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ABSTRACT

Today, the publication of microdata poses a privacy threat. Vast

research has striven to define the privacy condition that microdata

should satisfy before it is released, and devise algorithms to anony-

mize the data so as to achieve this condition. Yet, no method pro-

posed to date explicitly bounds the percentage of information an

adversary gains after seeing the published data for each sensitive

value therein. This paper introduces β-likeness, an appropriately

robust privacy model for microdata anonymization, along with two

anonymization schemes designed therefor, the one based on gen-

eralization, and the other based on perturbation. Our model pos-

tulates that an adversary’s confidence on the likelihood of a certain

sensitive-attribute (SA) value should not increase, in relative differ-

ence terms, by more than a predefined threshold. Our techniques

aim to satisfy a given β threshold with little information loss. We

experimentally demonstrate that (i) our model provides an effective

privacy guarantee in a way that predecessor models cannot, (ii) our

generalization scheme is more effective and efficient in its task than

methods adapting algorithms for the k-anonymity model, and (iii)

our perturbation method outperforms a baseline approach. More-

over, we discuss in detail the resistance of our model and methods

to attacks proposed in previous research.

1. INTRODUCTION
Organizations, such as government agencies or hospitals, reg-

ularly release microdata (e.g., census data or medical records) to

serve benign purposes. However, such data can inadvertently re-

veal sensitive personal information to malicious adversaries. Ex-

perience has shown that merely concealing explicit identifying at-

tributes, such as name or phone number, does not suffice to protect

personal privacy. An attacker may still uncover hidden identities

and/or sensitive information, by joining the released microdata at-

tributes with other publicly available data. The set of attributes

instrumental to that purpose, such as gender, zipcode, and age, are

called quasi-identifiers (QIs). The anonymization problem calls for
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bringing the data to a form that forestalls such linking attacks while

preserving as much of the original information as possible.

The question of the form the data should be brought to is a sub-

ject of inquiry in itself. Past research has tried to formulate a pri-

vacy guarantee an anonymized data set should satisfy, using syn-

tactic and perturbation-based methods.

Syntactic anonymization methods typically postulate that micro-

data be partitioned into a set of equivalence classes (ECs), such that

all tuples within an EC be indistinguishable from (or mutually inter-

changeable with [33]) each other as far as their QIs are concerned.

The models differ in the condition that an eligible EC should sat-

isfy. By k-anonymity, each EC should consist of at least k tuples

[29]. In effect, k-anonymity protects against identity disclosure, as

it hides each released tuple in a crowd of at least k−1 others, but

does not attend to the values of a non-QI sensitive attribute (SA);

hence, the privacy regarding such values may be compromised. To

address this limitation, ℓ-diversity requires that each EC contain

at least ℓ different “well represented” SA values (in a mathematical

sense) [22]. Even so, ℓ-diversity fails to protect against attacks aris-

ing from an adversary’s unavoidable knowledge of each SA value’s

frequency in a released table. As a rectification to this problem,

t-closeness proposes a condition that bounds the cumulative differ-

ence between the frequency distribution of SA values in an EC and

their overall distribution [20]. Yet, as we will discuss, such a bound

fails to provide a meaningful privacy guarantee that lays grounds

for effective and human-understandable policy [25].

Perturbation-based methods add noise to the data so as to achieve

a privacy property. The models in [10, 30, 5] impose a bound on an

adversary’s posterior confidence about a data property in relation to

the prior one; however, they measure confidence gain in absolute,

not in relative terms. Other noise-adding methods enforce differ-

ential privacy [9], which guarantees that the effect of any particular

individual’s data on a query result is dominated by the noise; in

other words, the result is broadly the same, regardless of whether a

certain individual has contributed her true information. Yet, as [6]

shows, an individual’s SA value can be inferred from differentially

private data with non-trivial accuracy, while the added noise can

dominate small values in the results of aggregate queries [32].

In this paper, we propose β-likeness: a robust and intuitive model

for microdata anonymization, postulating that an adversary’s con-

fidence in a tuple’s SA value should not increase in relative terms

by more than a threshold after seeing the published data. We ac-

company this model with two anonymization schemes tailored for

its particular requirements: one based on generalization, and one on

perturbation; the latter can better handle remote outliers. We exper-

imentally demonstrate that our schemes: (i) provide effective pri-

vacy guarantees in a way that state-of-the-art t-closeness schemes

cannot; and (ii) are more efficient than competing approaches.
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2. RELATED WORK AND ARGUMENT
The first model suggested for anonymizing microdata while pre-

serving their integrity was k-anonymity [29]; it suggests grouping

tuples in ECs of at least k tuples each, with indistinguishable QI
values. As the problem of optimal (i.e., minimum-information-

loss) k-anonymization is NP-hard [23] in non-trivial cases, past

research has proposed several heuristics. Such schemes transform

the data by generalization and/or suppression. Generalization re-

places, or recodes, all values of a QI attribute in an EC by a range

containing them. For example, QI gender with values male and

female can be generalized to person, and QI age with values 20, 25
and 32 can be generalized to [20, 32]. Suppression is an extreme

case of generalization that deletes some QI values or even tuples.

Still, the k-anonymity model suffers from a critical limitation.

While its objective is to conceal sensitive information, it pays no at-

tention to non-QI sensitive attributes (SAs). A k-anonymized table

may contain ECs with so skewed a distribution of SA values, that

an adversary can still infer the SA value of a record with high confi-

dence. To address this limitation, [22] proposed ℓ-diversity, which

postulates that each EC contain at least ℓ “well represented” SA
values, where “well represented” can be defined in diverse ways.

Still, ℓ-diversity fails to guarantee privacy when the distribution

of SA values differs substantially among ECs and from their over-

all distribution; thus, it is vulnerable to a skewness attack [20]. For

instance, assume a 10-diverse form T ′ of a medical record table T ,

in which 0.1% persons are infected with HIV, and an EC G ∈ T ′

containing 10 distinct SA values, with one occurrence of HIV. The

probability of HIV is 10% for a tuple in G, but only 0.1% for a tuple

in T . This 100-fold increase of probability is a significant, hence

undesirable, information leak. Furthermore, a similarity attack [20]

is likely when the SA values in an EC are semantically similar. For

example, a 3-diverse table can be generated from Table 1 by putting

the first 3 tuples in EC G1, and the rest EC G2. Regardless of their

diversity, all tuples in G1 indicate a nervous problem.

ID Name Weight Age Disease

01 Mike 70 40 headache

02 John 60 60 epilepsy

03 Bob 50 50 brain tumors

04 Alice 70 50 heart murmur

05 Beth 80 50 anemia

06 Carol 60 70 angina

Table 1: Patient records

To forestall these attacks, Li et al. proposed t-closeness, which

requires that a cumulative difference of the SA values’ distribution

within any EC from the one in the overall table does not exceed a

given threshold t [20]. The t threshold is meant to constrain the in-

formation an adversary gains after seeing a single EC, with respect

to that provided by the full released table. Just like ℓ-diversity is

open to many ways of measuring the number of “well-represented”

values in an EC [22], the t-closeness model is open to diverse ways

of measuring the cumulative difference between the overall SA dis-

tribution, P , and that in an EC, Q. One option is the Earth Mover’s

Distance (EMD) [28]. Another proposal [20] first transforms P

(Q) to P̂ (Q̂) by kernel smoothing, and then calculates the Jensen-

Shannon divergence between P̂ and Q̂ as the approximate distance

between P and Q. Last, the Kullback-Leibler divergence is used

in [27]. Yet these functions all interpret the t threshold as a bound

on the cumulative difference between two frequency distributions.

Indeed, this interpretation emanates out of the t-closeness model

itself [20]. Still, a privacy model should provide grounds for effec-

tive and human-understandable policy [25]. Models that bound a

cumulative function of frequency differences between distributions

fails to provide a comprehensible relationship between the t thresh-

old and the privacy it affords. In particular, such models do not pay

due attention to less frequent SA values, which are more vulner-

able to privacy exposure; and do not distinguish between positive

and negative variation in an SA value’s frequency.

We first elaborate on EMD. Assume a data set DB with SA val-

ues HIV and Flu. If the overall SA distribution between them is

P = (0.4, 0.6), and their distribution in an EC is Q= (0.5, 0.5),
then EMD(P ,Q)= 0.1. Still, if their overall distribution is P ′ =
(0.01, 0.99) and their distribution in an EC is Q′ = (0.11, 0.89),
then EMD(P ′,Q′)= 0.1 again. Both cases satisfy 0.1-closeness.

However, the information gain in the latter case is much larger than

that in the former: the probability of HIV rises by 25% from 0.4 to

0.5, but by 1000% from 0.01 to 0.11. In effect, the two cases do

not afford the same privacy. This example appears in [20], where

it is noted that EMD does not provide a clear privacy guarantee. In

fact, not only EMD, but any function that aggregates absolute dif-

ferences faces a similar problem, since such functions do not pro-

vide maximum relative difference guarantees [14, 13] about individ-

ual SA values. In our example, a small relative difference of Flu-

frequency evens up a large relative difference of HIV-frequency.

K-L divergence [27] and J-S divergence [20, 21] also fail to pay

equal attention to all SA values and their relative differences. In

our running example, assume a dataset where the overall distribu-

tion of HIV and Flu is P̃=(0.01, 0.99), and their distribution in an

EC is Q̃=(0.03, 0.97). Then the K-L (J-S) divergence between P

and Q, is 0.0290 (0.0073), while that between P̃ and Q̃ is 0.0133
(0.0038). Both these alternatives estimate the privacy afforded by

Q̃ with respect to P̃ as higher than that afforded by Q with respect

to P . However, the confidence for HIV increases only by 25% in

the latter case, while it rises by 200% in the former.

Besides, the anonymization schemes in [20] are mere extensions

of k-anonymization techniques [17, 18]. They do not cater to the

special needs of t-closeness, hence yield low information quality.

Recently, [4] proposed an anonymization algorithm specialized for

t-closeness, yet did not discuss the limitations of the model itself.

Last, the anonymization scheme in [27] uses perturbation and adds

noise to the data, damaging their truthfulness.

The privacy model of [10] imposes a bound ρ2 to the poste-

rior probability (i.e., after release) of certain properties in the data,

given a bound ρ1 on the prior probability (i.e., before release). This

model is modified in [30], where the posterior confidence should

not exceed the prior one by more than ∆. These models measure

the absolute confidence gain (i.e., information leak), hence do not

sufficiently protect the privacy of infrequent values. For example

they treat a probability increase from 60% to 80% as tantamount to

an increase from 1% to 21% in absolute terms, while the latter is

an increase by 2000% and the former by 33% in relative terms.

Alternative approaches enforce differential privacy [9]. By this

model, the data owner adds noise to a query result so as to guaran-

tee that this noisy result would change very little with the variation

of a particular individual’s data. However, [16] illustrates that dif-

ferential privacy does not adequately limit inference about an indi-

vidual’s participation in the data generating process. Furthermore,

and more importantly for the focus of our work, [6] has recently

shown that, even though the effect of any single individual is dom-

inated by the added noise, the noise itself is in turn dominated by

the signal emerging from the whole population. Consequently, one

can effectively build a Naı̈ve Bayes classifier inferring individuals’

SA values with non-trivial accuracy [6].

A recently proposed distribution-oriented privacy model is δ-dis-

closure-privacy [3]; it requires that for any SA value vi with fre-

quency pi in the original table, its frequency in any EC, qi, should

be such that

∣∣∣log
(

qi
pi

)∣∣∣ < δ. Yet this model fails in two respects:
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(1) since log(qi) is defined only for qi > 0, δ-disclosure-privacy

strictly requires that each SA value in the original table occurs in

every EC; (2) given a sufficiently large value of pi and a modest

value of δ, δ-disclosure-privacy does not effectively upper-bound

qi, hence allows for absolute certainty of one’s SA value, which is

exactly the kind of leak it is meant to prevent. These properties

render δ-disclosure-privacy unnecessarily rigid, in one way, and

yet exceedingly lax, in another way. Besides, [3] does not pro-

pose an anonymization algorithm tailored for δ-disclosure-privacy;

it only points out that the Mondrian k-anonymization algorithm

[18], adapted for δ-disclosure-privacy (as well as for ℓ-diversity

and t-closeness), yields high information loss. This negative result

is not surprising; after all, Mondrian simply partitions the data to

disjoint ECs, hence is ill-suited for models looking into the sen-

sitive values in an EC, as observed in [12] In its conclusions, [3]

observes that better anonymization algorithms are needed for those

models, but does not provide such algorithms; it focuses on a nega-

tive result without attempting to ameliorate it. In this paper, we pro-

vide a meaningful distribution-oriented privacy model that avoids

the drawbacks of δ-disclosure-privacy and t-closeness, as a well as

an anonymization algorithm specifically designed therefor. Thus,

our work goes beyond [3] in all these respects.

3. THE PRIVACYMODEL
This section introduces our privacy model. Our model assumes

that the SA distribution in DB is public knowledge, and constrains

the SA-related information gained by the table’s publication. Table

2 gathers together the notations we use.

DB Original microdata table

SA Sensitive attribute in DB
V = {v1, v2, . . . , vm} The domain of SA

Ni Number of tuples with vi in DB
pi = Ni/|DB| Frequency of vi in DB

P = (p1, p2, . . . , pm) Overall SA distribution in DB
G Equivalence class

Q = (q1, q2, . . . , qm) SA distribution in G

Table 2: Notations

DEFINITION 1 (INFORMATION GAIN). Assume that DB is a

table with a sensitive attribute SA. Let V = {v1, v2, . . . , vm}
be the SA domain, and P = (p1, p2, . . . , pm) be the overall SA
distribution in DB. Suppose that Q = (q1, q2, . . . , qm) is the SA
distribution in an equivalence class G, formed by tuples from DB.
The information gain on any SA value vi∈V is D(pi, qi), where D
is a distance function between pi and qi.

We say that the information gain on vi is positive, when pi < qi,
and negative, when pi ≥ qi. Negative information gain lowers the

correlation between a personal record and vi in EC G below that in

the whole table. In most cases, such gain enhances privacy. How-

ever, there may exist SA values such as heterosexual, for which

a reduced likelihood may inadvertently violate privacy. Neverthe-

less, we assume that the SA domain always includes the negation

of such values. Thus, negative information gain on heterosexual

always appears as positive gain for homosexual. Therefore, we can

directly control the positive gain on the value (such as homosexual)

that poses the privacy threat. For a more general case such as mar-

ital status, the negative gain on SA value married can imply that

an individual is more likely to be divorced or widowed. However,

we assume that the SA domain contains all the values of interest.

Hence, the relative negative gain of married can be transformed to

the positive gains of divorced, and widowed. Based on the above

reasonable assumption, we are concerned with positive information

gain; negative gain can be treated symmetrically if circumstances

demand it (see Section 7). We define basic β-likeness as follows.

DEFINITION 2 (BASIC β-LIKENESS). Given table DB with

sensitive attribute SA, let V = {v1, . . . , vm} be the SA domain,

and P = (p1, . . . , pm) the overall SA distribution in DB. An EC

G with SA distribution Q = (q1, . . . , qm) is said to satisfy basic

β-likeness, if and only if max{D(pi, qi)|pi ∈ P , pi < qi} ≤ β,
where β > 0 is a threshold.

For a table DB′ anonymized from table DB to obey β-like-

ness, all equivalence classes G ⊂ DB′ have to conform to β-like-

ness. Contrary to previous models [20, 3, 21, 27], basic β-likeness

clearly quantifies the relationship between the β threshold and pos-

itive information gain. Thanks to the maximum-distance threshold

it imposes, it inherently safeguards against skewness attacks and

semantic attacks [20]. Last, as it clearly distinguishes between pos-

itive and negative information gain, and accepts SA values absent

from an EC, it allows for more flexibility in anonymization, hence

higher information quality, than the closest related model, δ-dis-

closure-privacy [3]. Apart from specifying a maximum, instead of

a cumulative, distance threshold, we should also define the distance

function D in an appropriate manner. As we have argued, a measure

of absolute difference does not serve our purposes, since it fails to

protect less frequent SA values. We opt for relative difference in-

stead, and define the distance function as D(pi, qi) =
qi−pi

pi
. This

function obeys the monotonicity property.

LEMMA 1 (MONOTONICITY PROPERTY). Assume that SA
value vi ∈ V has frequency pi in the overall table DB, q1i (q2i )
in EC G1 (G2), generated from tuples in DB, and q3i in G1 ∪ G2.

Then D(pi, q
3
i ) ≤ max{D(pi, q

1
i ),D(pi, q

2
i )}.

PROOF. Assume there are n1 (n2) tuples with vi in G1 (G2).

Then q1i = n1

|G1|
, q2i = n2

|G2|
, q3i = n1+n2

|G1|+|G2|
=

q1i |G1|+q2i |G2|

|G1|+|G2|
≤

max{q1i , q
2
i }. Thus, D(pi, q

3
i )≤max{D(pi, q

1
i ),D(pi, q

2
i )}.

The monotonicity property ensures that a union of two ECs yields

no larger distance between pi and qi than its united parts. Hence,

ECs violating β-likeness can be transformed to follow β-likeness

by merge operations. The relative distance function instantiates ba-

sic β-likeness by the constraint D(pi, qi) = qi−pi
pi

≤ β, where

pi and qi are the distributions of any SA value vi ∈ V in the

whole table and an EC, respectively. This constraint amounts to

an upper bound for the frequency of vi in any EC, qi, namely

qi ≤ (1 + β) · pi. Our relative distance function pays due at-

tention to less frequent SA values. However, this function provides

a meaningful frequency bound only if (1+β)·pi < 1; it then caters

for SA values whose frequency in DB is pi < 1
1+β

. In our effort

to pay due attention to such less frequent values, we have discrimi-

nated against SA values of frequency larger than 1
1+β

. Such values

can assume frequency 1 in an EC. Thus, an adversary identifying

that a person’s record is within such an EC can infer the SA value of

that person with 100% confidence. The disclosure of such frequent

SA values may pose a privacy threat. To address this limitation, we

provide a stronger, enhanced definition of β-likeness.

DEFINITION 3 (ENHANCED β-LIKENESS). For table DB
with sensitive attribute SA, let V = {v1, . . . , vm} be the SA do-

main, and P = (p1, . . . , pm) the overall SA distribution in DB.
An EC G with SA distribution Q = (q1, . . . , qm) is said to sat-

isfy enhanced β-likeness, if and only if ∀qi, D(pi, qi) = qi−pi
pi

≤

min{β,− ln pi}, where β > 0 is a threshold and ln pi is the natu-
ral logarithm of pi.

The inequality constraint in the above definition implies that qi ≤
(1 + min{β,− ln pi}) · pi. We can then define the upper bound
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that enhanced β-likeness imposes on the frequency of vi in an EC

by function f(pi) = (1 + min{β,− ln pi}) · pi, which can be

decomposed as follows.

f(pi) =

{
pi (1 + β) , 0 < pi ≤ e−β

pi (1− ln pi) , e−β ≤ pi ≤ 1
(1)

The first segment of f(pi) is a linear, monotonically increasing

function of pi. The second segment is a concave, also monoton-

ically increasing function of pi, with derivative − ln pi. The two

segments meet at pi = e−β . In effect, f(pi) is a continuous,

monotonically increasing function of pi in (0, 1] with f(0) = 0
and f(1) = 1. Intuitively, the second segment bends the function’s

slope so as not to exceed the maximum value of 1. The monotonic-

ity of f(pi) implies that an EC G following the enhanced β-likeness

constraint obeys the following properties:

1. The maximum frequency of an SA value vi in G is less than

1, i.e., f(pi) < 1 for any pi < 1.

2. For two SA values vi and vℓ, such that pi < pℓ, the maxi-

mum allowed frequency of vi in G is less than that of vℓ, i.e.,

f(pi) < f(pℓ).

3. For an SA value vi that is ‘infrequent’ in table DB, with

pi ≤ e−β , its frequency in G is at most β times larger than

pi, i.e., qi ≤ f(pi) = (1 + β) · pi.

4. For an SA value vi that is ‘frequent’ in DB, with pi > e−β ,

its frequency in G is at most − ln pi times larger than pi, i.e.,

qi ≤ f(pi) = (1− ln pi) · pi < (1 + β) · pi.

These properties protect privacy for all SA values: infrequent

values receive due attention, while more frequent ones are disal-

lowed from assuming frequency values of 1. The β parameter

defines the privacy constraint for less frequent values, as well as

the frequency threshold e−β above which the privacy constraint as-

sumes a default form independent of β. This framework applies for

any monotonic upper-bound function. Our choice of ln pi is only

a convenient choice that confers the desirable properties. As en-

hanced β-likeness provides more robust privacy than basic β-like-

ness, in the following we focus on it. Unless otherwise specified,

henceforth by β-likeness we mean its enhanced form.

While (enhanced) β-likeness defines only an upper bound on qi,
the cognate δ-disclosure-privacy model [3] amounts to two bounds

on qi, demanding that

∣∣∣log( qi
pi
)
∣∣∣ < δ, or, equivalently, e−δ · pi <

qi < eδ · pi. Furthermore, there is a fundamental conceptual dif-

ference between β-likeness and δ-disclosure-privacy: the former

always disallows qi values equal to 0, and can allow qi values arbi-

trarily close to 1 (as its upper bound can assume values larger than

1), while the latter allows any qi value less than pi, but always dis-

allows qi values equal to 1 (its upper bound being strictly less than

1). We argue that both these choices are more reasonable than those

made by δ-disclosure-privacy. Moreover, we re-iterate that the in-

troduction of δ-disclosure-privacy in [3] was not accompanied by

an anonymization algorithm tailored therefor; the model was only

used as a tool to argue for a negative result, namely that existing

k-anonymization algorithms [18], adapted to δ-disclosure-privacy,

yield unacceptably high information loss [3]. In contrast, our work

aims at a positive result.

4. GENERALIZATION­BASED SCHEME
In this section we first introduce the metrics to measure the in-

formation loss by the generalization. Then we present an obser-

vation, which motivates our algorithm. After that, we design our

generalization-based algorithm customized for β-likeness.

Nervous and
circulatory  diseases

Nervous
diseases

Epilepsy Brain 

tumors
Headache

Circulatory
diseases

Anemia Angina Heart 
murmur

Figure 1: Domain hierarchy for diseases

4.1 Information Loss Metrics
To solve the problem posed by the β-likeness model, we need to

fulfill the β constraint while giving up little information. We use an

information loss metric to assess the amount of information ceded

for the sake of privacy. Different utility objectives would require

different metrics. When the purpose the data is to be used for is not

known in advance, a general metric can be used, as in [12].

Assume a set of QI attributes QI = {A1,. . ., Ad} and an EC

G. Given a numerical attribute NA ∈ QI , let [LNA, UNA] be its

domain and [lGNA, uG
NA] the (generalized) range of its values in G;

then the information loss (IL) regarding NA in G is:

ILNA(G) =
uG
NA − lGNA

UNA − LNA
(2)

Given a categorical attribute CA, we surmise a generalization

hierarchy HCA on its domain (Fig. 1). Let a be the lowest common

ancestor of all CA values in G; then, the IL regarding CA in G is:

ILCA(G) =

{
0, |leaves(a)| = 1

|leaves(a)|
|leaves(HCA)|

, otherwise
(3)

where leaves(a) is the set of leaves under a, and leaves(HCA)
the set of all leaves in HCA. Then the total IL of G is:

IL(G) =
d∑

i=1

wi × ILAi(G) (4)

where wi is a weight for Ai, with
∑d

i=1 wi = 1. In our exper-

iments we set wi =
1
d

. The Average Information Loss on a table

DB, published as a collection of ECs SG , is:

AIL(SG) =

∑
G∈SG

|G| × IL(G)

|DB|
(5)

We aim to attain β-likeness on DB at a low value of AIL(SG).

4.2 An Observation
The intuition behind our generalization-based method emanates

from the following observation. Assume DB is partitioned into a

set of buckets by a ‘group-by’ on SA. If we form ECs by selecting

from each bucket a number of tuples proportional to its size, then

the SA distribution in the formed EC will be the same as the global

distribution. On the other hand, if we partition DB into buckets

allowing (all tuples of) more than one SA value per bucket, and

then form ECs in a similar fashion, then there will be some vari-

ation in SA distributions among ECs. We aim to configure this

process so as to allow for such variation to the extent permitted by

the β constraint. An akin methodology is followed in SABRE [4],

an algorithm for the t-closeness model. Yet, unfortunately, SABRE

cannot be applied on other distribution-based models, as it caters to

the particular requirements of t-closeness, looking at the semantic

distance between SA values in order to bound the EMD-difference

of distributions between each EC and the overall table. In contrast,

our algorithm should bound the variation in each SA value’s fre-

quency. The following two definitions clarify our intuition.
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DEFINITION 4. Given a table DB with sensitive attribute SA,

a set of buckets ϕ forms an exact bucket partition of DB iff⋃
∀B∈ϕ B = DB, while each SA value (tuple) appears in exactly

one bucket.

DEFINITION 5 (PROPORTIONALITY CONDITION). Letϕ be a

bucket partition ofDB. Assume that an EC, G, is formed with xj tu-

ples from bucket Bj ∈ ϕ, j = 1, 2, . . . , |ϕ|. G abides to the propor-

tionality condition with respect to ϕ, iff the values xj are propor-

tional to |Bj |, i.e., x1 : x2 : · · · : x|ϕ| = |B1| : |B2| : · · · : |B|ϕ||.

Age

weight50 60 70 80

40

70
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50

Disease

Headache
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2
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1
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2

Figure 2: Improved information quality

EXAMPLE 1. Consider Table 1, where {weight, age} is the

QI , and disease is the SA. The diagram in Figure 2 shows the

QI-space and the distribution of tuples, with eachQI attribute cor-
responding to a dimension. A bucket partition ϕ of this table could

consist of six buckets of one tuple each, with SA values headache,

epilepsy, brain tumors, anemia, angina, and heart murmur, respec-

tively. Taking one tuple from each of those, we could build a single

EC satisfying 0-likeness. Still, such an EC covers the entire QI-
space, incurring high information loss. An alternative bucket par-

tition could consist of three two-tuple buckets, ϕ = {B1,B2,B3},
with headache and epilepsy in bucket B1, brain tumors and ane-

mia in B2, and the rest in B3. We can then build two ECs, taking

one tuple from each bucket, as shown in Figure 2. Tuples in the

same EC are labeled by the same number in the figure. This parti-

tioning achieves better information quality, as the areas of ECs in

QI-space are smaller.

While the bucket partition in the above example enables higher

information quality, it no longer abides by 0-likeness. Still, it sat-

isfies β-likeness, for β ≥ 1, with respect to Table 1. In general,

it suffices to create ECs so that they attain β-likeness for a given

β > 0. We propose an algorithm that does so in two phases: it first

partitions tuples into buckets, and then determines the number of

tuples each EC needs to draw from each bucket.

4.3 Bucketization Phase
Let the SA domain be V= {v1, v2,. . ., vm} and the overall dis-

tribution of SA values P = (p1, p2,. . ., pm). We partition V into

subsets, and use them to divide DB into a bucket partition ϕ; all tu-

ples in DB with SA values in the same subset of V are pushed to a

single bucket of ϕ. Assume EC G draws xj tuples from bucket

Bj ∈ ϕ, j = 1, 2,. . ., |ϕ|, and let Vj be the subset of SA val-

ues in Bj . Then, in the worst case, all xj tuples may have the

least frequent SA value in Vj , vℓj , with pℓj = minvi∈Vj{pi},

hence the frequency of vℓj in G will be qℓj =
xj

|G|
; β-likeness

should hold in this case too, i.e., it should be
xj

|G|
≤ f(pℓj ) =

(1+min{β,−ln(pℓj )})·pℓj , as the following theorem defines.

THEOREM 1 (ELIGIBILITY CONDITION). Let ϕ be a bucket

partition of DB with sensitive attribute SA, G an EC formed with

xj tuples from bucket Bj ∈ ϕ, Vj the set of SA values in Bj , and

pℓj = minvi∈Vj{pi}, j = 1, 2, . . . , |ϕ|. If ∀j ∈ {1, 2, . . . , |ϕ|},
xj

|G|
≤ f(pℓj ), then G follows β-likeness.

PROOF. For any SA value vk ∈ V , let Bj ∈ ϕ be the single

bucket that contains tuples in DB with vk as their SA value, hence

vk ∈ Vj . Since G draws xj tuples from Bj , the frequency of vk
in G is qk ≤

xj

|G|
≤ f(pℓj )≤ f(pk). Expanding to all vk ∈ V , we

conclude that G follows β-likeness.

Theorem 1 defines the eligibility condition for an EC to follow

β-likeness. However, it does not provide a way to specify a par-

ticular number of tuples xj to choose from a given bucket Bj , i.e.,

it offers no guidance on how to construct a β-likeness-complying

anonymization. To overcome this lack of guidance, we assume that

ECs are formed following the proportionality condition. Under this

assumption, it holds that
xj

|G|
=

|Bj|

|DB|
=

∑
vi∈Vj

pi, and the next

lemma can be easily deduced from Theorem 1.

LEMMA 2. Let G be an EC that follows the proportionality

condition with respect to a bucket partition ϕ of DB with sensi-

tive attribute SA, Vj the set of SA values in bucket Bj ∈ ϕ, and
pℓj = minvi∈Vj{pi}, j = 1, 2,. . . ,|ϕ|. If ∀j ∈ {1, 2, . . . , |ϕ|},∑

vi∈Vj
pi ≤ f(pℓj ), then G follows β-likeness.

Lemma 2 defines the condition that the frequencies of a subset of

SA values Vj ⊂ V should obey, so that, if all values in Vj are put in

the same bucket Bj by a bucket partition ϕ, then ECs obeying the

proportionality condition with respect to ϕ satisfy β-likeness. This

condition is trivially satisfied by a strict partition having a single

SA value per bucket. We aim at a looser bucket partition that sat-

isfies the condition of Lemma 2 in a non-trivial manner, with more

than one distinct SA values per bucket (as in Example 1).

Function DPpartition(DB, SA)

Let V = {v1, v2, . . . , vm}, P = (p1, p2, . . . , pm);1

Assume that pn ≤ pn+1, where n = 1, 2, . . . ,m − 1;2

N [0] = 0;3

S[0] = 0;4

for e=1 tom do5

N [e] = N [e− 1] + 1;6

S[e] = e;7

b = e − 1;8

while b > 0 and Combinable(b, e) = true do9

if N [b − 1] + 1 < N [e] then10

N [e] = N [b − 1] + 1;11

S[e] = b;12

b = b − 1;13

Initialize ϕ to be empty;14

e = m;15

while e > 0 do16

b = S[e];17

Create bucket B, having tuples with SA values in {vb, vb+1, . . . , ve};18

ϕ = ϕ ∪ {B};19

e = S[e] − 1;20

Return ϕ;21

We develop a bucketization scheme for this task. We start out

by representing, P , the set of SA frequencies in DB, in ascend-

ing order, pi ≤ pi+1, i = 1, . . . ,m− 1. By Lemma 2, a set

of consecutive SA values in V , vb, vb+1, . . . , ve, are allowed to

be in the same bucket provided that
∑e

i=b pi < f(pℓ), where

pℓ = min{pb, pb+1, . . . , pe}. Our scheme, presented in Function

DPpartition, partitions V by dynamic programming, so as to mini-

mize the number of buckets. Let N [e] denote the minimum number
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of buckets to which we can partition the prefix of e elements in V ,

i.e., v1, v2, . . . , ve. The value of N [e] is calculated recursively as:

N [e] = min
{b|Combinable(b,e)=true}

{N [b− 1]}+ 1 (6)

Function Combinable(b, e) checks whether SA values vb, . . . , ve
can make a bucket, i.e., whether

∑e
i=b pi < f(pℓ), where pℓ =

min{pb, pb+1, . . . , pe}. The DP base is N [0] = 0.

DPpartition has two parts. The first part (steps 3-13) runs the DP

recursion of Equation 6 to evaluate the final minimum value N [m]
and split V into segments accordingly; thereby, it needs to assess

the combinability of m2 potential buckets. To assess combinability,

we maintain the running
∑

pi within a bucket, updated in O(1) at

each step; the min{pi} within a bucket is its first element. The

complexity of this part is O(m2). The second part (steps 14-20)

uses the first-part results to build the bucket partition. Tuples with

the SA values in the same segment make a bucket (step 18), in

O(|DB|). The overall time complexity is O(m2 + |DB|).

4.4 Reallocation Phase
The bucketization phase of our scheme delivers a bucket parti-

tion ϕ of DB. We have so far assumed that ECs are formed from

ϕ following the proportionality condition. However, a strict ad-

herence to this condition may result in large ECs, incurring high

information loss. For example, if the size of some bucket Bj ∈ϕ is

a prime number (other than 2), then, to strictly follow the propor-

tionality condition, we should form an EC out of the whole table.

We should rather relax the condition: it should suffice that the num-

ber of tuples xj chosen from bucket Bj in EC G be approximately

proportional to the size of Bj , i.e.,
xj

|G|
≈

|Bj|

|DB|
=

∑
vi∈Vj

pi. The

rationale for this relaxation is as follows: the bucket partition ϕ re-

turned by DPpartition obeys the inequality
∑

vi∈Vj
pi ≤ f(pℓj )

(Lemma 2). Then, if
xj

|G|
≈
∑

vi∈Vj
pi (i.e., if we draw tuples into

ECs approximately proportionally to the size of the bucket they hail

from), then the eligibility condition
xj

|G|
≤f(pℓj ) (Theorem 1), and

therefore β-likeness, will be still easily achievable.

To ensure β-likeness, we determine the EC sizes by construct-

ing a binary tree, the ECTree, in a top-down fashion. We start

with a bucket partition ϕ = {B1, . . . ,B|ϕ|}. The root of the tree

r represents a potential EC that contains all tuples in DB, i.e.,

|Bj | tuples from bucket Bj . We denote these contents as r =[
|B1|, . . . , |B|ϕ||

]
. This can be a valid EC, but we prefer smaller

ones. Thus, we proceed to split r into two children (each rep-

resenting an EC), dividing each Bj into B1
j and B2

j . The root’s

left child cL contains B1
j and the right child cR contains B2

j , j =

1, 2, . . . , |ϕ|. To ensure that B1
j and B2

j have approximately the

same size, we set |B1
j | = round

(
|Bj|

2

)
and |B2

j | = |Bj | − |B1
j |.

The split is allowed only if both cL and cR satisfy the eligibility

condition (Theorem 1), hence can form ECs satisfying β-likeness.

Assume the left child of r is cL =
[
|B1

1 |, . . . , |B
1
|ϕ||

]
. Then, for the

eligibility condition to be satisfied, it should hold that
|B1

j |
∑|ϕ|

n=1
|B1

n|
≤

f(pℓj ). An analogous condition applies for cR. If splitting r into

cL and cR is allowed, we proceed to check whether we can split

cL and cR themselves. When no node can be split further, we

get a final ECTree, in which each leaf node configures the number

of tuples an EC should get from each bucket. A simple function,

biSplit(ϕ), returns the list of leaf nodes. Example 2 illustrates this

process.

EXAMPLE 2. Let disease be a categorical SA with the domain

hierarchy of Figure 1. Consider a table, containing 2 tuples with

headache, 3 with epilepsy, 3 with brain tumors, 3 with ane-
mia, 4 with angina, and 4 with heart murmur. Assume β =
2. The overall SA distribution is P = (p1, p2, p3, p4, p5, p6) =
( 2
19
, 3
19
, 3
19
, 3
19
, 4
19
, 4
19
). f(p1)≈ 0.31, f(p2)= f(p3)= f(p4) ≈

0.45, and f(p5) = f(p6)≈ 0.54. The bucketization phase returns

a bucket partition of the table, ϕ = {B1, B2, B3}, where B1 ac-

commodates tuples with SA values headache and epilepsy, B2

brain tumors and anemia, and B3 the remaining two. The root

node r= [5, 6, 8] in Figure 3 represents an EC with 5 tuples from

B1, 6 from B2, and 8 from B3 (i.e., all tuples in the table). We

split r into c1 = [2, 3, 4] and c2 = [3, 3, 4]. Then EC c1 has size

9, and contains 2 tuples from B1 with 2
9
< min{f(p1), f(p2)},

3 from B2 with 3
9

< min{f(p3), f(p4)}, and 4 from B3 with
4
9
< min{f(p5), f(p6)}. Thus, c1 obeys the eligibility condition

(Theorem 1). Likewise, c2 also satisfies the condition. Thus, split-

ting r into c1 and c2 is allowed. Recursively, we can split c1 into

[1, 1, 2] and [1, 2, 2]. When we try to split c2 into g1 = [1, 1, 2]
and g2 = [2, 2, 2], we find that g2 does not satisfy the eligibility

condition, as 2
6
> min{f(p1), f(p2)}, hence this split is not al-

lowed. Figure 3 shows the final tree, with each leaf node indicating

the number of tuples an EC should draw from each bucket. In the

general case, an EC could also draw 0 tuples from some bucket.

[5, 6, 8]

[1, 1, 2]

[3, 3, 4][2, 3, 4]

[1, 2, 2]

Figure 3: Dynamic EC size determination

4.5 BUREL
We now put the above phases together to devise BUREL, an al-

gorithm that BUcketizes tuples into buckets and REallocates them

from buckets to ECs so as to attain β-Likeness. The distinctive and

novel feature of this algorithm, as opposed to algorithms for k-ano-

nymity, ℓ-diversity, and t-closeness, is that it distinguishes among

SA values by their frequencies and builds its operation and reason-

ing around this frequency-based partitioning.

The bucketization phase of BUREL returns ϕ, a bucket parti-

tion of DB (step 2). Then, its reallocation phase (function biSplit)

determines the number of tuples each EC should draw from each

bucket at a leaf of the ECTree and returns a list of arrays Sa con-

taining these size values (step 3). Specific ECs following the pre-

scribed sizes are then materialized (steps 4-9). Given an array

a ∈ Sa, BUREL retrieves aj tuples from Bj ∈ ϕ, where aj is

the jth element of a and j=1, 2,. . . ,|ϕ|, and forms an EC G out of

them (steps 6-8).

Algorithm: BUREL ( DB, SA, β )

Let {v1, v2, . . . , vm} be all the SA values in DB, and1

{p1, p2, . . . , pm} be their distributions;
ϕ = DPpartition(DB,SA);2

Sa = biSplit(ϕ);3

foreach array a in Sa do4

Create an empty EC, say G;5

foreach aj , j
th element of a do6

ecj = Retrieve(Bj , aj);7

add ecj to G;8

Output G;9

When retrieving tuples from buckets, BUREL is indifferent to

their SA values. The β-likeness between a constructed EC G and

the whole table DB is guaranteed by Theorem 1; tuple selection is

1393



guided by information loss considerations, as prescribed by our in-

formation loss metric (Section 4.1). This metric requires the Mini-

mum Bounding Boxes of ECs to be small. Accordingly, we employ

function Retrieve(Bi, ai) (step 7), which greedily picks tuples of

similar QI values. This greedy selection of nearby tuples works as

follows: We define a multidimensional space with each QI attribute

as a dimension. The mapping to such a QI-space for a numeri-

cal QI attribute NA is straightforward. The axis of a categorical

QI attribute CA is formed by the order provided by a pre-order

traversal of the leaves in its domain hierarchy HCA. Each tuple is

represented as a point in this QI-space. When forming an EC G,

BUREL first randomly picks a tuple x from a bucket of ϕ in G, and

then finds the aj nearest neighbors (by Euclidean distance) of x in

each bucket Bj , j = 1, 2,. . . ,|ϕ|, and adds them into G, until the

size specifications are satisfied. Still, this process can be computa-

tionally demanding even with an index structure [8]. Thus, we de-

vise an efficient heuristic using the Hilbert curve [24], a continuous

fractal that maps regions of QI-space, hence tuples, to 1D Hilbert

values. Tuples close in QI-space are likely to have nearby Hilbert

values. BUREL sorts tuples in Bj by their Hilbert values, and uses

this order to select the aj nearest neighbors of a tuple x within each

bucket. We find the nearest Hilbert-neighbor x̄ of x within bucket

Bj by binary search, and then expand to the next closest aj neigh-

bors to x. The average time complexity for this search operation is

O
(
|SG ||ϕ|·

(
log |DB|

|ϕ|
+ |DB|

|SG||ϕ|

))
, where |ϕ| is the number of buckets,

|DB|
|ϕ|

the average size of a bucket, and
|DB|

|SG ||ϕ|
the average number

of tuples drawn from a bucket to form an EC.

5. PERTURBATION­BASED SCHEME
Our generalization-based solution, achieves β-likeness and also

provides identity anonymity, like all generalization-based methods

do. However, in case a data set contains a few remote outliers,

these outliers may force a highly unsatisfactory solution by gener-

alization. Similarly unsatisfactory solutions can be obtained in case

of extremely infrequent SA values. For example, consider a dataset

DB, in which only one tuple t has SA value v. Then, to attain 1-

likeness, we would have to create an EC containing t and at least

half of the tuples in DB. We deduce that an alternative solution

is desirable in order to handle such irregular cases, even at the ex-

pense of identity anonymity. To that end, we propose an approach

that anonymizes each tuple independently by perturbing SA values

while preserving QI values intact. We reiterate that, for a given

SA value vi, β-likeness considers its frequency in the whole table,

pi, as prior confidence, and constrains an adversary’s information

gain on vi after seeing the published data, bounding the posterior

confidence. We aim to achieve this target by perturbing SA val-

ues only; our scheme resembles a randomized response procedure,

albeit having a different perturbation probability for each SA value.

DEFINITION 6 (β-LIKENESS BY PERTURBATION). Given a ta-

ble DB with sensitive attribute SA, let V = {v1, . . . , vm} be the

SA domain, and P = (p1, . . . , pm) the overall SA distribution in

DB. A perturbation on DB that randomizes SA values satisfies

β-likeness, iff the adversarial posterior confidence in vi ∈ V after

seeing the randomized data is at most f(pi), i = 1, 2, . . . , m.

To build a solution that achieves β-likeness by perturbation, we

adapt the concept of upward (ρ1, ρ2)-privacy [10] as follows.

DEFINITION 7 ((ρ1i, ρ2i)-PRIVACY). Let vi ∈ V be an orig-

inal SA value, and v ∈ V be any SA value after perturbation. We

say that (ρ1i, ρ2i)-privacy is satisfied on vi, iff the adversarial prior
confidence in vi is C(U = vi) = ρ1i, and the posterior confidence

after seeing v is C(U = vi|V = v) ≤ ρ2i.

While (ρ1, ρ2)-privacy does not distinguish among SA values,

our adaptation does. Given these definitions, we can achieve β-

likeness by setting ρ1i = pi and ρ2i = f(pi) for each vi ∈ V .

THEOREM 2. Let vi∈V be an original SA value, and v∈V be

an SA value after perturbation, such that ∃u∈V: Pr(u→ v)>0,
where u→v denotes that u has been perturbed to v. If it holds that

∀vj ∈ V :
Pr(vi → v)

Pr(vj → v)
≤

ρ2i
ρ1i

·
1− ρ1i
1− ρ2i

= γi (7)

then (ρ1i, ρ2i)-privacy is satisfied with ρ1i = C(U = vi) > 0.

PROOF. Assume that (ρ1i, ρ2i)-privacy is not satisfied, that is,

C(U = vi|V = v) > ρ2i. For the event of seeing v it holds that

C(V = v) =
∑

∀u∈V C(U = u) ·Pr(u → v) > 0, as v must have

been produced by some original value u. Let vj be an SA value

least likely to have been perturbed to v, i.e.:

vj ∈ {u ∈ V|Pr(u → v) = min
u′∈V

Pr(u′ → v)}

By the definition of conditional probability it holds that:

C(U = vi|V = v) =
C(U = vi) · Pr(vi → v)

C(V = v)
(8)

and, since vj is least likely to have yielded v, it is:

C(U 6= vi|V = v) ≥
C(U 6= vi) · Pr(vj → v)

C(V = v)
(9)

Since, by our assumption, C(U = vi|V = v) > ρ2i > 0 and

C(U = vi) = ρ1i > 0, from Eqs. (8) and (9) we get:

C(U 6= vi|V = v)

C(U = vi|V = v)
≥

Pr(vj → v)

Pr(vi → v)
·
C(U 6= vi)

C(U = vi)
(10)

Inequality (7) holds for vj , thus we can rewrite Inequality (10) as:

1− C(U = vi|V = v)

C(U = vi|V = v)
≥

1

γi
·
1− C(U = vi)

C(U = vi)
(11)

Still,
1−C(U=vi)
C(U=vi)

= 1−ρ1i
ρ1i

, hence Inequality (11) yields:

1− C(U = vi|V = v)

C(U = vi|V = v)
≥

1

γi
·
1− ρ1i
ρ1i

=
1− ρ2i
ρ2i

⇒

C(U = vi|V = v) ≤ ρ2i

which contradicts our assumption.

Due to Theorem 2, Inequality (7) provides a sufficient condition

for β-likeness to hold. We aim to achieve this condition by uniform

perturbation, which maximizes the utility of randomized data [2].

Given an input SA value vi∈V , uniform perturbation tosses a coin

with probability αi∈(0, 1] for heads and 1−αi for tails, and, in the

latter case, replaces vi by a randomly selected value v ∈ V . Then:

Pr(vi → v) =

{
αi + (1− αi)/m if vi = v

(1− αi)/m if vi 6= v
(12)

LEMMA 3. Given any perturbed value v, Pr(vi → v) is maxi-
mized when vi = v.

PROOF. By Equation 12, if vi = v, then Pr(vi → v) = αi +

(1 − αi)/m. For vj 6= v, Pr(vj → v) =
1−αj

m
. Since ai, aj ∈

(0, 1] it is Pr(vi→v)−Pr(vj→v) =
(m−1)·αi+αj

m
> 0.

For the sake of utility, we need to maximize the probability that

input SA values remain unchanged, i.e., to set αi as high as pos-

sible for each vi ∈ V . However, for a given vi, the value of αi

should allow Inequality (7) to hold for v=vi and for any vj 6=v; if
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it holds in these extreme cases, then it also holds for all other values

of variables v and vj . Substituting the values given by Equation 12

for v= vi and vj 6= v in Inequality (7), we get
αi+(1−αi)/m

(1−αj)/m
≤ γi

∀j ∈ {1, 2, . . . ,m} \ {i}. The worst-case value the denominator

in the last inequality (i.e., the probability Pr(vj→v) of perturbing

vj 6= v to v) can assume is CM =minm
h=1

{
1−αh

m

}
. To calculate a

bound for αi, we require that the inequality holds in the worst case:

αi + (1− αi)/m

CM
≤ γi ⇔ (13)

αi ≤
m · γi · CM − 1

m− 1
(14)

Since by definition CM ≤ 1−αi
m

, if Inequality (13) holds, then,

for a given i, it will hold that
αi+(1−αi)/m

(1−αi)/m
≤ γi; consequently, it

will be αi≤
γi−1

γi+m−1
. Using this upper bound of αi, we infer that,

for each i ∈ {1, 2,. . .,m} it will be
1−αi
m

≥ 1
γi+m−1

. In effect, it

should also be CM =minm
h=1

{
1−αh

m

}
≥minm

h=1

{
1

γh+m−1

}
=

1
γℓ+m−1

, where γℓ=maxm
h=1{γh}. We have thus derived a lower

bound for Pr(vj → v) with vj 6= v, namely CL
M = 1

γℓ+m−1
. To

ensure that Inequality (14) always holds, we must guarantee that it

also holds for the lower-bound case; thus, the highest value we can

safely assign to each αi is αi=
m·γi ·C

L
M−1

m−1
. Eventually:

THEOREM 3. Perturbation by Eq. (12) with αi =
m·γi·C

L
M−1

m−1
,

γi=
ρ2i
ρ1i

· 1−ρ1i
1−ρ2i

, ρ1i=pi, ρ2i=f(pi), ∀vi∈V , satisfies β-likeness.

PROOF. Due to Lemma 3, for any SA value vj , perturbation by

Eq. (12) gives
Pr(vi→v)
Pr(vj→v)

≤ αi+(1−αi)/m

CL
M

= γi, i = 1, 2, . . . , m.

Then, by Theorem 2, (ρ1i, ρ2i)-privacy holds ∀vi ∈ V , hence β-

likeness is satisfied.

We now discuss how we reconstruct the original SA distribution

from the perturbed data to answer aggregation queries, which are a

basis of data mining tasks, as the following [33]:

SELECT COUNT(*) FROM Anonymized-data

WHERE pred(A1) AND . . . AND pred(Aλ)

AND pred(SA)

This query has predicates on λ randomly selected QI attributes and

the SA. For each of these λ+1 attributes A, pred(A) has the form

of A∈RA, where RA is an arbitrary interval in the domain of A.

Perturbation does not affect QI values. We reconstruct the query’s

result by estimating the count of original SA values among those

tuples that satisfy the query’s QI predicates, given the observed

SA values. In particular, given an aggregation query, suppose that

St is the set of tuples satisfying the predicates associated with QI
attributes, A1∈RA1

AND . . . AND Aλ∈RAλ
. Let S ′

t be the per-

turbed form of St. Since perturbation randomizes only SA values,

each tuple in St is perturbed in S ′
t with its QI value unchanged. Let

ni be the number of tuples with SA value vi in St, i = 1, 2, . . . , m,

and ei =
∑m

j=1 Pr(vj →vi)·nj the expected number of instances

of vi in S ′
t. According to our previous discussion, if j = i, then

Pr(vj → vi) = γi · C
L
M , else Pr(vj → vi)=

1−γj ·C
L
M

m−1
. Using the

notation Xi = γi·C
L
M and Yj =

1−γj ·C
L
M

m−1
, we have E = PM×N ,

where E =<e1, e2, . . . , em>, N =<n1, n2, . . . , nm>, and

PM =




X1 Y2 . . . Ym

Y1 X2 . . . Ym

...
...

. . .
...

Y1 Y2 . . . Xm




A data recipient knows neither E nor N , but only observes E′ =<
e′1, e

′
2, . . . , e

′
m >, where e′i is the number of occurrences of SA

value vi in S ′
t. Thus, one can approximately reconstruct N as N ′ =

PM−1 × E′ =< n′
1, n

′
2, . . . , n

′
m >, and estimate the answer to

a given query as est =
∑

vi∈RSA
n′
i, where RSA is the query

interval of pred(SA). To facilitate this reconstruction process, we

publish the perturbed data along with matrix PM ; we can also

release the original global SA distribution P in order to render the

publication model comparable to that offered by generalization.

6. EXPERIMENTAL EVALUATION
In this section we evaluate our schemes. Our prototypes were im-

plemented in Java and the experiments ran on a Core2 Duo 2.33GHz

CPU machine with 4GB RAM running Windows XP. We use the

CENSUS dataset [1], which contains 500,000 tuples on 6 attributes

as shown in Table 3. For categorical attributes, the value following

the type is the height of the corresponding attribute hierarchy; for

instance, attribute marital status is categorical and has a hierarchy

of height 2. The first 5 attributes are potential QI-attributes; the last

(salary class) is the SA. By default, we take the first three attributes

as QI . The least frequent SA value is 49, with frequency 0.2018%;

the most frequent SA value is 12, with frequency 4.8402%; β = 1
produces frequency threshold e−β ≈ 37%, which marks all SA
values as ‘infrequent’, and allows the frequency of any SA value in

any EC to be at most 4.8402% × 2 = 9.7%. Thus, 1 is a small β
value. We use β ∈ {1, 2, 3, 4, 5}. We generate 5 microdata tables

by randomly picking 100K to 500K tuples from the dataset; the

one of 500K tuples is our default dataset.

Attribute Cardinality Type

Age 79 numerical

Gender 2 categorical (1)

Education Level 17 numerical

Marital Status 6 categorical (2)

Work Class 10 categorical (3)

Salary Class 50 sensitive attribute

Table 3: The CENSUS dataset

We set the likeness threshold β by default to 4. Then, given the

application of enhanced β-likeness for any SA value vi, if pi ≤
e−4 = 0.018, its frequency qi in any EC should not exceed 5pi; if

pi > 1.8%, then it should be qi ≤ (1− ln(pi)) · pi. We reiterate

that these bounds apply to each SA value, while their definition

accommodates both low-frequency and high-frequency values. The

highest SA value frequency in our data set does not exceed 5%, so

the frequency of any salary class in any EC will not exceed 20%.

6.1 Face­to­face with t­closeness
Our first task is to compare our new β-likeness privacy model to

the predecessor distribution-based model of t-closeness. We argue

that β-likeness provides a more informative and comprehensible

privacy guarantee than t-closeness does. Still, in order to create an

even playing field on which to compare β-likeness to t-closeness,

we conducted three face-to-face comparisons as follows.

In the first comparison, for a given dataset DB and β, we let

BUREL transform DB to DBβ , satisfying β-likeness. We then

measure the closeness tβ , by the t-closeness model, between DBβ

and DB, i.e., the maximum EMD of the SA distribution in an EC

of DBβ from its distribution in DB. We then apply t-closeness

schemes tMondrian [20] and SABRE [4] on DB as well, with

tβ as the t-closeness threshold, to produce DBM
tβ

and DBS
tβ

, re-

spectively. Then DBβ , DBM
tβ

, and DBS
tβ

achieve the same privacy

under the criterion of t-closeness, as expressed by tβ . Then we

measure the β value achieved by DBM
tβ

and DBS
tβ

with respect

to DB. Given that all three schemes achieve the same privacy in
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Figure 4: Comparison to t-closeness

terms of t-closeness, we are interested to compare the privacy they

ahieve in terms of β-likeness. Figure 4(a) shows the results (in log-

arithmic y-axes), as a function of the given β parameter. While all

the three schemes are tuned to ensure the same t-closeness guaran-

tee, BUREL provides consistently higher privacy by the criterion

of β-likeness than SABRE and tMondrian. This result is expected,

since t-closeness restricts only the cumulative difference between

SA distributions, indifferent to the relative frequency difference of

each individual SA value between an EC and the whole table.

Next, for a given dataset DB and closeness constraint t, we let

tMondrian (SABRE) transform DB to DBM
t (DBS

t ), attaining t-
closeness. We then let BUREL find, by binary search, a value βt,

such that, when it enforces βt-likeness on DB, it produces an ano-

nymization DBβt characterized by the same (or smaller) closeness

parameter t as DBM
t (DBS

t ). Again we get three anonymized ver-

sions of DB that achieve the same privacy under t-closeness. While

in our first comparison we arrived at this state starting out with a

β parameter, now we start out with a t parameter. Thus, we avoid

bias against t-closeness schemes. We now compare the β-likeness

achieved by DBM
t (DBS

t ) to that of DBβt , as a function of t. The

results, shown in Figure 4(b), reaffirm our previous findings.

In our last experiment, given an AIL value l, we let BUREL

determine, by binary search on its β threshold, a value βl, such

that the data set DBβl
it generates from DB with βl as the like-

ness threshold achieves AIL equal to (or smaller than) l. Likewise,

we determine, by binary search, a value tMl (tSl ), which, used as

the closeness threshold in tMondrian (SABRE), generates data set

DBtM
l

(DBtS
l

) with AIL near l too, allowing for a small difference

ǫ. Thus, we obtain three data sets DBβl
, DBtM

l
, and DBtS

l
, gener-

ated by BUREL, tMondrian, and SABRE, respectively, which all

have information loss near l; to ensure the comparison is not biased

in favor of BUREL, we ensure its AIL value is not greater than

those of the other algorithms. We then compare the privacy they

achieve in terms of β-likeness. Figure 4(c) shows the results. Not

surprisingly, BUREL provides the highest privacy again, followed

by SABRE and tMondrian.

Our results testify that, other factors being equal, state-of-the-

art t-closeness schemes fail by a wide margin (as indicated by the

logarithmic y-axes) to achieve privacy good in terms of β-likeness.

Thus, they reaffirm that β-likeness raises substantially different re-

quirements from t-closeness, and requires a different approach.

6.2 Evaluation on Generalization
In this section we evaluate the performance of BUREL as a β-

likeness algorithm in its own field. As there is no previous work

on β-likeness, we employ two comparison benchmarks adopting

some suggestions of related work. First, we devise an algorithm

for β-likeness, following the conventional wisdom on designing

algorithms for new privacy models: We adapt Mondrian [18], a

k-anonymization algorithm, to the purposes of β-likeness, as pre-

vious works have done for other privacy models [22, 20, 3, 21].

Our adaptation, LMondrian, splits an EC only if both resultant ECs

satisfy β-likeness. Second, we use the similar adaptation of Mon-

drian to δ-disclosure-privacy suggested in [3], DMondrian. To ren-

der DMondrian comparable to BUREL and LMondrian, we set the

value of δ so that the data anonymized by DMondrian obey β-like-

ness. As we have discussed, while β-likeness demands that an SA
value’s distribution in an EC be qi ≤ (1+min{β,−ln pi})·pi, for

a given β, δ-disclosure-privacy requires that e−δ ·pi<qi < eδ ·pi,
where pi is the overall distribution of vi in the whole dataset. Thus,

an algorithm for δ-disclosure-privacy achieves β-likeness for δ ≤
log(1+min{β,−ln pi}), for all pi; in view of all SA values in V ,

we set δ= log

(
1+min

{
β,−ln

(
max
vi∈V

{pi}

)})
. We first com-

pare the three schemes with respect to average information loss and

wall-clock time.
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Figure 5: Effect of varying β

First, we study performance as a function of the β threshold.

Figure 5 shows the results. As β grows, the constraint on the

relative difference of each SA (i.e., salary) value frequency be-

tween an EC and the overall table is relaxed, hence information

quality rises (Figure 5(a)). BUREL outperforms both LMondrian

and DMondrian in information quality, showing the benefit of a

scheme tailored for β-likeness. This result reconfirms the finding of

[3] that a k-anonymization algorithm, adapted to δ-disclosure-pri-

vacy, yields unacceptably high information loss; as we discussed,

we aim at a positive result and propose a better alternative. In ad-

dition, given that δ-disclosure-privacy overprotects data by impos-

ing a constraint on negative information gain, LMondrian performs

better than its stricter sibling, DMondrian. Remarkably, BUREL

also outpaces both Mondrian-based schemes in efficiency (Figure

5(b)). Overall, BUREL achieves almost half the information loss

of its Mondrian-based competitors in about half the time.

Next, we investigate the effect of QI dimensionality (size), vary-

ing it from 1 to 5. As QI dimensionality increases, the data become

more sparse in QI space, as more high-dimensional degrees of free-

dom are offered; thus, the formed ECs are more likely to have large

minimum bounding boxes, and information quality degrades, as

Figure 6(a) shows. The information loss of BUREL is again lower

than that of the Mondrian-based methods. In addition, BUREL is

again the fastest of the three (Figure 6(b)).

Our next experiment studies the effect of database size, varying

the size of the microdata table from 100K to 500K tuples. Figure
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Figure 6: Effect of varying QI

7 presents our results. Interestingly, data size has no clear effect

on information quality. This is due to the fact that, as the amount

of tuples grows, more sensitive values are revealed, imposing their

own requirements. The mere increase of data density does not help,

as it would with simpler models like k-anonymity. Still, the elapsed

time increases as the table size grows; BUREL is again found to be

superior in both respects.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

DB size(10
5
)

AIL

BUREL
LMondrian
DMondrian

 0

 4

 8

 12

 16

 1  2  3  4  5

DB size(10
5
)

Time(sec)

BUREL
LMondrian
DMondrian

(a) information loss (b) time

Figure 7: Effect of varying dataset

We now examine the utility of the generalized table by aggrega-

tion queries introduced in Section 5. Each predicate pred(A) in

the query has the form of A ∈ RA. Let expected selectivity over

the table be 0<θ< 1. Assuming data are uniformly distributed, θ
can be achieved if each attribute A selects records within a range

of length |A|·θA of its domain, such that (θA)
λ+1=θ. In effect, the

length of RA should be |A|·θ
1

λ+1 , where |A| is the domain length

of attribute A. Given a query, the precise result prec is computed

from the original table, and an estimated result est is obtained from

the anonymized table. To calculate est, we assume that tuples in

each EC are uniformly distributed, and consider the intersection be-

tween the query and the EC. We define
|est−prec|

prec
×100% as the

relative error. We measure the median relative error in a workload

of 10K queries. Relative error is undefined when prec is 0. If prec
in a query is 0, we drop that query.

In our first experiment, we use the first 5 attributes in Table 3 as

QI , with expected selectivity θ=0.1, and vary the dimensionality

of the query, i.e. the number of QI attributes λ on which predicates

are defined. As these attributes contribute to the error, the increase

of λ exercises a negative effect on error. However, as λ grows, the

length of the query range RA in the domain of each queried at-

tribute also grows (for constant θ); thereby, the minimum bounding

box of an EC becomes more likely to be entirely contained in the

query region. In effect, the error does not depend monotonically

on λ (Figure 8(a)); it does not matter much how many attributes a

given selectivity θ is shared among. In the next experiment, we fix

λ to 3, θ to 0.1, and vary β. Figure 8(b) shows the results. As β
grows, the privacy requirement is relaxed, hence information qual-

ity rises and the error drops. Next, we set θ to 0.1, and vary the

QI size. As the QI size increases, the data tend to be more sparse

in QI-space, hence it is more likely that ECs with bigger bounding

boxes are created. Thus, in Figure 8(c) the workload error increases

with QI size, for all compared methods, while BUREL presents the

most modest increase. Last, Figure 8(d) presents the results as a

function of selectivity θ. As θ grows, the length of the range RA

for each attribute in a predicate increases. This makes the minimum

bounding box of an EC more likely to be entirely contained in the

query region, so the estimate becomes more accurate and the error

smaller. BUREL achieves consistently better utility.
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Figure 8: Median relative error

6.3 Evaluation on Perturbation
In this section we evaluate the performance of our perturbation-

based β-likeness scheme discussed in Section 5. We keep the QI

value of each tuple unchanged, and only randomize its SA value ac-

cording to a certain probability defined in conditional Equation 12.

We emphasize that there does not exist information loss by gener-

alized QI values to examine as with BUREL, but we can study the

utility of perturbed data set, again by aggregation queries. How-

ever, unlike the query answer estimation for generalized data using

an intersection between the query and the EC, now we estimate the

result simply by reconstructing the original SA distribution from

the perturbed SA values of those tuples that satisfy a query’s QI
predicates as discussed in Section 5.

Since our β-likeness scheme by perturbation is built on (ρ1i,
ρ2i)-privacy, for the sake of convenience we represent it as (ρ1i,
ρ2i)-privacy. We emphasize that, on the one hand, BUREL is based

on generalization, with the desirable property of identity anony-

mity; on the other hand, (ρ1i, ρ2i)-privacy randomizes the SA value

of each tuple independently, and is thus immune to corruption at-

tacks, in which one may infer the SA value of a victim on con-

dition that they already know the SA values of some individuals

[30]. However, BUREL and (ρ1i, ρ2i)-privacy are mutually incom-

parable. Besides, there is no previous work that achieves a privacy

guarantee comparable to β-likeness by perturbation; the most re-

cent related work that offers a privacy guarantee by perturbation,

[5], is also built on (ρ1i, ρ2i)-privacy, yet only limits the posterior

probability of inferring any individual SA value, a privacy guaran-

tee comparable to ℓ-diversity. In the absence of another competitor,

we introduce and compare to a Baseline approach, which publishes

the exact QI value of each tuple together with the overall SA dis-

tribution in the original table, in the way of Anatomy [33].

Figure 9 shows our results. We first set QI size to be 5, query se-

lectivity θ = 0.1, and vary the number of QI-attributes in the aggre-

gation queries. The QI value of each tuple remains intact for both

(ρ1i, ρ2i)-privacy and Baseline. Thus, only the predicate on SA,

pred(SA), incurs an error. As λ grows, the query range interval

RSA for SA also increases, in effect more tuples satisfy the query,

and the reconstructed SA distribution is closer to the actual one.
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Therefore, as Figure 9(a) shows, the workload error decreases as a

function of λ. Next, we set λ = 3, θ = 0.1, and study the effect of

β. Baseline is independent of β; the small fluctuation of its curve is

due to the fact that we randomly generate RA (i.e., the query range

interval for an attribute) in each experiment. However, f(pi), the

allowed posterior confidence of an attacker on SA value vi, grows

as a function of β. A higher value of f(pi) implies a larger αi,

allowing for a higher probability that an SA value remains intact

after randomization. Therefore, the data utility rises as β grows

(Figure 9(b)). Next, we set β = 4, and vary QI size; Figure 9(c)

shows the results. As neither (ρ1i, ρ2i)-privacy nor Baseline modi-

fies any QI value, the utility of perturbed data depends on the input

data set. Therefore, the workload error does not change uniformly

with QI size. Last, we study the effect of varying θ. When θ is

larger, RSA also grows. Hence, more tuples satisfy the query, and

the result becomes more accurate, as Figure 9(d) shows. Remark-

ably, in all presented cases, the accuracy of our perturbation-based

scheme consistently outperforms that of the Baseline approach.
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Figure 9: Median relative error with perturbation

7. RESISTANCE TO ATTACKS
We now discuss the resistance of our model and schemes to sev-

eral types of attack proposed in the literature.

A minimality attack [31] applies when an algorithm populates

ECs with tuples explicitly heeding to privacy considerations, mak-

ing decisions “uniquely decided by the sensitive value of a particu-

lar tuple” [34]. BUREL decides first on EC dimensions, consider-

ing SA values alone. Then, it decides on the particular contents of

each EC, independently of others, looking only at tuples’ QI values

and heeding to utility considerations; it does not decide whether to

put a given tuple in one EC or another by looking at its SA value.

This separation of tasks renders BUREL immune to minimality at-

tacks. Furthermore, [7] has shown that the minimality attack can

be easily averted even in the case of algorithms vulnerable to it.

A deFinetti attack [15] aims to learn the correlation between SA
values and QI values by building a Bayesian network; it starts by

assuming a random permutation to assign each SA value to a QI
value in each EC, and builds a Naı̈ve Bayes classifier out of all

such assignments. Then it evaluates the permutation assigned to

each EC, and generates an improved one, which is in turn used

to update the classifier. This iterative procedure goes on until it

converges. In other words, the classifier exploits divergences be-

tween the global information, as it appears in the whole published

table, and local knowledge within each EC, to iteratively correct

the SA to QI assignments within each EC. We deduce that, if this

divergence is controlled, the success potential of the deFinetti at-

tack can be correspondingly constrained. The β-likeness principle

delimits exactly this divergence by a threshold β, hence constrains

how much an attacker learns beyond the overall distribution in a

published table. We thus argue that β-likeness curbs the deFinetti

attack as the value of β prescribes. Intuitively, a lower β value al-

lows for smaller divergences and hence lower success rate of the

attack. We have defined β-likeness in a way that constrains posi-

tive, but not negative, information gain, as this is the cardinal need

in most practical circumstances. Still, a deFinetti attack may also

exploit negative divergences in order to construct its classifier. In

case such concerns arise, our model can be straightforwardly ex-

tended to constrain negative divergences as well, and thereby fur-

ther enhance its capacity to thwart such attacks.

Cormode [6] recently conducted an experimental study of the

deFinetti attack on Anatomy [33], an instantiation of ℓ-diversity,

concluding that the attack is effective for small values of ℓ (2,

3, 4). Still, as ℓ rises, the attack’s success rate deteriorates. In

particular, for ℓ = 5 the rate is below 50%, and when ℓ reaches

7 it falls below 30%. As the attack has so far only been imple-

mented against Anatomy, presenting the privacy of data anonymi-

zed by BUREL in terms of ℓ-diversity is relevant in this context.

β t Avg t ℓ Avg ℓ
1 0.02 0.01 19.0 20.7

2 0.09 0.04 11.0 15.9

3 0.13 0.04 8.7 14.2

4 0.16 0.04 7.2 13.6

5 0.17 0.05 6.6 12.6

The table on the right presents the

t and ℓ values achieved in terms

of t-closeness and ℓ-diversity, re-

spectively, for the data sets pub-

lished by β-likeness in the exper-

iment of Figure 4(a), with β set to 1, 2, 3, 4, and 5; Avg ℓ (t) stands

for the average diversity (closeness) for all the ECs. Notably, for

reasonable values of β, ℓ assumes values no less than 6 for which

the deFinetti attack’s succsess rate is low.

The hitherto discussed attacks are designed against generaliza-

tion-based schemes. Our perturbation scheme is not vulnerable to

them, as it involves no generalization. Moreover, as it randomizes

each SA value independently, it is immune to corruption attacks

[30], in which an attacker who is already aware of the SA values

of some individuals tries to infer that of a victim. Besides, our

schemes assume the anonymized data are published only once, so

as to prevent composition attacks [11]. Thwarting such attacks with

republication under β-likeness is a problem orthogonal to our work.

Cormode [6] also suggests an attack on differential privacy based

on a Naı̈ve Bayes classifier. Such a classifier predicts the SA value

of a tuple t with mQI-attribute values, tj , 1 ≤ j ≤ m, as:

v̂(t) = argmax
vi∈V

Pr[vi]
∏m

j=1 Pr[tj |vi] (15)

The gist of the attack lies in the fact that the conditional probabil-

ities Pr[tj |vi] can be accurately learned based on noisy count query

results extracted from differentially private data. While the noise in

question conceals the contribution of any individual, its effect on

the derived Pr[tj |vi] is relatively small [6]; thus, the built classi-

fier works almost as effectively as in the noiseless case, exploiting

variations of Pr[tj |vi] values from their unconditional counterpart,

Pr[tj ] to produce a non-trivial prediction of v̂(t). On the other

hand, β-likeness is defined in a way that explicitly bounds exactly

the variation of these conditional probabilities from their uncondi-

tional counterpart. Specifically, by Bayes’ rule, we get:

Pr[tj |vi] =
Pr[vi|tj ]

Pr[vi]
Pr[tj ] (16)

For a given sensitive value vi∈V , Pr[vi] is the prior confidence

in vi based on the global distribution of SA values, which we have

hitherto denoted as pi, while Pr[vi|tj ] is the posterior confidence

that β-likeness bounds by f(pi) = (1+min{β,−ln pi})·pi. Then

β-likeness guarantees that Pr[tj |vi]≤ (1+min{β,−ln pi})·Pr[tj ].
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Thus, β-likeness bounds the conditional probabilities that the Naı̈ve

Bayes attack exploits, delimiting the extent to which their values

vary from Pr[tj ]. Consequently, β-likeness delimits the potential

for a Naı̈ve Bayes attack to succeed, causing Equation (15) to pre-

dict the most frequent SA value in the table most of the time.

The preceding analysis has been made without prejudice to the

publication format, and hence applies to any scheme satisfying β-

likeness. However, the same analysis can be made specifically for

publication by generalization. Assume BUREL outputs e ECs, and

f of those include QI attribute value tj . Let {G1, . . . , Gf} be the

set of ECs that contain tj , {Gf+1, . . . , Ge} the set of all other ECs,

and qki the frequency of SA value vi in EC Gk. Then it is:

Pr[tj |vi] =
q1i |G1|+ q2i |G2|+ . . .+ qri |Gf |

pi · (|G1|+ . . .+ |Ge|)
(17)

≤ (1 + min{β,−ln pi}) ·
|G1|+ . . .+ |Gf |

|G1|+ . . .+ |Ge|
(18)

≤ (1 + min{β,−ln pi}) · Pr[tj ] (19)
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The last inequality confirms our pre-

vious result. For illustration, we es-

timate Pr[tj |vj ] values as in Equation

(17) on the anonymized CENSUS data,

using the first three attributes as QI , to

predict the SA value of each tuple by

Equation (15), for β ∈ {1, 2, 3, 4, 5}.

We obtain the success rate shown in the figure above. As expected,

this success rate remains remarkably close to the frequency of the

most frequent SA value in the data, namely 4.8402%.

Last, we emphasize that β-likeness is a privacy model for cate-

gorical data. Its extension to numerical data is an interesting topic

for future research. Such an extension should constrain not merely

the variation in the frequencies of discrete numerical values, but

rather of any values in close proximity to each other. Doing so, it

would be immune to proximity attacks [19], as they apply on nu-

merical data. In case proximity is defined for categorical data by a

semantic hierarchy of categorical values, our model can be easily

extended so as to treat all values beneath the same selected nodes

in this hierarchy as the same, and ensure β-likeness for such groups

of values instead of leaf nodes in the hierarchy. We also emphasize

that out model is built under the assumption that an attacker has no

other prior knowledge apart from the overall distribution of sensi-

tive values. Rastogi et al. [26] show that, if an adversary knows

arbitrary correlations among tuples, there exists no useful anony-

mization algorithm that can achieve both privacy and utility.

8. CONCLUSION
In this paper we revisited the microdata anonymization problem

with three distinct contributions. First, we introduced β-likeness,

a robust privacy model that provides a comprehensible and intu-

itively appealing privacy guarantee, expressed as a limit on the rel-

ative confidence gain on each single sensitive attribute value. Sec-

ond, we devised BUREL, a novel generalization algorithm explic-

itly customized for this model. Third, we devised a perturbation

technique for our model. Our experimental results confirm that al-

gorithms developed for other privacy models cannot achieve strong

guarantees in terms of β-likeness, and verify the effectiveness and

efficiency of both our schemes in their task. Apart from this ex-

perimental study, we also provided arguments and results to the

effect that the β-likeness privacy guarantee affords genuine protec-

tion against attacks suggested in previous research. In the future,

we intend to extend our model to numerical sensitive attributes.
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