
The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 57–86

PanParser: a Modular Implementation for Efficient
Transition-Based Dependency Parsing

Lauriane Aufrant,ab Guillaume Wisniewskib

a DGA, 60 boulevard du Général Martial Valin, 75 509 Paris, France
b LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91 405 Orsay, France

Abstract
We present PanParser, a Python framework dedicated to transition-based structured pre-

diction, and notably suitable for dependency parsing. On top of providing an easy way to
train state-of-the-art parsers, as empirically validated on UD 2.0, PanParser is especially use-
ful for research purposes: its modular architecture enables to implement most state-of-the-art
transition-based methods under the same unified framework (out of which several are already
built-in), which facilitates fair benchmarking and allows for an exhaustive exploration of slight
variants of those methods. PanParser additionally includes a number of fine-grained evalua-
tion utilities, which have already been successfully leveraged in several past studies, to perform
extensive error analysis of monolingual as well as cross-lingual parsing.

1. Introduction

PanParser is not yet another implementation of a transition-based dependency
parser. Transition-based dependency parsing has been an active field in the last few
years and several open source parsers have been released, each one implementing
a new alternate paradigm, like MaltParser (Nivre et al., 2006a), which is the refer-
ence implementation for transition-based parsers, and UDPipe (Straka and Straková,
2017), a popular pipeline system for neural parsing. In all transition-based parsers,
the same elements are systematically found (a transition system, a classifier, an update
procedure, etc.), corresponding to distinct lines of research. However, their imple-
mentations often adopt an ad-hoc architecture or a specific variation of each of these

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: lauriane.aufrant@limsi.fr
Cite as: Lauriane Aufrant, Guillaume Wisniewski. PanParser: a Modular Implementation for Efficient Transition-
Based Dependency Parsing. The Prague Bulletin of Mathematical Linguistics No. 111, 2018, pp. 57–86.
doi: 10.2478/pralin-2018-0007.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

components, which impedes fair benchmarking and makes it difficult to evaluate the
impact of a given component.

The PanParser framework aims at alleviating this effect by providing a modular
architecture, in which most state-of-the-art transition-based parsing systems can be
implemented, or extended, in a light and straightforward way. In addition to provid-
ing an easy way to train accurate models for parsing any language, it is then partic-
ularly valuable for research purpose and exhaustive experiments on parser design.
It is possible, for instance, to train a greedy neural ArcEager parser with a static or-
acle, or a delexicalized beam ArcHybrid parser with a dynamic oracle and an aver-
aged perceptron.1 PanParser also implements extensive utilities for error analysis.
PanParser has been used, for instance, in cross-lingual transfer experiments (Aufrant
et al., 2016b; Lacroix et al., 2016) or to design new learning strategies for dependency
parsers (Aufrant et al., 2017).

PanParser differs from the other parsing frameworks by the ability to combine
more freely alternate versions of each part of the parser, but also by the diversity
of the built-in algorithms: for instance, UDPipe does not include the ArcEager and
ArcHybrid transition systems and it lacks the support of global training strategies,
spaCy2 only offers ArcEager parsers trained with the max-violation strategy, while
SyntaxNet (Andor et al., 2016) and the StanfordParser (Chen and Manning, 2014) fo-
cus on the ArcStandard system; as for MaltParser, it supports a large number of
transition systems but neither global training nor dynamic oracles. PanParser also
includes functionalities that are not found elsewhere, like newly-derived dynamic or-
acles or the ability to train projective parsers directly on non-projective data. On the
other hand, our framework is not designed for pipelining as others are; the current
built-ins also lack several non-projective transition systems included in UDPipe and
MaltParser, although the architecture is already designed to support them – and re-
cent works like Fernández-González and Gómez-Rodríguez (2018a)’s will help their
implementation in future work. As for graph-based parsing strategies, like the sem-
inal MSTParser (McDonald et al., 2005) or state-of-the-art neural ones (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017), they remain out of the scope of this
framework.

The whole software is written in Python in a modular way, which makes it easy for
the user to extend the built-in components with custom variants. For instance, adding
the ArcHybrid transition system (with full compatibility with all other components)
was done in 150 lines of code. The core framework of PanParser can also be reused to
implement other structured prediction tasks, as done for the built-in PoS tagger.

The rest of the paper is organized as follows. Section 2 presents the state of the art
in transition-based dependency parsing, along the six lines of research which have

1See Section 2 and Supplementary A for a brief description of those algorithms.
2https://spacy.io

58

https://ufal.mff.cuni.cz/pbml/111/supplementary-aufrant-wisniewski.pdf
https://spacy.io

L. Aufrant, G. Wisniewski PanParser (57–86)

guided the design of PanParser. The main features of PanParser are described in Sec-
tion 3 and Section 4 presents the scores achieved on the 73 treebanks of UD 2.0, for
various configurations of PanParser. Further algorithmic and technical details are
provided in the appendices and supplementary material: the procedure used to im-
plement dynamic oracles for various transition systems in PanParser (Appendix A),
the global dynamic oracle framework on which PanParser is based (Appendix B), as
well as the built-in transition systems with their oracles (Supplementary A), practi-
cal examples of PanParser usage (Supplementary B) and a brief overview of the code
architecture chosen to ensure modularity (Supplementary C).

PanParser is published under a BSD license and can be freely downloaded at https:
//perso.limsi.fr/aufrant.

2. Transition-based dependency parsing

Dependency parsing (Kübler et al., 2009) consists in analyzing the syntactic struc-
ture of a sentence by mapping it to a tree. Formally, a unique head token is assigned
to each token of the sentence (apart from the root), avoiding cycles, to denote syntactic
dependencies between two words; in labeled parsing, a relation label is additionally
assigned to each token. In this section, we introduce one class of algorithms build-
ing dependency trees, the transition-based approach (Nivre, 2008), which is the one
adopted by PanParser.

In a transition-based parser, a parse is computed by performing a sequence of tran-
sitions, building the parse tree in an incremental fashion. The parser configuration thus
represents a partially built dependency tree, and applying transition t to configura-
tion c results in the parser moving to a successor configuration of c (denoted c ◦ t),
together with side effects on its internal state (typically based on stacks and lists):
moving a token, creating an edge, etc.

According to Nivre (2008), ‘a deterministic classifier-based parser consists of three es-
sential components: a parsing algorithm, which defines the derivation of a syntactic analysis
as a sequence of elementary parsing actions; a feature model, which defines a feature vector
representation of the parser state at any given time; and a classifier, which maps parser states,
as represented by the feature model, to parsing actions‘. Over the years, much work has
been dedicated to improving parsers along those three lines: designing new pars-
ing algorithms (i.e. transition systems, in the case of transition-based parsing) with
various properties (Nivre, 2004, 2009; Gómez-Rodríguez and Nivre, 2010; Kuhlmann
et al., 2011; Qi and Manning, 2017), more informative feature representations (Zhang
and Clark, 2008; Zhang and Nivre, 2011; Bohnet et al., 2013; Alberti et al., 2015), and
adapting the implementations to use more accurate classifiers (Chen and Manning,
2014; Dyer et al., 2015; Zhou et al., 2015; Andor et al., 2016).

However, in recent years, a series of contributions has been made in the way those
three components interact, in particular at training time (Collins and Roark, 2004;
Zhang and Clark, 2008; Goldberg and Nivre, 2012; Huang et al., 2012, Zhang and Nivre,

59

https://ufal.mff.cuni.cz/pbml/111/supplementary-aufrant-wisniewski.pdf
https://perso.limsi.fr/aufrant
https://perso.limsi.fr/aufrant

PBML 111 OCTOBER 2018

2012, Aufrant et al., 2017). The resulting lines of research have produced a number
of algorithmic variants, with such diversity that we now find it beneficial to model
these aspects as separate components. Therefore, the new reading grid we propose,
and which has been adopted as the architecture of PanParser, is the following: a
transition-based parser consists of 6 components (a transition system, a classifier, a
feature model, a search component, an oracle and a training strategy), whose interac-
tions can be controlled by a generic structured prediction framework, with no specific
tie to the chosen algorithm or task.

In the following, we describe the state-of-the-art methods corresponding to each
component, out of which most are or can be implemented under the PanParser frame-
work. The actual built-ins will be listed in the next section, while the other algorithms
can still be implemented within that framework, thanks to its modular architecture.

2.1. Transition system

The transition system defines the semantics of the actions predicted by the classi-
fier, in order to relate them to actual dependency trees. Formally, it consists in four
elements: the structure of the parser state (e.g. a stack and a buffer), a set of actions
(e.g. Shift, Left, Right and Reduce), the semantics of each one (e.g. the Left action at-
taches the current token to another token on the right, and then discards it from the
stack) and their preconditions (e.g. the Left action is invalid if the current token has
already been attached).

Several such systems have been proposed in the literature, the most widely used
ones being stack-based. Notably, ArcStandard (Nivre, 2003), ArcEager (Nivre, 2004)
and ArcHybrid (Kuhlmann et al., 2011) rely on a stack (the currently processed tokens)
and a buffer (the not yet processed tokens). They all consider candidate edges among
the top few tokens on the stack and the first few tokens in the buffer, but they differ in
the order in which edges are created, and regarding spurious ambiguity (i.e. whether
the same tree can be produced by different derivations). All three systems guarantee
parsing in linear time, but they are also subject to restrictions in expressivity (as they
cannot produce non-projective trees, i.e. trees with crossing edges).

In order to improve expressivity or to facilitate the prediction of some edges, a
number of other systems have been designed, using various kinds of internal state: a
stack and a list (Nivre, 2009; Fernández-González and Gómez-Rodríguez, 2012), two
lists and a buffer (Covington, 2001; Choi and Palmer, 2011), a single list (Goldberg
and Elhadad, 2010), two (or more) stacks and a buffer (Gómez-Rodríguez and Nivre,
2010; Gómez-Rodríguez and Nivre, 2013), extra registers on top of the stack and the
buffer (Pitler and McDonald, 2015), etc.

Many of those systems have seen additional variants, adding for instance non-
monotonicity (Honnibal et al., 2013; Honnibal and Johnson, 2015; Fernández-González
and Gómez-Rodríguez, 2017) to improve the robustness to erroneous predictions, or
non-local transitions (Qi and Manning, 2017, Fernández-González and Gómez-

60

L. Aufrant, G. Wisniewski PanParser (57–86)

Rodríguez, 2018b), effectively shortening the derivations by collapsing series of Shift
or Reduce actions into edge-creating transitions. The ability to parse given specific
constraints on the output has also been investigated as a property of the transition
system (Nivre and Fernández-González, 2014; Nivre et al., 2014).

Finally, several variants of each of those systems exist natively, depending on how
the root tokens are handled. Indeed, the roots are supposed to remain unattached at
the end of the derivation, but in order to alleviate boundary effects they are in general
attached to a dummy Root token placed at the beginning or the end of the sentence.
Yet, the position of this node can actually impact the semantics of the transition sys-
tem, and it has been shown to impact the parsing accuracy (Ballesteros and Nivre,
2013).

2.2. Classifier

At each step of the parsing process, every possible transition is scored by a classi-
fier, based on a feature representation of the current configuration, and the transitions
to apply are chosen accordingly. This scoring step can be handled by any multi-class
classifier, and several options have been envisioned in the literature.

Linear models have notably proved successful: Collins and Roark (2004) use an
averaged perceptron – meaning that the final parameters retained after training are
obtained by averaging over all values taken by the model throughout training – which
has long remained a de facto standard (Huang et al., 2012). Another widespread strat-
egy is to use support vector machines (Nivre et al., 2006b). A number of other tech-
niques have been considered, like memory-based learning (Nivre et al., 2004), ro-
bust risk minimization (Choi and Nicolov, 2009) and confidence-weighted classifiers
(Haulrich, 2010), but the largest body of recent work on the topic concerns the inte-
gration of neural networks, with various architectures: feedforward neural networks
(Chen and Manning, 2014; Zhou et al., 2015), later augmented by a structured per-
ceptron (Weiss et al., 2015) or a CRF loss (Andor et al., 2016), as well as recurrent
networks (Stenetorp, 2013; Chen et al., 2015; Dyer et al., 2015). However, recurrent
neural networks (and notably, LSTMs) cannot be implemented in the current version
of the PanParser framework, which supports only stateless classifiers.

2.3. Feature model

The feature model specifies how the parser configuration is represented when it is
fed to the classifier. Such features are typically extracted from the top of the stack and
buffer: wordform of the first token in buffer, PoS tag of the (already attached) children
of the stack head, etc. In addition to wordforms, morphological features and coarse
or fine-grained PoS tags, richer features like sequential (token distance), syntactic (va-
lency, labels, representation of subtrees) or semantic information (semantic classes,
pre-trained word embeddings) can also be collected for any such token (Zhang and
Nivre, 2011; Agirre et al., 2011; Chen and Manning, 2014; Dyer et al., 2015).

61

PBML 111 OCTOBER 2018

Standard templates
1 word w, p and wp for S0, N0, N1, N2

2 words wp·wp, wp·w, w·wp, wp·p, p·wp, w·w and p·p for S0·N0; N0p·N1p

3 words p·p·p for N0·N1·N2, S0·N0·N1, S0h·S0·N0, S0·S0l·N0, S0·S0r·N0, S0·N0·N0l

New templates with rich non-local features
Distance S0w·d, S0p·d, N0w·d, N0p·d; S0w·N0w·d, S0p·N0p·d
Valency S0wvl, S0pvl, S0wvr, S0pvr, N0wvl, N0pvl

Unigrams w and p for S0h, S0l, S0r, N0l; l for S0, S0l, S0r, N0l

Third-order w and p for S0h2, S0l2, S0r2, N0l2; l for S0h, S0l2, S0r2, N0l2;
p·p·p for S0·S0h·S0h2, S0·S0l·S0l2, S0·S0r·S0r2, N0·N0l·N0l2

Label set S0wsl, S0psl, S0wsr, S0psr, N0wsl, N0psl

Table 1: Feature templates proposed by Zhang and Nivre (2011). S0 is the top stack
element, N0-N2 the 3 first buffer elements. w, p and l stand for word, PoS tag and la-
bel. d is the token distance from S0 to N0. vl (vr) is the number of left (right) children,
whose labels are sl (sr). h and h2 denote the head and its own head, l, l2 (r, r2) the
first and second leftmost (rightmost) children.

The resulting feature vector representation can be directly fed to non-linear classi-
fiers like kernel SVMs and neural networks, while for linear models feature templates
are typically used to combine the extracted atomic features into tuple features. Table 1
describes the templates handcrafted by Zhang and Nivre (2011), which are known
for achieving state-of-the-art performance on several languages, while others advo-
cate for automatic selection (Nilsson and Nugues, 2010; Ballesteros and Nivre, 2012;
Ballesteros and Bohnet, 2014).

It can however be noted that depending on the exact parser settings, not all this
information can be successfully extracted. For instance the delexicalized parsers used
in cross-lingual transfer (Zeman and Resnik, 2008) make no use of wordforms, un-
labeled parsers exclude label information, and depending on the transition system,
some syntactic features remain unknown at prediction time (in bottom-up systems
like ArcStandard and ArcHybrid the head of stack elements is never known, while in
ArcEager it can be).

2.4. Search

Both during training and prediction, parsing is done by exploring the search space
composed by all transitions scored by the classifier, in search for the best possible
tree. Transition sequences are scored by summing the scores of all their transitions;
parsing thus amounts to finding the derivation having the highest score. However,
this inference step is hindered by the exponential size of the search space.

62

L. Aufrant, G. Wisniewski PanParser (57–86)

While exact inference can be done through dynamic programming (Huang and
Sagae, 2010; Kuhlmann et al., 2011; Zhao et al., 2013), such methods imply severe
restrictions on the set of authorized features, which jeopardize the accuracy of the
parser. Instead, inexact search is generally employed, either as greedy or beam search.
Greedy decoding (i.e. always following the single-best transition) is faster, but beam
search (Zhang and Clark, 2008) yields more accurate parsers as it explores a larger
part of the space: it maintains a set of k parse candidates (the beam) and at each step
all possible actions are considered for each hypothesis in the beam, after which only
the k-best resulting configurations are kept. This method faces some computational
issues due to memory management, but they can be easily avoided by using tree-
structured stacks and distributed representations of trees (Goldberg et al., 2013).

While their implementations often differ, it can be noted that greedy search is
mathematically equivalent to beam search with k = 1. As for exhaustive search, it
can be modeled with a beam of infinite size.

2.5. Oracle

Training of transition-based parsers is a two-step procedure: first some decoding
is performed (using the chosen search strategy), then whenever an error a detected,
the model is updated based on one (or more) predicted configuration(s) and one (or
more) gold configuration(s).

The oracle is the component that governs the distinction between gold and erro-
neous configurations. More precisely, its role at training time is twofold: flagging
errors during decoding and identifying gold configurations that can serve as positive
(reference) configurations for updates, while the actual choice of update configura-
tions depends on the training strategy.

The traditional and most straightforward kind of oracle is the static one. In a static
oracle, references are precomputed heuristically, based on the semantics of the tran-
sition system: for each reference tree used as example, a unique derivation leading to
that tree is chosen and its transitions become references, while all others are consid-
ered erroneous. While simple to implement, static oracles have two drawbacks: they
ignore spurious ambiguity (when several derivations lead to the same reference tree,
all but one are considered erroneous) and they are only defined along the reference
derivation (given an arbitrary configuration in the search space, the optimal action to
take next is not specified).

Instead, Goldberg and Nivre (2012) introduce dynamic oracles, defined as oracles
that are both non-deterministic and complete: with dynamic oracles, the reference
actions are tailored to the current configuration. In that framework, erroneous ac-
tions are defined as actions that introduce errors, i.e. that reduce the maximum score
achievable on the current sentence (for instance by misattaching a token, or by remov-
ing from the stack a word which has not received all its children yet). The computation
of the oracle is based on the action cost, which is a property of the transition system

63

PBML 111 OCTOBER 2018

and numbers the errors introduced by each action, given an arbitrary configuration.
The gold actions are defined as zero-cost actions; this way the oracle is guaranteed to
find the best action(s) to perform, and it natively accounts for spurious ambiguity (an
action leading to the reference tree is by design zero-cost) and is always defined (by
definition of the maximum there is always at least one zero-cost action).

The main difficulty when applying dynamic oracles is to derive the action cost for
the transition system, which requires a thorough investigation of its properties. So
far, such oracles have been derived for ArcEager (Goldberg and Nivre, 2012), ArcHy-
brid and EasyFirst (Goldberg and Nivre, 2013), ArcStandard (Goldberg et al., 2014),
as well as several non-monotonic (Honnibal et al., 2013; Honnibal and Johnson, 2015)
and non-projective systems (Gómez-Rodríguez et al., 2014; Gómez-Rodríguez and
Fernández-González, 2015; Fernández-González and Gómez-Rodríguez, 2017). A few
other works have proposed oracles drawing from this line of research but which
are only partly dynamic, incomplete or approximated (Björkelund and Nivre, 2015;
de Lhoneux et al., 2017; Fernández-González and Gómez-Rodríguez, 2018a). Aufrant
et al. (2018) additionally propose a systematic way to approximate the oracle when it
has not yet been derived to handle all particular cases – for instance for reference trees
that are out of the expressive scope of the transition system, typically non-projective
training examples for projective parsers – by using an unsound cost and considering
the minimum-cost actions as gold. This is the approach adopted within our frame-
work; it is further described in Appendix A, which explains in which measure Pan-
Parser departs from the standard dynamic oracle framework.

While dynamic oracles are primarily defined to identify reference actions, Aufrant
et al. (2017) extend them to reference transition sequences, to accommodate their use
with beam parsers. The advantage of these global dynamic oracles is that they do not re-
quire any explicit computation of the reference set (which can be exponentially huge),
as they can be implemented by simply tracking the action costs inside the beam.

2.6. Training strategy

The literature traditionally distinguishes local and global training strategies. In
local training, each decision is optimized independently: all along the derivation, the
action predicted by the classifier is checked against the gold action(s) (the reference(s)
provided by the oracle), and an update occurs whenever they differ.

When beam search is employed, local training is suboptimal (Zhang and Nivre,
2012) and a global criterion is preferred, meaning that the parameters are updated
once for each training sentence, depending on the optimality of transition sequences.
Algorithm 1 (left part) summarizes the training for each sentence x (with gold parse
y): Initial(x) denotes the initial configuration for x and the Oracle procedure per-
forms decoding to find configurations that play the role of the ‘positive’ and ‘negative’
examples (resp. c+ and c−) required by the Update operation (typically a perceptron
update rule (Collins and Roark, 2004) or a gradient computation with the globally

64

L. Aufrant, G. Wisniewski PanParser (57–86)

normalized loss of Andor et al. (2016)). Several strategies, corresponding to various
implementations of the Oracle function, have been used to find these examples.

Algorithm 1: Global training on one sentence, with and without restart.
θ: model parameters, initialized to θ0 before training
Final(·): true iff the whole sentence is processed

Function TrainOneSentence(x,y)
c← Initial(x)

c+, c− ← Oracle(c, y, θ)
θ← Update(θ, c+, c−)

Function TrainOneSentenceRestart(x,y)
c← Initial(x)
while ¬Final(c) do

c+, c− ← Oracle(c, y, θ)
θ← Update(θ, c+, c−)
c← c+

In the EarlyUpdate strategy (Collins and Roark, 2004; Zhang and Clark, 2008), the
sentence is parsed using conventional beam decoding, checking at each step whether
the reference tree is still reachable, and an update happens as soon as the reference
derivation (or all references, depending on what the oracle generates) falls off the
beam: the top scoring configuration at this step is penalized and the reference that has
just fallen off the beam is reinforced. Another strategy, MaxViolation (Huang et al.,
2012), is to continue decoding even though the reference has fallen off the beam, in or-
der to find the configuration having the largest gap between the scores of the (partial)
hypothesis and the (partial) gold derivation. Compared to EarlyUpdate, MaxViola-
tion speeds up convergence by covering longer transition sequences and can yield
slightly better parsers.

In the standard version of these strategies, after a global update the rest of the se-
quence is ignored, moving on to the next example. However, Aufrant et al. (2017)
extend those strategies with a restart option (right part of Algorithm 1) which reini-
tializes the beam after each update and enables further updates on the same example,
so that the whole sentence is exploited during training, with benefits in terms of con-
vergence, accuracy and sampling distributions.

Notably, under the restart framework – and similarly to the equivalence of search
strategies – local training can be interpreted as a special case of global training, when
applying early update and restart on a beam of size 1.

One key aspect when choosing a training strategy is how the training configura-
tions are generated: each update (either local or global) raises questions on which
configuration to restart from, the positive or the negative one. Goldberg and Nivre
(2012) show that error exploration, i.e. pursuing on the erroneous path, improves the
accuracy by making the classifier able to produce the next best tree, even when the op-

65

PBML 111 OCTOBER 2018

timal one has become unreachable. Classifiers that stick to the gold space at training
time suffer indeed from error propagation, as the suboptimal configurations they are
confronted to at prediction time are an unknown territory in which they were never
trained to take good decisions. As a trade-off between strict supervision and robust-
ness, various exploration policies can be envisioned; for instance Goldberg and Nivre
(2013) keep the first iteration in the gold space, and then apply error exploration with
a probability of 90%, while Ballesteros et al. (2016) sample the next configuration from
the probability distribution output by the classifier. However, error exploration re-
quires oracle completeness, and can thus only be entertained when using a dynamic
oracle.

3. The PanParser implementation

As described in the previous section, a transition-based parser can be viewed as
the association of several components: a transition system (associating parse trees with
transition sequences), a classifier (scoring transitions based on a feature representa-
tion), a feature model (extracting feature vectors from parse configurations), a search
strategy (producing transition sequences, given a classifier model), an oracle (mapping
gold annotations to gold transitions) and a training strategy (effectively choosing the
training configurations to update the model).

In PanParser, to ensure modularity and compatibility, all of these components are
implemented separately – and interfaced by a generic structured prediction frame-
work, which handles the main training and prediction logic. The first three corre-
spond to distinct modules, for which we provide several implementations, and which
can be easily extended by alternate models or implementations. The definition of
the transition system includes all properties that are system-specific, so that the other
modules can be fully semantics-agnostic: its API can be queried to return (given a
configuration) the list of valid actions, the action costs, a successor configuration after
a given action, the partial tree already built (as an on-demand computation based on
transition history), and whether the state is final. The classifier is also seen as a black
box by the rest of the software, with a score/predict/update API (plus some initial-
ization functions) that makes it possible to integrate any stateless classifier; support
for stateful classifiers (like LSTMs) is not yet included but is planned for future work
as an API extension. As for the feature model, it relies on high-level properties of the
parse configurations (ith word in buffer, head of the top of the stack, etc.) to generate
feature representations, either as atomic or templated features (to accommodate both
linear and non-linear classifiers).

The three other components (search, oracle and training strategy) are based on an
extensive set of built-in parameters which can be set and combined at will. Following
Aufrant et al. (2016a), the whole search/learn procedure is based on beam search and
global dynamic oracles, from which all other strategies (greedy search, static oracle,
local training) are derived as special cases.

66

L. Aufrant, G. Wisniewski PanParser (57–86)

On top of algorithmic analyses, keeping those components independent has also
required specific implementation choices and abstraction layers; more details on that
matter are provided in Supplementary C.

After a brief description of how dependency trees are represented internally (§3.1),
the built-in components of PanParser are described in §3.2. Further technical details
are then provided on other functionalities of PanParser: enriched inputs (§3.3), parser
ensembling (§3.4), a built-in PoS tagger (§3.5) and the error analysis tools (§3.6). See
Supplementary B for an illustration of how these functionalities can be used and com-
bined.

3.1. Representation of a dependency tree

Since there is a one-to-one correspondence between child tokens and dependency
edges, a dependency tree can be easily modeled as a list of head tokens with padding
elements (a dummy Root token or symbols denoting the start and end of sentences).
In PanParser, it is represented as a list of integers, the integer at position i correspond-
ing to the index of the head governing the ith word in the sentence. Relation labels can
similarly be represented as a list of strings, for labeled parsing. Figure 1 illustrates the
resulting representation of a tree, with three variants depending on the position of the
Root token (None, First and Last, as empirically compared by Ballesteros and Nivre
(2013)); in PanParser the last position is used by default, but the first position can be
set to be used internally – parsing without Root token is currently not supported.

....You ..’re ..not ..thinking ..fourth-dimensionally ..!
..PRON ..AUX ..PART ..VERB ..ADV ..PUNCT

......

You0 ’re1 not2 thinking3 fourth-dimensionally4 !5

3 3 3 None 3 3

ROOT0 You1 ’re2 not3 thinking4 fourth-dimensionally5 !6

None 4 4 4 0 4 4

<start>0 You1 ’re2 not3 thinking4 fourth-dimensionally5 !6 ROOT7

None 4 4 4 7 4 4 0

None nsubj aux advmod root advmod punct None

Figure 1: Dependency tree representations with various Root positions.

67

PBML 111 OCTOBER 2018

3.2. Built-in components

Transition system PanParser implements four transition systems (ArcEager, ArcHy-
brid, ArcStandard and NonMonotonicArcEager) as well as variants for partial out-
put and short-spanned dependencies. For all, both versions with the Root token in
leading and trailing positions are implemented. Some experimental options are also
included, like adding head direction constraints to ArcEager.

High-level functions (extracting all possible atomic features, enumerating stack
tokens, etc.) are available to facilitate the implementation of other transition systems
based on a stack and a buffer; for other state structures they remain to be implemented.

A formal description of all built-in systems and their action costs is provided in
Supplementary A. For each one, the soundness of action costs has been experimen-
tally validated by exhaustive search from all configurations on all possible trees for
sentences under 10 tokens.

Classifier The default classifier used by PanParser is the multi-class averaged (struc-
tured) perceptron, following Collins and Roark (2004). Support for neural networks is
also included, and a vanilla feedforward neural network (based on Keras and Theano)
is implemented as a proof of concept.

Additionally, generic classifiers are provided for joint prediction and voting, which
are in fact wrappers around other classifiers. Joint classifiers are natively used for in-
stance to enable labeled parsing: based on the same feature representations, actions
and relation labels are predicted in parallel by two classifiers (which may or may not
share parameters, depending on the implemented classifiers). As for the voting wrap-
per, it enables parser ensembling with (weighted) votes at the action level.

Feature model PanParser is shipped with the feature templates of Zhang and Nivre
(2011), together with options that extend them with morphological features and pre-
trained embeddings; it is also possible to use the atomic version of the features (for
non-linear classifiers) or to write custom templates, based on the provided atomic
features (including both coarse and fine-grained PoS tags). In any case, two global
parameters control whether lexicalized features and label information are included
(to build delexicalized and unlabeled parsers).

Search As explained above, PanParser allows both greedy and beam search, the for-
mer being a special case of the latter; it consequently implements the data structure
introduced for beam search by Goldberg et al. (2013), based on immutable objects and
distributed representations. This implementation is, however, suboptimal for vanilla
greedy parsers, which can be optimized using mutable objects, so that we also pro-
vide an alternate implementation dedicated to greedy parser states.

The mutable version represents the state of the parser as a buffer pointer, a stack
and a parse tree, that get updated whenever a transition is applied. This structure

68

L. Aufrant, G. Wisniewski PanParser (57–86)

makes much information available in constant time (which notably speeds up fea-
ture extraction), but it cannot be used for beam search without costly object copies
(Goldberg et al., 2013) and has consequently limited functionalities. The mathemati-
cal equivalence of both implementations for greedy parsing has been experimentally
validated.

In Goldberg et al. (2013)’s version, which is the default, a parser state is just an
immutable set of a few indexes and pointers to other parser states (previous state and
tail of the stack).3 Thus, derivations are represented as linked lists, and the complete
information about a parser state (content of the stack, transition history, current parse
tree) is distributed across all previous states, without duplicates. While accessing a
deep stack element is necessarily slower than in the local implementation, factoring
information in this way makes beam search and global training cheaper, both in time
and memory usage.

Oracle Both static and dynamic oracles (including global dynamic ones) are sup-
ported by PanParser; static oracles are actually computed using dynamic ones – the
reference derivation is built by pre-parsing the sentence while restricting the search
space to zero-cost actions and ignoring their score.

Training strategy PanParser supports both local and global training, with several
strategies: early update, max-violation, full update (even though Huang et al. (2012)
discourage its use), several variants of those (e.g. to optimize the similarity of the
positive and negative configurations), together with the restart option and arbitrary
exploration policies.

As explained in §2.6, local and global training are unified under the same frame-
work (Algorithm 1), in which the basic training unit is the model update, and all
training strategies follow the same workflow: initialize a beam in a given configu-
ration, extend the beam repeatedly until an error is flagged, select a pair of update
configurations among the candidates, perform the update, and iterate until the ex-
ample is considered processed.

The various update strategies for global training can themselves be unified under
the same framework, as shown by Algorithm 2 (Correct being the error criterion used
by global dynamic oracles): with this viewpoint, EarlyUpdate and MaxViolation
only differ in the choice of iupdate, which is actually how they are implemented in

3Compared to their work, we enriched the representation of the stack and buffer pointers, with the
current number of children, the two leftmost and the two rightmost children. This enables rich feature
templates like Zhang and Nivre (2011)’s.

69

PBML 111 OCTOBER 2018

PanParser (with lazy expansion of the beam and anticipation of errors). Appendix B
further describes how those strategies fit within the dynamic oracle framework.

Algorithm 2: Basic scheme for training strategies (Aufrant et al., 2016a).
At time t0: B0 = {c1, c2, ..., ck ′ } , k ′ ≤ k

k: maximum beam size (1 for local training)
λi: optional focus on early/late transitions (1 in all state-of-the-art strategies)
Function TrainingUnit(B0, y, θ)

B1, B2, ..., BN ← Decode(B0, θ
t0 , k) such that Final(BN)

if ¬Correcty(top(BN)|B0) then
i0 ← index of the first error detection (in Bi0)
The algorithm chooses in turn:
• using {Bi}i , i0, θ

t0 ,Correcty: a positive configuration c+ for each
derivation length
• using {Bi}i , i0, θ

t0 , {c+}: a negative configuration c− for each
derivation length
• using {Bi}i , i0, θ

t0 , {c+} , {c−}: a derivation length iupdate

c+iupdate
= cempty ◦ t+0 ◦ · · · ◦ t+iupdate

c−iupdate
= cempty ◦ t−0 ◦ · · · ◦ t−iupdate

The global update is effected, e.g. with the perceptron rule:
• θt0+1 ← θt0 +

∑iupdate

i=0 λi
[
ϕ(t+i)) − ϕ(t−i)

]
On top of the errors flagged by the oracle, PanParser also accepts other non-standard

stopping criteria, like forcing the beam to reinitialize every few actions (thus prevent-
ing updates on very distant configurations).

3.3. Enriched input: partial trees and constraints

Compared to traditional implementations, PanParser makes an extensive use of
the dynamic oracle framework to leverage partial trees in several ways: it supports
training on partially annotated sentences (which enables robustness to incomplete
datasets, but also fine-grained subsampling), predicting under partial constraints
(when the head, or at least the dependency direction, is already provided for a few
tokens) and training under constraints (for better train-test consistency, and using
features extracted from the constraints). It is also possible, using the corresponding
transition systems, to learn to predict partial trees directly – in the PanParser frame-
work, training and prediction unfold as usual even for such partial parsers.

The reason why dynamic oracles enable training on examples with partial anno-
tations is that they make the updates error-driven: when no information is provided,
the cost is simply under-estimated and no update occurs. This behavior holds even
for more complex dynamic oracles, either global or non-arc-decomposable (see Ap-

70

L. Aufrant, G. Wisniewski PanParser (57–86)

pendix A). So, provided that the action costs are implemented appropriately (i.e. not
assuming the existence of annotations), which is the case in PanParser, training on
such data is possible by design. Fine-grained subsampling can then be entertained by
on-the-fly deletion of some reference dependencies, before training on a given exam-
ple; error-driven training takes care of exploiting the remaining dependencies.

As for constrained training and prediction, they rely on a straightforward action
filtering, based on dynamic oracles: restricting the search space to parses compatible
with these constraints simply consists in restricting the legal actions to those that have
zero cost with respect to the constraints. This way, the constraint dependencies are
naturally respected and included by the parser, which in fact produces a standard
derivation, without any pre- or post-processing.

3.4. Parser ensembling

Two strategies for parser ensembling are implemented under the PanParser frame-
work: parser cascading (Aufrant and Wisniewski, 2017), which consists in pipelining
a series of partial parsers, and MST-based reparsing (Sagae and Lavie, 2006). Repars-
ing enables a token-level vote on the output of several parsers; when weighting the
contribution of each parser, which PanParser allows, this strategy can for instance
be used in cross-lingual parsing, to combine various sources (Rosa and Žabokrtský,
2015).

3.5. Support for other structured prediction tasks: PoS tagging

PanParser also has a built-in PoS tagger, based on the same structured prediction
framework. It shows how this framework can be used for other structured prediction
tasks than dependency parsing. This unification also paves the way to joint tagging
and parsing with PanParser.

The structure and usage of the tagger are similar to PanParser, albeit simpler be-
cause it does not involve transition systems. The main difference is that at training
time, the tagger also builds a tag dictionary of unambiguous words, with almost al-
ways the same tag (and enough occurrences) in the dataset, and at prediction time it
tries looking up the tag in the dictionary, before defaulting to actual predictions.

3.6. Error analysis

In order to facilitate extensive error analysis, PanParser is shipped with a series
of evaluation tools, both for computing overall accuracies and fine-grained statistics.
Several built-in criteria (PoS tags, dependency length, direction, position in sentence,
word frequency, etc.) can be used (and combined) to guide the analysis or narrow the
results. Examples of the studies enabled by PanParser are presented in Supplemen-
tary B.

71

PBML 111 OCTOBER 2018

4. Experiments

The accuracy of PanParser is evaluated on the 73 treebanks of the Universal Depen-
dencies 2.0 (Nivre et al., 2017a,b). Table 2 reports the average scores achieved with the
main few settings, together with similar measures for three other open source parsers:
MaltParser 1.9 (Nivre et al., 2006a), MSTParser 0.5.1 (McDonald et al., 2005) and UD-
Pipe 1.1 (Straka and Straková, 2017).4

Our system appears competitive with the other parsers, all of them being outper-
formed by an 8-sized beam PanParser. Further comparison with UDPipe reveals that
both systems are actually on par on large treebanks (more than 500 sentences), while
PanParser outperforms all parsers by a large margin on small treebanks (less than 500
sentences).

As a side note, the gains achieved by PanParser when changing the training strat-
egy and Root position also appear consistent with the literature (Goldberg and Nivre,
2012; Zhang and Nivre, 2012; Huang et al., 2012; Ballesteros and Nivre, 2013), which
validates previous results in this new framework.

5. Conclusion and future work

We have presented PanParser, a transition-based dependency parser implemented
with the concern of algorithmic variation completeness, intended both for practical
uses and as a parsing research tool. It currently supports numerous options and cus-
tomizations for several aspects of the parsing algorithms.

PanParser is, however, still a work in progress, and we already plan several extra
developments. We intend to take a further step to customization completeness, by
allowing to parse without dummy Root token, and to extract arbitrary user-defined
atomic features. We will also add built-in transition systems that are not stack- and
buffer-based: the Covington system, based on two lists and a buffer, and for which
Gómez-Rodríguez and Fernández-González (2015) already derived a dynamic oracle;
the SwapStandard system (using a stack and a list), which requires deriving new ef-
ficient dynamic oracles; and the EasyFirst system, based on a single list. Another
planned extension is to add relaxed types of arc constraints, e.g. ambiguous con-
straints, and span constraints.

Finally, we will add support for stateful classifiers to add a stack-LSTM parser im-
plementation, and allow arbitrary joint prediction, which should achieve full Pan-
Parser support for state-of-the-art systems like that of Swayamdipta et al. (2016).

4We use the default settings for MaltParser (ArcEager parser with a linear classifier and no pseudo-
projectivization) and MSTParser (first-order projective parser), and Straka (2017)’s hyperparameters for
UDPipe.

72

L. Aufrant, G. Wisniewski PanParser (57–86)

System Root position Greedy Greedy dynamic Early update Max-violation

ArcEager

First 77.89 78.97 80.29 80.36
Small∥Large 66.27∥81.15 68.17∥82.00 68.48∥83.60 68.42∥83.71

Last 78.63 79.43 80.35 80.40
Small∥Large 67.60∥81.72 68.70∥82.44 68.58∥83.66 68.87∥83.63

ArcHybrid

First 75.72 76.54 79.39 79.78
Small∥Large 66.56∥78.29 66.49∥79.36 66.72∥82.95 68.43∥82.96

Last 76.02 77.05 79.70 79.86
Small∥Large 66.74∥78.62 67.42∥79.76 68.39∥82.87 68.61∥83.02

MaltParser 72.88
58.87∥76.82

MSTParser 79.52
65.59∥83.43

UDPipe 79.47
64.48∥83.67

Table 2: Average UAS achieved by PanParser on UD 2.0 with various strategies,
compared to several open source parsers. ‘Greedy’ results are computed with a
static oracle, but for fair comparison of both oracles the non-projective examples are
also exploited (using a precomputed reference approximated by a dynamic oracle).
‘Greedy dynamic’ chooses exploration after each update. The ‘Early update’ and
‘Max-violation’ strategies use global dynamic oracles without restart. ‘Small’ and
‘Large’ results distinguish the treebanks under and over 500 sentences. For fair com-
parison, UDPipe is trained without pre-trained embeddings, which would have sig-
nificantly increased the available information.

Acknowledgments

This work has been partly funded by the French Direction générale de l’armement
and by the Agence Nationale de la Recherche (ParSiTi project, ANR-16-CE33-0021).

Bibliography
Agirre, Eneko, Kepa Bengoetxea, Koldo Gojenola, and Joakim Nivre. Improving Dependency

Parsing with Semantic Classes. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 699–703, Portland, Ore-
gon, USA, 6 2011. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P11-2123.

Alberti, Chris, David Weiss, Greg Coppola, and Slav Petrov. Improved Transition-Based Pars-
ing and Tagging with Neural Networks. In Proceedings of the 2015 Conference on Empirical

73

http://www.aclweb.org/anthology/P11-2123
http://www.aclweb.org/anthology/P11-2123

PBML 111 OCTOBER 2018

Methods in Natural Language Processing, pages 1354–1359, Lisbon, Portugal, 9 2015. Associa-
tion for Computational Linguistics. URL http://aclweb.org/anthology/D15-1159.

Andor, Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally Normalized Transition-Based Neu-
ral Networks. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2442–2452, Berlin, Germany, 8 2016. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1231.

Aufrant, Lauriane and Guillaume Wisniewski. LIMSI@CoNLL’17: UD Shared Task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies, pages 163–173, Vancouver, Canada, 8 2017. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/K17-3017.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Ne nous arrêtons pas en si bon
chemin: améliorations de l’apprentissage global d’analyseurs en dépendances par transi-
tion. In Actes de la 23e conférence sur le Traitement Automatique des Langues Naturelles, pages
248–261, 2016a.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Zero-resource Dependency
Parsing: Boosting Delexicalized Cross-lingual Transfer with Linguistic Knowledge. In Pro-
ceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Tech-
nical Papers, pages 119–130, Osaka, Japan, 12 2016b. The COLING 2016 Organizing Com-
mittee. URL http://aclweb.org/anthology/C16-1012.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Don’t Stop Me Now! Us-
ing Global Dynamic Oracles to Correct Training Biases of Transition-Based Dependency
Parsers. In Proceedings of the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 2, Short Papers, pages 318–323, Valencia, Spain, 4 2017. Associ-
ation for Computational Linguistics. URL http://www.aclweb.org/anthology/E17-2051.

Aufrant, Lauriane, Guillaume Wisniewski, and François Yvon. Exploiting Dynamic Oracles
to Train Projective Dependency Parsers on Non-Projective Trees. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pages 413–419, New Orleans, Louisiana, 6
2018. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
N18-2066.

Ballesteros, Miguel and Bernd Bohnet. Automatic Feature Selection for Agenda-Based Depen-
dency Parsing. In Proceedings of COLING 2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 794–805, Dublin, Ireland, 8 2014. Dublin City
University and Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/C14-1076.

Ballesteros, Miguel and Joakim Nivre. MaltOptimizer: An Optimization Tool for MaltParser.
In Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 58–62, Avignon, France, 4 2012. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/E12-2012.

Ballesteros, Miguel and Joakim Nivre. Going to the Roots of Dependency Parsing. Com-
putational Linguistics, 39(1):5–13, 2013. URL http://www.aclweb.org/anthology/J/J13/
J13-1002.pdf.

74

http://aclweb.org/anthology/D15-1159
http://www.aclweb.org/anthology/P16-1231
http://www.aclweb.org/anthology/K17-3017
http://aclweb.org/anthology/C16-1012
http://www.aclweb.org/anthology/E17-2051
http://www.aclweb.org/anthology/N18-2066
http://www.aclweb.org/anthology/N18-2066
http://www.aclweb.org/anthology/C14-1076
http://www.aclweb.org/anthology/C14-1076
http://www.aclweb.org/anthology/E12-2012
http://www.aclweb.org/anthology/J/J13/J13-1002.pdf
http://www.aclweb.org/anthology/J/J13/J13-1002.pdf

L. Aufrant, G. Wisniewski PanParser (57–86)

Ballesteros, Miguel, Yoav Goldberg, Chris Dyer, and Noah A. Smith. Training with Exploration
Improves a Greedy Stack LSTM Parser. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2005–2010, Austin, Texas, 11 2016. Association
for Computational Linguistics. URL https://aclweb.org/anthology/D16-1211.

Björkelund, Anders and Joakim Nivre. Non-Deterministic Oracles for Unrestricted Non-
Projective Transition-Based Dependency Parsing. In Proceedings of the 14th International Con-
ference on Parsing Technologies, pages 76–86, Bilbao, Spain, 7 2015. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/W15-2210.

Bohnet, Bernd, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter, and Jan Hajič.
Joint morphological and syntactic analysis for richly inflected languages. Transactions of the
Association for Computational Linguistics, 1:415–428, 2013.

Chen, Danqi and Christopher Manning. A Fast and Accurate Dependency Parser using Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, Doha, Qatar, 10 2014. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/D14-1082.

Chen, Xinchi, Yaqian Zhou, Chenxi Zhu, Xipeng Qiu, and Xuanjing Huang. Transition-based
Dependency Parsing Using Two Heterogeneous Gated Recursive Neural Networks. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1879–1889, Lisbon, Portugal, 9 2015. Association for Computational Linguistics. URL
http://aclweb.org/anthology/D15-1215.

Choi, Jinho D and Nicolas Nicolov. K-best, locally pruned, transition-based dependency pars-
ing using robust risk minimization. Recent Advances in Natural Language Processing V, 309:
205–216, 2009.

Choi, Jinho D. and Martha Palmer. Getting the Most out of Transition-based Dependency Pars-
ing. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 687–692, Portland, Oregon, USA, 6 2011. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2121.

Collins, Michael and Brian Roark. Incremental Parsing with the Perceptron Algorithm. In
Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main
Volume, pages 111–118, Barcelona, Spain, 7 2004. doi: 10.3115/1218955.1218970. URL http:
//www.aclweb.org/anthology/P04-1015.

Covington, Michael A. A Fundamental Algorithm for Dependency Parsing. In Proceedings of
the 39th annual ACM southeast conference, pages 95–102, 2001.

de Lhoneux, Miryam, Sara Stymne, and Joakim Nivre. Arc-Hybrid Non-Projective Depen-
dency Parsing with a Static-Dynamic Oracle. In Proceedings of the 15th International Confer-
ence on Parsing Technologies, pages 99–104, Pisa, Italy, 9 2017. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W17-6314.

Dozat, Timothy and Christopher D. Manning. Deep Biaffine Attention for Neural Dependency
Parsing. ICLR 2017, 2017. URL http://arxiv.org/abs/1611.01734.

Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. Transition-
Based Dependency Parsing with Stack Long Short-Term Memory. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint

75

https://aclweb.org/anthology/D16-1211
http://www.aclweb.org/anthology/W15-2210
http://www.aclweb.org/anthology/D14-1082
http://aclweb.org/anthology/D15-1215
http://www.aclweb.org/anthology/P11-2121
http://www.aclweb.org/anthology/P04-1015
http://www.aclweb.org/anthology/P04-1015
http://www.aclweb.org/anthology/W17-6314
http://arxiv.org/abs/1611.01734

PBML 111 OCTOBER 2018

Conference on Natural Language Processing (Volume 1: Long Papers), pages 334–343, Beijing,
China, 7 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P15-1033.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. Improving Transition-Based De-
pendency Parsing with Buffer Transitions. In Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language Learning,
pages 308–319, Jeju Island, Korea, 7 2012. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D12-1029.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. A Full Non-Monotonic Transi-
tion System for Unrestricted Non-Projective Parsing. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 288–
298, Vancouver, Canada, 7 2017. Association for Computational Linguistics. URL http:
//aclweb.org/anthology/P17-1027.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. A Dynamic Oracle for Linear-Time
2-Planar Dependency Parsing. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers), pages 386–392, New Orleans, Louisiana, 6 2018a. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/N18-2062.

Fernández-González, Daniel and Carlos Gómez-Rodríguez. Non-Projective Dependency Pars-
ing with Non-Local Transitions. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers), pages 693–700, New Orleans, Louisiana, 6 2018b. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/N18-2109.

Goldberg, Yoav and Michael Elhadad. An Efficient Algorithm for Easy-First Non-Directional
Dependency Parsing. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 742–750, Los
Angeles, California, 6 2010. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/N10-1115.

Goldberg, Yoav and Joakim Nivre. A Dynamic Oracle for Arc-Eager Dependency Parsing. In
Proceedings of COLING 2012, pages 959–976, Mumbai, India, 12 2012. The COLING 2012
Organizing Committee. URL http://www.aclweb.org/anthology/C12-1059.

Goldberg, Yoav and Joakim Nivre. Training Deterministic Parsers with Non-Deterministic Or-
acles. Transactions of the Association for Computational Linguistics, 1:403–414, 2013. ISSN 2307-
387X. URL https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145.

Goldberg, Yoav, Kai Zhao, and Liang Huang. Efficient Implementation of Beam-Search Incre-
mental Parsers. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 628–633, Sofia, Bulgaria, 8 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P13-2111.

Goldberg, Yoav, Francesco Sartorio, and Giorgio Satta. A Tabular Method for Dynamic Oracles
in Transition-Based Parsing. Transactions of the Association for Computational Linguistics, 2:
119–130, 2014. ISSN 2307-387X. URL https://tacl2013.cs.columbia.edu/ojs/index.php/
tacl/article/view/302.

76

http://www.aclweb.org/anthology/P15-1033
http://www.aclweb.org/anthology/P15-1033
http://www.aclweb.org/anthology/D12-1029
http://aclweb.org/anthology/P17-1027
http://aclweb.org/anthology/P17-1027
http://www.aclweb.org/anthology/N18-2062
http://www.aclweb.org/anthology/N18-2109
http://www.aclweb.org/anthology/N10-1115
http://www.aclweb.org/anthology/N10-1115
http://www.aclweb.org/anthology/C12-1059
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/145
http://www.aclweb.org/anthology/P13-2111
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/302
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/302

L. Aufrant, G. Wisniewski PanParser (57–86)

Gómez-Rodríguez, Carlos and Daniel Fernández-González. An Efficient Dynamic Oracle for
Unrestricted Non-Projective Parsing. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 256–261, Beijing, China, 7 2015. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P15-2042.

Gómez-Rodríguez, Carlos and Joakim Nivre. A Transition-Based Parser for 2-Planar Depen-
dency Structures. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1492–1501, Uppsala, Sweden, 7 2010. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/P10-1151.

Gómez-Rodríguez, Carlos and Joakim Nivre. Divisible transition systems and multiplanar de-
pendency parsing. Computational Linguistics, 39(4):799–845, 2013.

Gómez-Rodríguez, Carlos, Francesco Sartorio, and Giorgio Satta. A Polynomial-Time Dynamic
Oracle for Non-Projective Dependency Parsing. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 917–927, Doha, Qatar, 10
2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
D14-1099.

Haulrich, Martin. Transition-Based Parsing with Confidence-Weighted Classification. In
Proceedings of the ACL 2010 Student Research Workshop, pages 55–60, Uppsala, Sweden, 7
2010. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P10-3010.

Honnibal, Matthew and Mark Johnson. An Improved Non-monotonic Transition System for
Dependency Parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1373–1378, Lisbon, Portugal, 9 2015. Association for Computa-
tional Linguistics. URL http://aclweb.org/anthology/D15-1162.

Honnibal, Matthew, Yoav Goldberg, and Mark Johnson. A Non-Monotonic Arc-Eager Tran-
sition System for Dependency Parsing. In Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 163–172, Sofia, Bulgaria, 8 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/W13-3518.

Huang, Liang and Kenji Sagae. Dynamic Programming for Linear-Time Incremental Parsing.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
1077–1086, Uppsala, Sweden, 7 2010. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P10-1110.

Huang, Liang, Suphan Fayong, and Yang Guo. Structured Perceptron with Inexact Search. In
Proceedings of the 2012 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 142–151, Montréal, Canada, 6
2012. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
N12-1015.

Kiperwasser, Eliyahu and Yoav Goldberg. Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations. Transactions of the Association for Computational
Linguistics, 4:313–327, 2016. ISSN 2307-387X. URL https://transacl.org/ojs/index.php/
tacl/article/view/885.

Kübler, Sandra, Ryan McDonald, and Joakim Nivre. Dependency parsing. Synthesis Lectures
on Human Language Technologies, 1(1):1–127, 2009.

77

http://www.aclweb.org/anthology/P15-2042
http://www.aclweb.org/anthology/P10-1151
http://www.aclweb.org/anthology/D14-1099
http://www.aclweb.org/anthology/D14-1099
http://www.aclweb.org/anthology/P10-3010
http://www.aclweb.org/anthology/P10-3010
http://aclweb.org/anthology/D15-1162
http://www.aclweb.org/anthology/W13-3518
http://www.aclweb.org/anthology/P10-1110
http://www.aclweb.org/anthology/P10-1110
http://www.aclweb.org/anthology/N12-1015
http://www.aclweb.org/anthology/N12-1015
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885

PBML 111 OCTOBER 2018

Kuhlmann, Marco, Carlos Gómez-Rodríguez, and Giorgio Satta. Dynamic Programming Al-
gorithms for Transition-Based Dependency Parsers. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies, pages 673–
682, Portland, Oregon, USA, 6 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1068.

Lacroix, Ophélie, Lauriane Aufrant, Guillaume Wisniewski, and François Yvon. Frustratingly
Easy Cross-Lingual Transfer for Transition-Based Dependency Parsing. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1058–1063, San Diego, California, 6 2016. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/N16-1121.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Natural Language Processing, pages 523–530,
Vancouver, British Columbia, Canada, 10 2005. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/H/H05/H05-1066.

Nilsson, Peter and Pierre Nugues. Automatic Discovery of Feature Sets for Dependency Pars-
ing. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling
2010), pages 824–832, Beijing, China, 8 2010. Coling 2010 Organizing Committee. URL
http://www.aclweb.org/anthology/C10-1093.

Nivre, Joakim. An Efficient Algorithm for Projective Dependency Parsing. In Proceedings of the
8th International Workshop on Parsing Technologies, IWPT 2003, Nancy, France, 2003.

Nivre, Joakim. Incrementality in Deterministic Dependency Parsing. In Keller, Frank, Stephen
Clark, Matthew Crocker, and Mark Steedman, editors, Proceedings of the ACL Workshop Incre-
mental Parsing: Bringing Engineering and Cognition Together, pages 50–57, Barcelona, Spain, 7
2004. Association for Computational Linguistics.

Nivre, Joakim. Algorithms for Deterministic Incremental Dependency Parsing. Comput. Lin-
guist., 34(4):513–553, 2008. ISSN 0891-2017. doi: 10.1162/coli.07-056-R1-07-027. URL
http://dx.doi.org/10.1162/coli.07-056-R1-07-027.

Nivre, Joakim. Non-Projective Dependency Parsing in Expected Linear Time. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP, pages 351–359, Suntec, Singapore, 8
2009. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P/P09/P09-1040.

Nivre, Joakim and Daniel Fernández-González. Arc-eager parsing with the tree constraint.
Computational linguistics, 40(2):259–267, 2014.

Nivre, Joakim, Johan Hall, and Jens Nilsson. Memory-Based Dependency Parsing. In Ng,
Hwee Tou and Ellen Riloff, editors, HLT-NAACL 2004 Workshop: Eighth Conference on Compu-
tational Natural Language Learning (CoNLL-2004), pages 49–56, Boston, Massachusetts, USA,
May 6 - May 7 2004. Association for Computational Linguistics.

Nivre, Joakim, Johan Hall, and Jens Nilsson. MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing. In Proceedings of the Fifth International Conference on Language Resources
and Evaluation (LREC’06), volume 6, pages 2216–2219, 2006a.

78

http://www.aclweb.org/anthology/P11-1068
http://www.aclweb.org/anthology/N16-1121
http://www.aclweb.org/anthology/H/H05/H05-1066
http://www.aclweb.org/anthology/C10-1093
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://www.aclweb.org/anthology/P/P09/P09-1040
http://www.aclweb.org/anthology/P/P09/P09-1040

L. Aufrant, G. Wisniewski PanParser (57–86)

Nivre, Joakim, Johan Hall, Jens Nilsson, Gülşen Eryiǧit, and Svetoslav Marinov. Labeled
Pseudo-Projective Dependency Parsing with Support Vector Machines. In Proceedings of the
Tenth Conference on Computational Natural Language Learning (CoNLL-X), pages 221–225, New
York City, 6 2006b. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/W/W06/W06-2933.

Nivre, Joakim, Yoav Goldberg, and Ryan McDonald. Constrained arc-eager dependency pars-
ing. Computational Linguistics, 40(2):249–527, 2014.

Nivre, Joakim, Željko Agić, Lars Ahrenberg, et al. Universal Dependencies 2.0, 2017a. URL
http://hdl.handle.net/11234/1-1983. LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University, Prague.

Nivre, Joakim, Željko Agić, Lars Ahrenberg, et al. Universal Dependencies 2.0 – CoNLL
2017 Shared Task Development and Test Data, 2017b. URL http://hdl.handle.net/11234/
1-2184. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguis-
tics, Charles University.

Pitler, Emily and Ryan McDonald. A Linear-Time Transition System for Crossing Interval
Trees. In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 662–671, Denver, Colorado,
May–June 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/N15-1068.

Qi, Peng and Christopher D. Manning. Arc-swift: A Novel Transition System for Dependency
Parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 110–117, Vancouver, Canada, 7 2017. Association for
Computational Linguistics. URL http://aclweb.org/anthology/P17-2018.

Rosa, Rudolf and Zdeněk Žabokrtský. KLcpos3 - a Language Similarity Measure for Delexi-
calized Parser Transfer. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 243–249, Beijing, China, 7 2015. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/P15-2040.

Sagae, Kenji and Alon Lavie. Parser Combination by Reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 129–
132, New York City, USA, 6 2006. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/N/N06/N06-2033.

Stenetorp, Pontus. Transition-based dependency parsing using recursive neural networks. In
NIPS Workshop on Deep Learning, 2013.

Straka, Milan. CoNLL 2017 Shared Task - UDPipe Baseline Models and Supplementary Mate-
rials, 2017. URL http://hdl.handle.net/11234/1-1990. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics, Charles University.

Straka, Milan and Jana Straková. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 88–99, Vancouver, Canada, 8 2017. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/K17-3009.

79

http://www.aclweb.org/anthology/W/W06/W06-2933
http://www.aclweb.org/anthology/W/W06/W06-2933
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://www.aclweb.org/anthology/N15-1068
http://www.aclweb.org/anthology/N15-1068
http://aclweb.org/anthology/P17-2018
http://www.aclweb.org/anthology/P15-2040
http://www.aclweb.org/anthology/N/N06/N06-2033
http://www.aclweb.org/anthology/N/N06/N06-2033
http://hdl.handle.net/11234/1-1990
http://www.aclweb.org/anthology/K17-3009

PBML 111 OCTOBER 2018

Swayamdipta, Swabha, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Greedy, Joint
Syntactic-Semantic Parsing with Stack LSTMs. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, pages 187–197, Berlin, Germany, 8 2016. Asso-
ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/K16-1019.

Weiss, David, Chris Alberti, Michael Collins, and Slav Petrov. Structured Training for Neural
Network Transition-Based Parsing. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 323–333, Beijing, China, 7 2015. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P15-1032.

Zeman, Daniel and Philip Resnik. Cross-Language Parser Adaptation between Related Lan-
guages. In Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages
35–42, 2008.

Zhang, Yue and Stephen Clark. A Tale of Two Parsers: Investigating and Combining Graph-
based and Transition-based Dependency Parsing. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing, pages 562–571, Honolulu, Hawaii, 10
2008. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
D08-1059.

Zhang, Yue and Joakim Nivre. Transition-based Dependency Parsing with Rich Non-local Fea-
tures. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 188–193, Portland, Oregon, USA, 6 2011. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2033.

Zhang, Yue and Joakim Nivre. Analyzing the Effect of Global Learning and Beam-Search on
Transition-Based Dependency Parsing. In Proceedings of COLING 2012: Posters, pages 1391–
1400, Mumbai, India, 12 2012. The COLING 2012 Organizing Committee. URL http://www.
aclweb.org/anthology/C12-2136.

Zhao, Kai, James Cross, and Liang Huang. Optimal Incremental Parsing via Best-First Dynamic
Programming. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 758–768, Seattle, Washington, USA, 10 2013. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/D13-1071.

Zhou, Hao, Yue Zhang, Shujian Huang, and Jiajun Chen. A Neural Probabilistic Structured-
Prediction Model for Transition-Based Dependency Parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), pages 1213–1222, Beijing,
China, 7 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P15-1117.

80

http://www.aclweb.org/anthology/K16-1019
http://www.aclweb.org/anthology/P15-1032
http://www.aclweb.org/anthology/D08-1059
http://www.aclweb.org/anthology/D08-1059
http://www.aclweb.org/anthology/P11-2033
http://www.aclweb.org/anthology/C12-2136
http://www.aclweb.org/anthology/C12-2136
http://www.aclweb.org/anthology/D13-1071
http://www.aclweb.org/anthology/P15-1117
http://www.aclweb.org/anthology/P15-1117

L. Aufrant, G. Wisniewski PanParser (57–86)

Appendix A. Deriving a dynamic oracle

In this appendix, we describe more precisely the dynamic oracle framework and
how to derive such oracles, as well as some alterations made to the original framework
to extend its applicability. Indeed, PanParser does not implement the action cost, but
rather a generalized version which simplifies the oracle derivation for some systems,
and also enables straightforward approximations in cases when dynamic oracles have
only been inexactly derived (as done by Aufrant et al. (2018)) or not derived at all. We
discuss here the formal grounding of this extension, as well as its limits.

To specify dynamic oracles, Goldberg and Nivre (2012) formally define the cost
of an action as ‘the loss difference between the minimum loss tree reachable before and after’
performing the action in question. Considering the minimum loss is equivalent to
computing the maximum UAS achieved on the given example, or (without normal-
ization) the maximal number of correct attachments (henceforth denoted CA) on that
sentence. So, the cost is evaluated by computing the maximum CA over all deriva-
tions resulting from the given configuration (c), and the maximum over only those
following the given action (t).

Cost(c,t) =
[

max
t1,···,tend

CA(c ◦ t1 ◦ · · · ◦ tend)

]
−

[
max

t2,···,tend

CA(c ◦ t ◦ t2 ◦ · · · ◦ tend)

]
By definition of the maximum, Cost is always non-negative, and in every config-

uration at least one action has zero cost.

Arc-decomposable systems Exhaustively exploring all the successor derivations is
computationally too expensive, and thus Goldberg and Nivre (2013) define the no-
tion of arc-decomposition to simplify cost computation. A transition system is arc-
decomposable if for any configuration c, all arcs reachable from c (i.e. predicted by at
least one transition sequence after c) can be reached conjointly by a single transition
sequence. This means that at the level of the transition system, there is no interaction
between predicted arcs, and no incompatibility effect.

If we define ForbiddenArcs(c,t) as the number of arcs that are reachable from c

but not from c◦t, Goldberg and Nivre (2013) state that for arc-decomposable systems,
these arcs are the only source of cost, and thus:

Cost(c,t) = ForbiddenArcs(c,t)

Non-arc-decomposable systems When this property does not hold, on the other
hand, there are extra sources of cost to account for, because of incompatible arcs. In
case of such incompatibilities, at some point, adding a gold arc will indeed imply
renouncing to another gold arc, thereby inserting an error. But this cost cannot be at-
tributed to the given action, it is in fact due to a much earlier action, which introduced

81

PBML 111 OCTOBER 2018

the incompatibility. Besides, sometimes in such cases, ForbiddenArcs is non-zero for
all legal actions, in which case it is obviously not identical to the Cost function.

There are two main strategies to compute the action cost in non-arc-decomposable
systems. The first is to explicitly compute the loss before and after the action, typically
using dynamic programming (Goldberg et al., 2014), and then retain the difference.
The second is to directly model the cost, by formalizing the configurations holding
arc incompatibilities, and detecting when such incompatibilities are inserted (Gómez-
Rodríguez and Fernández-González, 2015). When possible, this is computationally
cheaper than a full loss computation.

Relaxed action cost To formalize the cost in a non-arc-decomposable system, we
define ExpectedCost(c) as the number of arcs that are still reachable from c but do
not belong to the final output (considering some final configuration, reachable from
c and with maximal UAS). This counts the number of current incompatibilities. The
action cost then decomposes as:

Cost(c,t) = ForbiddenArcs(c,t) + (ExpectedCost(c◦t) − ExpectedCost(c))

We now introduce the RelaxedCost function, defined as:

RelaxedCost(c,t) = ForbiddenArcs(c,t) + ExpectedCost(c◦t)

from which ensues:

Cost(c,t) = RelaxedCost(c,t) − ExpectedCost(c)
ExpectedCost(c) = RelaxedCost(c,t) − Cost(c,t) ≤ RelaxedCost(c,t)

and because at least one action has zero cost:

ExpectedCost(c) = min
t

RelaxedCost(c,t)

RelaxedCost(c,t) = ForbiddenArcs(c,t) + min
t ′

RelaxedCost(c◦t,t ′)

Cost(c,t) = RelaxedCost(c,t) − min
t ′

RelaxedCost(c,t ′)

In other words, the RelaxedCost function computes an overestimate of Cost, that
repeatedly counts the cost of incompatibilities, as long as they are not resolved, and
not only when they are introduced. Thus, it may happen that no action has a zero
RelaxedCost, but the actual cost can be retrieved by shifting all costs by the mini-
mum RelaxedCost, which corresponds to the current ExpectedCost. Hence, in this
framework, the optimal actions are not those with zero cost but with minimal cost.

These definitions have notably two useful properties, which make the use of the
alternate definition transparent. First, for arc-decomposable systems, ExpectedCost

82

L. Aufrant, G. Wisniewski PanParser (57–86)

is null, so RelaxedCost = Cost. Second, since mint Cost(c,t) = 0, in both cases
(RelaxedCost and Cost), shifting by the minimum cost always yields Cost values.

Consequently, in PanParser, we define optimal actions as minimum-cost actions, and
transition system implementations are supposed to compute either one of Cost (when
computed as a loss difference) and RelaxedCost (when modeled explicitly).

In practice, defining the action cost explicitly then consists in listing as usual the
arcs that the action makes unreachable, as well as the causes of arc incompatibilities
in the future configuration.

Consequences of under-estimated costs Exhibiting all causes of incompatibilities
is often a tedious task, it is even more so to prove that the list is exhaustive, as done
by Gómez-Rodríguez and Fernández-González (2015) for the Covington system. We
have not yet done this study for all non-arc-decomposable systems in PanParser, and
have settled for now for firm beliefs: the non-arc-decomposable costs have indeed
been tested against exhaustive search on all possible configurations, but for short sen-
tences only.

So, what happens if we have missed a given type of incompatibility? Or worse,
if we miss all of them and simply use ForbiddenArcs for a non-arc-decomposable
system? Using minimum-cost instead of zero-cost actions in fact strongly alleviates
such issues.

Indeed, with an under-estimated cost, some actions introducing incompatibilities
may be deemed correct, later resulting in configurations where all actions forbid some
reference arc, even though no error has been detected in the past. With standard cost
definition and a zero-cost criterion, this case is not covered, and training would pre-
sumably stop. But with the minimum-cost criterion there are always gold actions,
whether the cost is correctly defined or not, and training can consequently go on trans-
parently.

The only consequence on training is that the cost under-estimation introduces for
the oracle a preference towards late resolution of inconsistencies: in case of two in-
compatible arcs, the parser will prefer actions that keep both options as long as pos-
sible over actions that forbid one of them right away. Figure 2 shows how bad this
tendency can be. However, whether such cases have a strong impact on accuracy
remains to be ascertained, on a per-case basis.

Consequently, the minimum-cost criterion makes it possible to use under-estimated
costs, typically by ignoring non-arc-decomposability, but such unsound training has
unknown consequences on accuracy. We thus advocate to empirically assess its ef-
fects for each considered system.

Non-projective examples Aufrant et al. (2018) have shown how dynamic oracles
(with a minimum-cost criterion) make it possible to train a projective parser on non-
projective sentences; this directly results from their ability to accept past errors and do

83

PBML 111 OCTOBER 2018

....Root ..w1 ..w2 ..w3 ..w4 ..w5

.....

(a) Reference parse tree.

....Root ..w1 ..w2 ..w3 ..| ..w4 ..w5

.
stack

.
buffer

(b) Stack and buffer of the (already suboptimal) configura-
tion to evaluate; all stack elements are unattached.

....Root ..w1 ..w2 ..w3 ..w4 ..w5

.....

(c) Best tree, reached by Left-Left-
Shift-Left-Shift-Left-Right.

....Root ..w1 ..w2 ..w3 ..w4 ..w5 ..| ..⊥.
stack

.
buffer

(d) With under-estimated cost: pref-
erence for Shift-Shift, which do not
forbid any arc.

....Root ..w1 ..w2 ..w3 ..w4 ..w5

.....

(e) With under-estimated cost:
best tree from there, reached by
Left-Left-Left-Left-Right.

Figure 2: Consequences of training with an under-estimated cost ignoring arc incom-
patibilities, using ArcStandard with Root in first position.

their best to select good decisions anyway. The issue of non-projectivity is indeed ex-
actly the same as that of arc incompatibilities: when two crossing edges are reachable,
only one can actually belong to the final output.

Hence, from the oracle point of view, the initial empty configuration already comes
with embedded ‘past errors’ (the incompatibilities due to edge crossings). As is the
case for non-arc-decomposable systems, the cost incurred by these incompatibilities is
not due to actions to come, but should be attributed to previous actions, taken in a fic-
tive history before the initial configuration. As such, the natural behavior of dynamic
oracles is to ignore this cost.

The costs of built-in transition systems have not been adapted yet to acknowledge
arc incompatibilities due to non-projectivity. For now, we consequently use under-
estimated costs for those sentences, which empirically remains better than discarding
or projectivizing all non-projective sentences (Aufrant et al., 2018).

Systems without known dynamic oracle Defining the action cost is sufficient for
using the transition system with any training option. However, for some transition
systems, the cost of an action may be difficult to express, or computationally too ex-
pensive. In this case, it is still possible to define the cost as a degenerated version of a
static oracle: the transition designated by the heuristics used for pre-computing ref-
erences is given cost 0, all other transitions are given cost 1. This method ensures that
any transition system can be incorporated in the PanParser, even though in this case
it will not be fully compatible with other components (no dynamic oracle, so no error
exploration and no constrained parsing).

84

L. Aufrant, G. Wisniewski PanParser (57–86)

Appendix B. Global dynamic oracles

In PanParser, the training procedure is mostly based on the concept of global dy-
namic oracles (Aufrant et al., 2017), which is a direct extension of usual dynamic ora-
cles to global training.

Similarly to local dynamic oracles which deem incorrect the actions which intro-
duce a new error into the final parse, global dynamic oracles deem incorrect the tran-
sition sequences which introduce a new error into the final parse. Hence, given an
initial configuration (not necessarily empty or gold), the correct configurations are
those from which the maximum UAS is the same as the initial maximum.

The Boolean function that tests this condition, denoted Correcty(c ′|c), can thus
be efficiently computed using the Cost function: a configuration c ′ is considered as
Correct in the context of a configuration c, if there exists a sequence of transitions
t1, . . . , tn such that c ′ = c ◦ t1 ◦ · · · ◦ tn and Cost(c, t1) = Cost(c ◦ t1, t2) = . . . =
Cost(c ◦ · · · ◦ tn−1, tn) = 0.

In other words, PanParser does not need to compute reference derivations explic-
itly, it just has to check the cost of each action it performs, and track the hypotheses
that are still correct and those which are not.

Algorithm 3 (on the following page) shows how Correct is used to apply the early-
update and max-violation strategies with dynamic oracles.

85

PBML 111 OCTOBER 2018

Algorithm 3: Global dynamic oracle: error criterion and choice of an update con-
figuration pair.
c0: configuration to start decoding from
topθ(·): best scoring element according to θ

Next(c): the set of all successors of c (or only c if it is final)
Function FindViolation(c0, y, θ)

Beam← {c0}

while ∃c ∈ Beam,¬Final(c) do
Succ← ∪c∈BeamNext(c)
Beam← k-best(Succ, θ)
if ∀c ∈ Beam,¬Correcty(c|c0) then

gold← {c ∈ Succ|Correcty(c|c0)}
return gold, Beam

gold← {c ∈ Beam|Correcty(c|c0)}
return gold, Beam

Function EarlyUpdateOracle(c0, y, θ)
gold,Beam← FindViolation(c0, y, θ)
return topθ(gold), topθ(Beam)

Function MaxViolationOracle(c0, y, θ)
gold,Beam← FindViolation(c0, y, θ)
candidates← {(topθ(gold), topθ(Beam))}
while ∃c ∈ Beam,¬Final(c) do

Succ← ∪c∈BeamNext(c)
Beam← k-best(Succ, θ)
Succ+ ← ∪c∈gold {c

′ ∈ Next(c)|Correcty(c ′|c0)}

gold← k-best(Succ+, θ)
candidates← candidates + (topθ(gold), topθ(Beam))

return arg max
c+,c−∈candidates(scoreθ (c

−) − scoreθ (c
+))

Address for correspondence:
Lauriane Aufrant
lauriane.aufrant@limsi.fr
LIMSI – 508 rue John von Neumann, 91405 Orsay, France

86

	Introduction
	Transition-based dependency parsing
	Transition system
	Classifier
	Feature model
	Search
	Oracle
	Training strategy

	The PanParser implementation
	Representation of a dependency tree
	Built-in components
	Enriched input: partial trees and constraints
	Parser ensembling
	Support for other structured prediction tasks: PoS tagging
	Error analysis

	Experiments
	Conclusion and future work
	Deriving a dynamic oracle
	Global dynamic oracles

