arpa.py \
http://localhost:8983/solr lm.arpa

3. Include CloudLM in Moses’ configuration (ini file). The format is very similar to
that of KenLM, the only three differences being that (i) the LM type is CLOUDLM
(instead of KENLM), that (ii) the LM is indicated by means of a URL (instead of a
local path) and that (iii) there is a binary variable to indicate whether or not to
use a cache (cf. Section 3.3.1).

CLOUDLM name=LM0 factor=0 order=4 \
num-features=1 cache=0 url=localhost:8983

From this point onward, we can proceed with tuning and decoding with Moses as
one would normally do.

5. Experiments

In this section we conduct a set of experiments in order to measure efficiency of
CloudLM in terms of computational resources (real time and memory) in the task
of statistical MT. First, we detail the experimental setting (Section 5.1) and then we
present the results for three experiments (Section 5.2) where we measure (i) the effect
of the efficiency enhancements on top of CloudLM, (ii) the effect of network latency
and finally we (iii) compare the efficiency of CloudLM to that of a state-of-the-art local
LM, KenLM.

6https://cwiki.apache.org/confluence/display/solr/SolrCloud
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5.1. Experimental Setting

The MT systems built for our experiments fall into the statistical phrase-based
paradigm and they are built with Moses version 3 following the baseline system guide-
line.7 All the systems are trained on the Europarl v7 (Koehn, 2005) parallel corpus for
the language direction English-to-Spanish. All the LMs are built on the Spanish side
of that parallel corpus. 8 We use these MT systems to decode subsets (1, 10 and 100
sentences) of the test set from WMT13.9

We use both a local and a remote machine in our experiments.10 The local machine
has a 8-core i7-3632QM CPU at 2.20GHz, 16GB RAM and a SATA 3.0 500GB hard
drive. The remote machine has 4-core Q8200 CPU at 2.33GHz, 4GB RAM and a SATA
3.0 1TB hard drive.

5.2. Results

In all the experiments below we measure the peak of memory used and real time
required to translate the first 1, 10 and 100 sentences of the testset with the different
systems evaluated.

5.2.1. Effect of Enhancement Additions

In this experiment we measure the effect of the efficiency enhancements that have
been added to CloudLM, namely the cache (cf. Section 3.3.1) and block queries (cf.
Section 3.3.2). We build three systems where the LMs are built with CloudLM using
different settings: stock (reported in results below as S), with cache (WC) and with
both cache and block queries (WCBQ). All the LMs are stored locally.

Figure 2 reports the real time and Moses’ memory peak required by each system to
decode the first 1, 10 and 100 sentences from the test set. The use of cache, as expected,
results in a notable reduction in time but also increases memory usage. For 1 sentence,
using cache reduces the time by around 70% and memory used augments by 20%.
These figures increase with the number of sentences decoded; with 100 sentences the
use of cache reduces the time required by 89% while memory used increments by
195%. On its turn, the use of block queries (WCBQ) provides a slight time advantage
when decoding 1 sentence (9% faster), but it is slower for 10 and 100 sentences. We
are currently investigating the causes for this.

Table 1 provides further details regarding the use of cache and block queries. It
shows the total number of requests submitted to Solr (column # requests), the number

7http://www.statmt.org/moses/?n=Moses.Baseline
8The existing model indexed in Solr takes 1.95 GB. The original binarized ARPA file amounts to 830 MB.
9http://www.statmt.org/wmt13/translation-task.html

10Before each run the machines were rebooted to ensure data from the previous run is not leveraged from
the disk cache.
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Figure 2. Effect of enhancement additions

of queries that are stored in the cache (# insertions), the number of lookups in the cache
(# lookups) and the percentage of successful lookups (% found), i.e. the cache contains
the query requested and hence the query is not submitted to Solr. The use of the cache
reduces drastically the number of queries sent to Solr, even when translating just one
sentence this number is reduced by 85%.The use of block queries reduces even more
the amount of queries sent, as the percentage of queries found in the cache is even
higher (e.g. 99.8% for 1 sentence).

# sents. System # requests # inserts # lookups % found
1 S 1,779,225 0 0 0
1 WC 264,851 264,851 1,779,225 85.11
1 WCBQ 206,160 264,851 1,779,225 99.80

10 S 7,067,343 0 0 0
10 WC 822,627 822,627 7,067,343 88.36
10 WCBQ 929,020 822,627 7,067,343 98.21

100 S 22,417,996 0 0 0
100 WC 2,417,593 2,417,593 22,417,996 89.21
100 WCBQ 4,493,867 2,417,593 22,417,996 94.45

Table 1. Effects of the use of cache and block queries with CloudLM.
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5.2.2. Effect of Network Latency

In this experiment we measure the effect of network latency. Clearly, an advantage
of CloudLM relies in the fact that it allows us to use LMs placed in remote machines.
Accessing them, though, penalises efficiency as each query is subject to network la-
tency.

We use two systems, both using CloudLM with cache. One of the systems accesses
the LM locally while the other accesses it from a remote machine in the local network.

Figure 3 reports the real time and memory peak required by each system to decode
different amounts of sentences. Network latency affects efficiency quite drastically;
accessing the LM from a remote machine results in decoding speed an order of mag-
nitude slower. We measured the average latency in the local and remote machines
used in this experiment. The figures were 0.04 milliseconds for the local machine and
0.277 for the remote one.
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Figure 3. Effect of network latency

5.2.3. Comparison to a local LM

Finally, we compare, in terms of efficiency, CloudLM to a state-of-the-art local
LM, KenLM. We have three systems, one with CloudLM (with cache), and two with
KenLM (with and without loading on demand, reported in the results as lazy KenLM
and KenLM respectively). All LMs are stored locally.

Figure 4 shows the results. CloudLM reduces notably the amount of memory re-
quired at the expense of the decoding speed becoming between one and two orders
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of magnitude higher. For one sentence, CloudLM is 70 times slower (240 compared to
KenLM on demand) and reduces the amount of memory required by 77% (65% com-
pared to on demand). As we add more sentences the differences on both speed and
memory shrink, with CloudLM being 33 times slower (68 compared to the on demand
version of KenLM) and reducing the amount of memory by 46% (45% compared to
KenLM on demand) for 100 sentences.
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Figure 4. Comparison of CloudLM to a local LM

6. Conclusions and Future Work

This paper has presented CloudLM, an open-source cloud-based LM that allows to
build distributed LMs for their use in e.g. MT. CloudLM is based on Apache Solr and
KenLM, providing the functionality of the latter in a distributed environment. The
focus of our work so far has been on providing a stable and robust implementation
that can be extended upon to make it more efficient.

The current implementation uses a simple cache model (LRU) and can send joint
queries in order to diminish the efficiency penalty posed by network latency. We have
evaluated CloudLM in terms of efficiency to measure the effect of the efficiency ad-
ditions, the effect of latency and finally to compare its use of resources compared to
a state-of-the-art local LM.

We envisage two main lines of future work. First, development work to enhance
efficiency. We have several ideas in this regard, such as keeping the connection alive
between Moses and Solr (so that a new query does not need to re-open the connection)
and using more advance cache strategies. The efficiency bottleneck in a synchronous
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distributed architecture like ours has to do with the network latency. Hence, we pro-
pose to have an asynchronous connection instead, so that Moses does not need to wait
for each response from Solr. This, however, is far from straightforward as it would
entail deeper modifications to the MT decoder.

Our second line of future work has to do with the evaluation of CloudLM for huge
LMs. The evaluation in the current paper can be considered as proof-of-concept, as
we have dealt with a rather small LM (around 2 million sentence pairs).

Finally, we would like to compare CloudLM to other approaches that use dis-
tributed LMs in Moses (Federmann, 2007; Talbot and Osborne, 2007). Such an eval-
uation would not be purely efficiency-based (e.g. decoding time, memory used) but
also would take into account the final translation quality achieved as some of these
approaches use different modelling techniques (e.g. Bloom filter in RandLM).
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