
Towards Energy-Efficient Database Cluster Design

Willis Lang
University of Wisconsin

wlang@cs.wisc.edu

Stavros Harizopoulos
Nou Data

stavros@noudata.com

Jignesh M. Patel
University of Wisconsin

jignesh@cs.wisc.edu

Mehul A. Shah
Nou Data

mehul@noudata.com

Dimitris Tsirogiannis
Microsoft Corp.

dimitsir@microsoft.com

ABSTRACT

Energy is a growing component of the operational cost for many

“big data” deployments, and hence has become increasingly im-

portant for practitioners of large-scale data analysis who require

scale-out clusters or parallel DBMS appliances. Although a number

of recent studies have investigated the energy efficiency of DBMSs,

none of these studies have looked at the architectural design space of

energy-efficient parallel DBMS clusters. There are many challenges

to increasing the energy efficiency of a DBMS cluster, including

dealing with the inherent scaling inefficiency of parallel data pro-

cessing, and choosing the appropriate energy-efficient hardware. In

this paper, we experimentally examine and analyze a number of key

parameters related to these challenges for designing energy-efficient

database clusters. We explore the cluster design space using empiri-

cal results and propose a model that considers the key bottlenecks

to energy efficiency in a parallel DBMS. This paper represents a

key first step in designing energy-efficient database clusters, which

is increasingly important given the trend toward parallel database

appliances.

1. INTRODUCTION
In recent years, energy efficiency has become an important database

research topic since the cost of powering clusters is a big component

of the total operational cost [13, 15, 19]. As “big data” becomes

the norm in various industries, the use of clusters to analyze ever-

increasing volumes of data will continue to increase. In turn, this

trend will drive up the need for designing energy-efficient data

processing clusters. The focus of this paper is on designing such

energy-efficient clusters for database analytic query processing.

One important problem regarding the energy efficiency of database

clusters surrounds the classical problem of non-linear scalability in

parallel data processing [12]. Non-linear scalability refers to the

inability of a parallel system to proportionally increase performance

as the computational resources/nodes are increased. More recently,

it was shown that modern parallel DBMSs are still subject to these

scalability pitfalls that affect their performance and increase their

total operating cost [25, 31].

8N
10N

12N

14N

16N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 C

o
n

su
m

p
ti

o
n

Normalized Performance

Varying Cluster Sizes
8B,0W

7B,1W

6B,2W

5B,3W

4B,4W

3B,5W

2B,6W

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.700.800.901.00

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 C

o
n

su
m

p
ti

o
n

Normalized Performance

Varying Cluster Designs

(a) (b)

Figure 1: (a) Empirical energy consumption and performance

results for Vertica running TPC-H Q12 (at scale factor of 1000).

The dotted line indicates trading an X% decrease in perfor-

mance for an X% decrease in energy consumed so that the En-

ergy Delay Product (EDP= energy× delay) metric is constant

relative to the 16 node cluster. (b) Modeled performance and en-

ergy efficiency of an 8 node cluster made of various traditional

Beefy nodes and low-power Wimpy nodes when performing a

parallel hash join on our custom parallel execution engine P-

store. Wimpy nodes only scan and filter the data before shuf-

fling it to the Beefy nodes for further processing. A constant

EDP relative to the all Beefy cluster is shown by the dotted line.

1.1 Illustrative Experiments
First, we present two results that show how varying the cluster size

and changing the cluster design can allow us to trade performance

for reduced energy consumption for a single query workload.

In this paper, we studied the effect of this undesirable scalability

phenomenon on the energy efficiency of parallel data processing

clusters using a number of parallel DBMSs, including Vertica and

HadoopDB. Our first result is shown in Figure 1(a) for TPC-H

Q12 (at scale factor 1000) for Vertica. In this figure, we show

the relative change, compared to a 16 node cluster, in the energy

consumed by the cluster and the query performance1 as we decrease

the cluster size two nodes at a time (please see Section 3.1 for more

details). Next, we discuss three key insights that can be drawn from

Figure 1(a), which also shape the theme of this paper.

First, this result shows the classic sub-linear parallel speedup

phenomenon; namely, given a fixed problem size, increasing the

computing resources by a factor of X provides less than an X
times increase in performance [12]. Or, conversely, decreasing the

resources to 1/X , results in a relative performance greater than

1/X . We can observe this phenomenon in Figure 1(a) because

1
Here performance is the inverse of the query response time.

1684

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

reducing the cluster size from 16 nodes (16N) to eight nodes (8N),

results in a performance ratio greater than 50%. Note that since

performance is the inverse of the response time, a performance ratio

greater than 50% at 8N means that the response time at 16N is more

than half the response time at 8N (i.e., sub-linear speedup).

Second, as shown by the solid curve in Figure 1(a), the total

energy required to execute the query decreases as we reduce the

cluster size from 16N, even though it takes longer to run the query.

Recall that energy is a product of the average power drawn by the

cluster and the response time of the query. Due to the sub-linear

speedup, going from 16N to 8N reduces the performance by only

36%, but the average power drops by roughly half (since we have

half the number of nodes). Consequently, the energy consumption

ratio (relative to the 16N case) for fewer than 16 nodes is less than

1.0. This is an encouraging energy efficiency gain, albeit at the cost

of increased query response time.

Lastly, in Figure 1(a), the dotted line shows the line where the

Energy Delay Product (EDP) is constant, relative to the 16N case.

EDP is defined as energy × delay (measured in Joules seconds),

and is commonly used in the architecture community as a way

of studying designs that trade-off energy for performance2. Here

“energy” refers to the query energy consumption and “delay” refers

to the query response time. A constant EDP means that we have

traded x% of performance for an x% drop in energy consumption.

Preferably, it would be nice to identify design points that lie below

the EDP curve, as such points represent trading proportionally less

performance for greater energy savings.

In Figure 1(a), all the actual data/design points (on the solid line)

are above the EDP curve. In other words, as we reduce the cluster

size from 16 nodes to 8 nodes, we are giving up proportionately more

performance than we are gaining in energy efficiency. For example,

the 10 node configuration (10N) pays a 24% penalty in performance

for a 16% decrease in energy consumption over the 16N case. Such

trade-offs may or may not be reasonable depending on the tolerance

for performance penalties, but the EDP curve makes it clear in which

directions the trade-offs are skewed. This observation motivates

the key question that is addressed in this paper: What are the

key factors to consider when we design an energy-efficient DBMS

cluster so that we can favorably trade less performance for more

energy savings (i.e., lie below the EDP curve)?

To understand the reasons why our observed data points lie above

the EDP curve in Figure 1(a), and to carefully study the conditions

that can produce design points that lie below the EDP curve, we built

and modeled a custom parallel data execution kernel called P-store.

The data that we collected from real parallel DBMSs was used to

validate the performance and energy model of P-store (see Section 4

for details). Then, using P-store, we systematically explored both

the query parameters and the cluster design space parameters to

examine their impact on performance and energy efficiency. We

also developed an analytical model that allows us to further explore

the design space.

One of the interesting insights we found using both P-store and

our analytical model is that there are query scenarios where certain

design points lie below the EDP curve. One such result is shown

in Figure 1(b). Here, we use our analytical model to show the

energy versus performance trade-off for various eight node cluster

designs, when performing a join between the TPC-H LINEITEM and

the ORDERS tables (see Section 5 for details). In this figure, similar

to Figure 1(a), we plot the relative energy consumed by the system

2
With the growing viewpoint of considering an entire cluster as a single

computer [10], EDP is also a useful way of thinking about the interactions
between energy consumption and performance when designing data cen-
ters [22, 38].

and the response time against a reference point of an eight node

Xeon-based (“Beefy”) cluster. We then gradually replaced these

nodes with mobile Intel i7 based laptops (“Wimpy”)3 nodes. The

Wimpy nodes do not have enough memory to build in-memory hash

tables for the join, and so they only scan and filter the table data

before shuffling them off to the Beefy nodes (where the actual join

is performed). As opposed to Figure 1(a), which is an experiment

done with homogeneous Beefy nodes, Figure 1(b) shows data points

below the EDP curve. This result is interesting as it shows that it is

possible to achieve a relatively greater energy savings than response

time penalty (to lower the EDP) when considering alternative cluster

designs.

Energy-efficient cluster design with potentially heterogeneous

cluster nodes needs to be considered since non-traditional hetero-

geneous clusters are now showing up as database appliances, such

as Oracle’s Exadata Database Machine [1]. Thus, to a certain ex-

tent, commercial systems designers have already started down the

road to heterogeneous clusters and appliances. Such considera-

tions may also become important if future hardware (e.g., processor

and/or memory subsystems) allows systems to dynamically control

their power/performance trade-offs. Our paper provides a systematic

study of both the software and the hardware design space parameters

in an effort to draw conclusions about important design decisions

when designing energy-efficient database clusters.

1.2 Contributions
The key contributions of this paper are: first,we empirically ex-

amine the interactions between the scalability of parallel DBMSs

and energy efficiency. Using three DBMSs: Vertica, HadoopDB,

and a custom-built parallel data processing kernel, we explore the

trade-offs in performance versus energy efficiency when performing

speedup experiments on TPC-H queries (e.g., Figure 1(a)). From

these results, we identify distinct bottlenecks for performance and

energy efficiency that should be avoided for energy-efficient cluster

design.

Second, non-traditional/wimpy low-power server hardware has

been evaluated for its performance/energy-efficiency trade-offs, and

we leverage these insights along with our own energy-efficiency

micro-benchmarks to explore the design space for parallel DBMS

clusters. Using P-store, we provide a model that takes into account

these different server configurations and the parallel data processing

bottlenecks, and predicts data processing performance and energy

efficiency for various node configurations of a database cluster.

Third, using our model we study the design space for parallel

DBMS clusters, and illustrate interesting cluster design points, under

varying query parameters for a typical hash join (e.g., Figure 1(b)).

Finally, we organize the insights from this study as (initial) guid-

ing principles for energy-efficient data processing cluster design.

The remainder of this paper is organized as follows: Section 2

contains background discussion and related work; Section 3 dis-

cusses our findings with Vertica and HadoopDB. In Section 4 we

present P-store. In Section 5, we model P-store and use the model to

explore interesting cluster design points. Section 6 summarizes our

findings as guiding principles for energy-efficient data processing

cluster design. We make our concluding remarks in Section 7.

2. BACKGROUND AND RELATED WORK
With recent improvements in power delivery, cooling and heat

extraction, significant improvements have been made in improving

the energy efficiency of large data centers [13]. At the server level,

there are two ways to improve efficiency. One is to consolidate work

3
We use the term “wimpy” as in [37], i.e. “slower but [energy] efficient”.

1685

DBMS Vertica RAM 48GB
nodes 16 Disks 8x300GB

TPC-H size 1TB (scale 1000) Network 1Gb/s

CPU Intel X5550 2 sockets SysPower 130.03C0.2369

C = CPU utilization

Table 1: Cluster-V Configuration

onto few servers and turn off unused servers [23, 24, 27]. However,

switching servers on and off has direct costs such as increased

query latency and decreased hardware reliability. Another approach

is to consolidate the server use for a given task, and improve the

scheduling and the physical design to use the remaining servers

for other tasks. In this paper, we tackle the latter issue to explore

energy-efficient cluster design.

There has been a growing number of efforts to improve the en-

ergy efficiency of clusters [7–10, 20, 23–25, 27, 32, 34, 36]. We

have seen holistic redesigns that treat a data center as a single

computer [9, 10, 32], and approaches that consider workload consol-

idation techniques in order to meet the power constraints and reduce

the energy requirements of clusters [7, 23, 24, 27, 34]. In data ana-

lytics environments, delaying execution of workloads (increasing

response time) due to energy concerns have been proposed [20, 23].

A number of studies have also considered the use of low-power

(“wimpy”) nodes consisting of low-power storage (SSDs) and pro-

cessors (mobile CPUs) [8, 17, 25, 26, 33, 36]. Primarily, these de-

signs target computationally “simple” data processing tasks that are

partitionable, such as key-value workloads [37]. For such work-

loads, wimpy node clusters are more energy efficient compared to

traditional clusters built using more power-hungry “beefy” nodes.

But, for analytical database workloads that often exhibit non-linear

speedup, and especially when the network is a bottleneck, it was

shown that such wimpy node clusters often increase the total operat-

ing costs [25]. Alternatively, servers can be augmented with custom,

low-power circuitry, like Field-Programmable Gate Arrays [2, 29].

Such approaches are complementary to our study of heterogeneous

cluster design, and are an interesting direction for future work.

Early database research studies speculated that the database soft-

ware has an important role to play in improving the energy efficiency,

and argued for the redesign of several key components such as the

query optimizer, the workload manager, the scheduler and the physi-

cal database design [14,18,22]. Many of these suggestions assumed

that, like cars, computer systems have different optimal performance

and energy efficiency points. However, only preliminary experimen-

tal data was provided to support these claims.

Subsequent efforts have studied how alternate database designs

and configurations can improve the energy efficiency of a DBMS [21,

35, 38]. Meza et al. [28], have studied the energy efficiency of

a scale-up enterprise decision support system, and showed that

the most energy-efficient configuration was not always the fastest

depending on the degree of declustering across disks. Lang et

al. [24], showed how data replication can be leveraged to reduce

the number of online cluster nodes in a parallel DBMS. That work

is complimentary to ours as we could leverage similar replication

techniques to dynamically augment cluster size. Chen et al. [11],

considered heterogeneous usage of MapReduce servers through a

software workload manager. In contrast, we consider heterogeneity

in the cluster servers as well as the execution paths across servers.

3. PARALLEL DATABASE BEHAVIOR
In this section we examine the performance behavior and speedup

in shared-nothing DBMS clusters, and examine its effect on energy

efficiency. We see that bottlenecks that degrade performance, like

network bottlenecks, decrease the energy efficiency of a cluster

8N 10N 12N 14N 16N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.400.600.801.00

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 C

o
n

su
m

p
ti

o
n

Normalized Performance

Vertica - TPC-H Q1

8N 10N
12N 14N

16N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.400.600.801.00

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 C

o
n

su
m

p
ti

o
n

Normalized Performance

Vertica - TPC-H Q21

(a) (b)

Figure 2: Vertica TPC-H (a) Q1, (b) Q21 (scale 1000) empiri-

cal parallel speedup results and its effect on energy efficiency

under various cluster sizes. Cluster details can be found in Ta-

ble 1. The dotted line indicates trading a proportional decrease

in performance for a decrease in energy consumed such that

the EDP (= energy × delay) metric is constant.

design. We experiment with two off-the-shelf, column-oriented, par-

allel DBMSs, Vertica [3] and HadoopDB [6] (with Vectorwise [4]).

Vertica was deployed on cluster-V (see Table 1), and we used queries

from the TPC-H benchmark at scale factor 1000.

3.1 Vertica
We used Vertica v.4.0.12-0 64 bit RHEL5 running on 16 HP

ProLiant DL360G6 servers (the cluster configuration is described

in Table 1), varying the cluster size between 8 and 16 nodes, in 2

node increments. We only present results with a warm buffer pool.

Given the use of column-store in Vertica, the working sets for all

the queries fit in main memory (even in the 8 node case).

We did not have physical access to our clusters so we used real

power readings from the iLO2 remote management interface [5] to

develop server power models based on CPU utilization, following

an approach that has been used before [34]. Using a single cluster-V

node, we used a custom parallel hash-join program (see Section 4)

to generate CPU load, and iLO2 measured the reported power drawn

by the node usage. We varied the number of concurrent joins to

control the utilization on the nodes. iLO2 reports measurements

averaged over a 5 minute window, and we ran the experiments for

three 5 minute windows for each CPU utilization measurement. The

power readings at each CPU utilization level were stable, and we use

the average of the three readings to create our server power models.

(Our measurements of physically accessible servers, not using iLO2,

in Section 5 produced similar models.) In the interest of space, we

omit the measured results but show the derived power models in

Table 1 as “SysPower”. (In this paper, we explored exponential,

power, and logarithmic regression models, and picked the one with

the best R2 value.)

We employed Vertica’s hash segmentation capability which hash

partitions a table across the cluster nodes on a user-defined attribute.

We partitioned the LINEITEM, ORDERS, and CUSTOMER tables using

the hash segmentation, while all the remaining TPC-H tables were

replicated on each node. The ORDERS and the CUSTOMER tables

were hashed on the O CUSTKEY and C CUSTKEY attributes respec-

tively, so that a join between these two tables does not require any

shuffling/partitioning of the input tables on-the-fly. The LINEITEM

table was hashed on the L ORDERKEY attribute.

We ran a number of TPC-H queries and present a selection of our

results in this section. In Figure 2(a) we show the energy consumed

and performance (i.e., the inverse of the query response time) for

various cluster sizes running the TPC-H Query 1. This query does

1686

not involve any joins and only does simple aggregations on the

LINEITEM table. The data points are shown relative to the largest

cluster size of 16 nodes, and the “break-even” EDP line is also

plotted, as was also done earlier in Figure 1(a). Recall from Section 1

that this dotted line represents data points that trade energy savings

for a performance penalty such that the EDP remains constant.

In Figure 2(a), we observe that Vertica’s performance scales lin-

early, as the 8 node cluster has a performance ratio of about 0.5

compared to the 16 node case. Consequently, the energy consump-

tion ratio is fairly constant since the 50% performance degradation

is offset by a 50% drop in average cluster power. This result is

important because it shows that a partitionable analytics workload

(like TPC-H Query 1), exhibits ideal speedup as we allocate more

nodes to the cluster. Thus the energy consumption will remain

roughly constant as we change the cluster size. In other words, one

interesting energy-efficient design point is to simply provision as

many nodes as possible for this type of query (as there is no change

in energy consumption, but there is a performance penalty).

Let us consider a more complex query. Figure 2(b) shows the

results for TPC-H Query 21, which is a query that involves a join

across four tables: SUPPLIER, LINEITEM, ORDERS, and NATION. The

SUPPLIER and NATION tables were replicated across all the nodes, so

only the join between the LINEITEM and the ORDERS tables on the

ORDERKEY attribute required repartitioning (of the ORDERS table on

O ORDERKEY). Besides the four table join, Query 21 also contains

SELECT subqueries on the LINEITEM table within the WHERE clause.

Surprisingly, the results for the more complex TPC-H Query

21 results, shown in Figure 2(b), is similar to that of the simpler

TPC-H Query 1, which is shown in Figure 2(a). Since both queries

scale well, the energy consumption is fairly flat in both cases. It

is interesting to consider why the more complex TPC-H Query 21

scales well, even though it requires a repartitioning of the ORDERS

table during query processing. The reason for this behavior is that

the bulk of this query (94.5% of the total query time for eight nodes

– 8N) is spent doing node local execution. Only 5.5% of the total

query time is spent repartitioning for the LINEITEM and ORDERS join.

Since the bulk of the query is processed locally on each node, this

means that increasing the cluster size increases performance nearly

linearly. Thus, for a query with few bottlenecks, Vertica exhibits

nearly ideal speedup, and so the energy-efficient cluster design is to

simply use as many nodes as possible.

However, we have already seen a complex query where Vertica

does not exhibit ideal speedup. Compare the TPC-H Query 21 result

to Query 12 (shown in Section 1, Figure 1(a)), which is a much

simpler two table join between the ORDERS and the LINEITEM tables,

and performs the same repartitioning as Query 21. Compared to

the 5.5% time spent network bottlenecked during repartitioning

in Query 21, Query 12 spends 48% of the query time network

bottlenecked during repartitioning with the eight node cluster. Since

the proportional amount of total query time spent doing node local

processing is now dramatically reduced, we see in Figure 1(a), that

increasing the cluster size does not result in a proportional increase

in performance. As such, the energy efficiency suffers dramatically

as we increase the cluster size from 8 to 16 nodes.

Summary: Our Vertica results show that for queries that do

not involve significant time repartitioning (i.e., most of the query

execution time is spent on local computation at each node), the

energy consumption vs. performance curves are roughly flat. This

implies that an interesting point for energy-efficient cluster design

is to pick a cluster that is as large as possible, as there is no energy

savings when using fewer nodes, but there is an increase in query

response time. However, for queries that are bottlenecked, as we

saw with TPC-H Q12’s network repartitioning, non-linear speedup

means that a potential energy-efficient design decision is to reduce

the cluster size up to the point where the lower performance is

acceptable4. Of course, one simple way to mitigate repartitioning

bottlenecks is to devise energy-aware repartitioning or replication

strategies. An analysis and comparison to such strategies is beyond

the scope of this paper, but an interesting target of future work.

3.2 HadoopDB
HadoopDB is an open-source, shared-nothing parallel DBMS

that uses Hadoop to coordinate independent nodes, with each node

running Ingres/VectorWise [4, 6]. We used Hadoop ver. 0.19.2 and

Ingres VectorWise ver. 1.0.0-112. Setup scripts for HadoopDB and

the TPC-H queries we ran were provided by the authors of [6].

In HadoopDB, Hadoop acts as a means of communication be-

tween the individual nodes. However, Hadoop was designed with

fault tolerance as one of the primary goals and consequently, the per-

formance of our version of HadoopDB was limited by the Hadoop

bottleneck. Our evaluation of HadoopDB found that (similar to the

results in Figure 1(a)) the best performing cluster is not always the

most energy-efficient. In the interest of space, we omit these results.

3.3 Discussion
From our results with Vertica, we have found that there are queries

where the highest performing cluster configuration is not the most en-

ergy efficient (TPC-H Q12, Figure 1(a)) due to a network bottleneck.

With a commercial DBMS, simpler queries that do not require any

internode communication scale fairly linearly with increased cluster

size. We saw this with Query 1 and Query 21 (Figures 2(a,b)). How-

ever, with communication heavy queries such as Q12 (Figure 1(a)),

increasing the cluster size simply adds extra network overhead that

dampens the performance increase and reduces our energy savings.

Thus, we conclude that optimizing for parallel DBMS performance

does not always result in the lowest energy consumed per query and

this is the opposite conclusion from prior work which dealt with

single server DBMS environments [35].

With our results, we hypothesize that queries with bottlenecks,

such as the network or disk, cause node underutilization and thus,

the bottlenecks decrease the energy efficiency as the cluster size

increases. Since Vertica and HadoopDB are black-box systems, to

further explore this hypothesis of performance bottlenecks affect-

ing affecting energy efficiency, we built a custom parallel query

execution engine called P-store. Using P-store we empirically and

analytically studied various join operations that require varying

degrees of network repartitioning.

4. ENERGY EFFICIENCY OF A PARAL-

LEL DATA PROCESSING ENGINE
From our empirical, off-the-shelf, parallel DBMS observations,

we concluded that the scalability of the system running a given query

plays an important role in influencing the energy efficiency of the

cluster design points. Typically, poor scalability is a consequence of

bottlenecks in the system. We now describe some of these bottle-

necks, and then present our custom parallel query execution engine

P-store that allows us to study these bottlenecks in more detail.

4.1 Bottlenecks
Since there can be a multitude of implementation-specific issues

that can affect DBMS scalability, in this paper we are interested

only in fundamental bottlenecks that are inherent to the core engine.

4
Cluster systems often have implicit or explicit minimum performance

targets for many workloads. We recognize that determining when such limits
are acceptable is a broad and emerging research topic.

1687

4N

6N

8N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
al

iz
ed

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Normalized Performance

4N

6N

8N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
al

iz
ed

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Normalized Performance

4N
6N

8N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
al

iz
ed

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Normalized Performance

(a) One query (b) Two concurrent queries (c) Four concurrent queries

Figure 3: A partition incompatible TPC-H Q3 dual shuffle (exchange) hash join between LINEITEM and ORDERS (scale 1000) in P-

store. Each subfigure (a-c) shows the energy consumption and performance ratios relative to the 8 node cluster reference point. The

dotted line indicates the points where the EDP metric is constant.

Since our focus is on analytic SQL queries, we examine core par-

allel database operators, such as scans, joins, and exchanges. For

these kinds of queries and operators we identify three categories of

bottlenecks that can lead to underutilized hardware components in a

cluster environment.

Hardware bottleneck (network and disk): Decision support

queries often require repartitioning during query execution. Repli-

cation of tables on different partition keys can alleviate the need for

repartitioning in some cases, but this option is limited to only small

tables as it is often too expensive to replicate large tables.

The repartitioning step is often gated by the speed of the network

interconnect, causing the processor and other resources of a node to

idle while the node waits for data from the network. Additionally, an

increase in network traffic on the cluster switches causes interference

and further delays in communication. Future advances in networking

technology are expected to be accompanied by advances in CPU

capabilities, making this performance gap a persistent problem [30].

The balance between the network and disk subsystems can be

easily disturbed with varying predicate selectivities which diminish

the rate at which the storage subsystem can deliver qualified tuples

to the network. As a result, underutilized CPU cores waiting to

process operators at the higher levels of a query plan waste energy.

Algorithmic bottleneck (broadcast): For certain joins, the cheap-

est execution plan may be to broadcast a copy of the inner table

(once all local predicates have been applied) to all the nodes so

that the join is performed without re-partitioning the (potentially

larger) outer table. Such a broadcast generally takes the same time

to complete regardless of the number of participating nodes (e.g.,

for mGB of qualifying tuples and say 16 nodes, each node needs to

receive (15m/16)GB of the data, while for 32 nodes this changes

by a small amount to (31m/32)GB). As a result, scaling out to

more nodes does not speed up this first phase of a join and it reduces

the cluster energy efficiency.

Data skew: Although partitioning tools try to avoid data skew,

even a small skew, can cause an imbalance in the utilization of the

cluster nodes, especially as the system scales. Thus, data skew can

easily create cluster and server imbalances even in highly tuned

configurations. While we recognize data skew as a bottleneck, we

leave an investigation of this critical issue as a part of future work.

4.2 P-store: A Custom-built Parallel Engine
P-store is built on top of a block-iterator tuple-scan module and

a storage engine [16], that has scan, project, and select operators.

To this engine, we added network exchange and hash join operators.

Since energy consumption is a function of average power and time,

our goal was to make our engine perform at levels comparable to

commercial systems. Therefore, it was imperative that our exchange

operator is able to transfer over the network at rates near the limits

of the physical hardware, and our operators never materialize tuples

while maximizing utilization through multi-threaded concurrency.

4.3 Experiments
The purpose of these P-store experiments is to stress our “work-

horse” exchange operator when performing partition-incompatible

hash joins. By stressing the exchange operator, we wanted to see

how the hash join operation behaves at different points in the cluster

design space with respect to performance and energy consumption.

Our hash join query is between the LINEITEM and the ORDERS

tables of TPC-H at a scale factor of 1000, similar to the Vertica

experiments (see Section 3.1). We used eight of the cluster-V nodes

described in Table 1. By measuring the CPU utilization, the average

cluster power was found using our empirically derived model from

the cluster-V column of Table 1, Section 3.

To explore the bottleneck of partition-incompatible joins, we

hash partitioned the LINEITEM and ORDERS tables on their L SHIPDATE

and O CUSTKEY attributes respectively, and examined the join be-

tween these two tables that is necessary for TPC-H Query 3. The

LINEITEM table is projected to the L ORDERKEY, L EXTENDEDPRICE,

L DISCOUNT, and L SHIPDATE columns, while the ORDERS table is

projected to the O ORDERKEY, O ORDERDATE, O SHIPPRIORITY, and

O CUSTKEY columns. To simulate the benefit of a columnar storage

manager, for both tables, these four column projections (20B) were

stored as tuples in memory for the scan operator to read. We apply a

5% selectivity predicate on both the tables using a predicate on the

O CUSTKEY attribute for ORDERS and a predicate on the L SHIPDATE

attribute for LINEITEM, as is done in TPC-H Query 3.

To perform the partition-incompatible join in this TPC-H query

(Query 3), the hash join operator needs to build a hash table on the

ORDERS table and then probe using the LINEITEM table. There are

two ways to do this: (i) repartition both tables on the ORDERKEY

attribute – a dual shuffle, and (ii) broadcast the qualifying ORDERS

tuples to all nodes. With these two join methods, we show the effects

of network and disk bottlenecks as well as algorithmic bottlenecks

that affect energy efficiency.

4.3.1 Dual Shuffle

By doing a repartitioning of both tables, our P-store results shows

behavior that is similar to that of Vertica running TPC-H Query 12

1688

4N 6N

8N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
al

iz
ed

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Normalized Performance

4N

6N

8N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
al

iz
ed

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Normalized Performance

4N
6N

8N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.500.751.00

N
o

rm
al

iz
ed

 E
n

er
gy

 C
o

n
su

m
p

ti
o

n

Normalized Performance

(a) One query (b) Two concurrent queries (c) Four concurrent queries

Figure 4: A partition incompatible TPC-H Q3 broadcast hash join between LINEITEM and ORDERS (scale 1000) in P-store. Each

subfigure (a-c) shows the energy consumption and performance ratios relative to the 8 node cluster reference point. The dotted line

indicates the points where the EDP metric is constant.

(Figure 1(a)). Using P-store, first the ORDERS table is repartitioned

and the hash table is built on this table on-the-fly (no disk material-

ization) as tuples arrive over the network. After all the nodes have

built their hash tables, the LINEITEM table is repartitioned and its

tuples probe the hash tables on-the-fly.

In Figures 3(a)–(c), we see that poor performance scalability

due to network bottlenecks can allow us to save energy by using

fewer nodes. These figures show the comparison of relative energy

consumption to relative performance of the hash join with 1, 2, and

4 independent concurrent joins being performed respectively on 4 to

8 node clusters. We increased the degree of concurrency to see how

multiple simultaneous requests for the network resource affected

the network bottleneck.

Our results show that 4 nodes (4N) always consumes less energy

than 8 (8N). Also, as the concurrency level increases, the degree

of energy savings also increases (i.e., the results move closer to

the dashed EDP line). In Figure 3(a), halving the cluster size only

results in a 38% decrease in performance and translates to almost

20% savings in energy consumption. At a concurrency level of

two (Figure 3 (b)), the 4-node cluster has a 23% increase in energy

savings over the 8-node cluster with a 35% penalty in performance.

With 4 concurrent hash joins running on the cluster (Figure 3 (c)),

the 4-node cluster saves 24% of the energy consumed by the 8-node

cluster while losing 33% in performance.

The reason we see greater energy savings with more concurrent

queries is because the CPU utilization does not proportionally in-

crease with the increasing concurrency level. This behavior is due

to the network being the bottleneck, and so the CPU stalls and idles

as other hash joins also require the network resource.

To summarize, these results show that reducing the cluster size

can save energy, but we pay for it with a proportionally greater loss

in performance – i.e., these data points lie above the dashed EDP

line. As we have mentioned previously, ideally we would prefer

results that lie on or below this dotted curve. The next section shows

that for broadcast joins, the trade-off is much more attractive.

4.3.2 Broadcast

The broadcast join method scans and filters the ORDERS table, and

then sends the qualifying tuples to all the other nodes. Therefore,

the full ORDERS hash table is built by each node and the LINEITEM

table does not need to be repartitioned. To keep the full ORDERS

hash table in memory, we increased the ORDERS table selectivity

from 5% to 1% but held the LINEITEM table selectivity at 5%.

The results for this experiment are shown in Figure 4(a)–(c).

Half Cluster
75%

Half Cluster

75%

Half Cluster

75%
Full Cluster

0

0.2

0.4

0.6

0.8

1

1.2

0.40.50.60.70.80.91

Normalized Performance

shuffle both tables

broadcast small table

prepartitioned (no network)

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

Energy savings of half cluster over full cluster

18% energy savings

26% energy savings

Mostly unchanged

Figure 5: Network and algorithmic bottlenecks cause non-

linear scalability in the partition-incompatible joins which

mean smaller cluster designs consume less energy than larger

designs. If the query is perfectly partitioned with ideal scalabil-

ity (Vertica TPC-H Q1, Figure 2(a)), changing the number of

nodes only affects performance and not energy consumption.

From these figures, we observe that the data points now lie on the

EDP line, indicating that we proportionally trade an X% decrease in

performance for an X% decrease in energy consumption compared

to the 8 node case (8N). Similar to the dual shuffle cases, here we

also used various concurrency levels – 1, 2, and 4.

In Figure 4(a), with one join running, the performance only de-

creases by 32% when we halve the cluster size from 8 to 4 nodes.

With 2 and 4 concurrent joins, the performance decreases by around

30% in Figures 4(b,c) when halving the cluster size. This drop in

performance causes the 4 node cluster to always save between 25%

to 30% in energy consumption compared to the full 8 node cluster.

Compared to the dual shuffle join (see Figure 3), the broadcast

join saves more energy when using 4 nodes rather than 8 nodes

(data points lie closer to the EDP line in Figure 4). This means that

the broadcast join suffers a higher degree of non-linear scalability

than the dual shuffle join. This is because broadcasting the ORDERS

table does not get faster with 8 nodes since every node must receive

roughly the entire table (7/8) over the network (see Section 4.1).

4.4 Discussion
Figure 5 summarizes our findings. The energy consumption of the

system, when running a 2-way join under different query execution

plans, can vary significantly under different cluster configurations.

Due to sub-linear performance speedup, when the join is not parti-

tion compatible (“shuffle both tables” and “broadcast small table”),

1689

System CPU (cores/threads) RAM Idle Power (W)

Workstation A i7 920 (4/8) 12GB 93W
Workstation B Xeon (4/4) 24GB 69W
Desktop Atom (2/4) 4GB 28W
Laptop A Core 2 Duo (2/2) 4GB 12W (screen off)
Laptop B i7 620m (2/4) 8GB 11W (screen off)

Table 2: Hardware configuration of different systems.

halving the cluster size does not result in doubling the response time,

and this is one reason why the energy consumption at the “Half Clus-

ter” configuration is lower than at “Full Cluster” point. Furthermore,

we can see that when we use half of the cluster nodes instead of the

full cluster, the broadcast join method saves more energy and suffers

less performance penalty than the dual shuffle join. This is because,

for the broadcast join approach, the hash join build phase does not

get faster with more nodes and so 4 nodes is much more efficient

than 8 nodes. We can put this result in perspective by comparing

these results to the partitioned TPC-H Q1 result from Vertica, where

the energy consumption is flat regardless of the cluster size.

5. ON CLUSTER DESIGN
Our empirical results using two off-the-shelf DBMSs and a cus-

tom parallel query execution kernel have shown that a number of key

bottlenecks cause sub-linear speedup. These diminishing returns

in performance, when additional cluster nodes are added, are a key

reason why the energy consumption typically drops when we re-

duce the cluster size. Observing this reoccurring pattern of “smaller

clusters can save energy” suggests that the presence of performance

bottlenecks is a key factor for energy efficiency.

However, we have thus far ignored the other factor for total system

energy consumption: namely, the power characteristics of a single

node. As we demonstrate in this section, the hardware configuration

(and performance capability) of each individual node also plays

a significant role in improving the energy efficiency of parallel

DBMSs, and needs to be considered for energy-efficient cluster

design. By comparing some representative hardware configurations,

we found one of our “Wimpy” laptop configurations yielded the

lowest energy consumption in single node experiments. As such,

we ask the question: Given what we now know about performance

bottlenecks and energy efficiency, what if we introduced these so-

called “Wimpy” nodes into a parallel database cluster?

In the remainder of this paper, we explore how query parameters,

performance bottlenecks, and cluster design are the key factors that

we should consider if we were to construct an energy-efficient clus-

ter from scratch. We first show that Wimpy nodes consume less

energy per query than “Beefy” nodes (Section 5.1). Then, using

P-store we ran parallel hash joins on heterogeneous cluster designs

(Section 5.2), and used these results to generate and validate a perfor-

mance/energy consumption model (Sections 5.3). Finally, using this

model, we explore the effects of some important query and cluster

parameters (Section 5.4) to produce insights about the characteristics

of the energy-efficient cluster design space (Section 5.5).

5.1 Energy Efficiency of Individual Nodes
In this section we demonstrate that non-server, low-power nodes

consume significantly lower amounts of energy to perform the same

task as a traditional “Beefy” server nodes. For the rest of the results

in this paper, we had physical access to the nodes/servers so we

measured power directly from the outlet using a WattsUp Pro meter.

The meter provided a 1Hz sampling frequency with a measurement

accuracy of +/- 1.5%. 5

5
We observed that the server CPU utilization/power models from these

measurements validate our iLO2-based approach in Table 1.

Desktop

Laptop A

Laptop B
Workstation A

Workstation B

0

300

600

900

1200

1500

1800

0 10 20 30 40 50

E
n

e
rg

y
 C

o
n

su
m

e
d

 (
J)

Response Time (s)

Lowest amount of energy

to perform the hash join

Figure 6: A hashjoin: 0.1M and 20M tuple (100B) tables.

We studied five systems with different power and performance

characteristics, ranging from low-power, ultra-mobile laptops to

high-end workstations. Laptops are optimized for power consump-

tion and are typically equipped with mobile CPUs and SSDs, whereas

high-end workstations are optimized for performance. The configu-

ration and power consumption details are shown in Table 2.

To assess the energy efficiency of these systems, we used an in-

memory database workload. This workload executes a basic hash

join operation, and is designed to stress modern CPUs (the hash

join code is cache-conscious and multi-threaded). Our hash join is

between a 10MB table (100K cardinality, and 100 byte tuples) and

a 2GB table (20M cardinality, and 100 byte tuples).

Figure 6 plots the energy consumed versus the hash join response

time for the different configurations. From this figure, we observe

that the Laptop B system consumes the lowest energy for processing

this in-memory hash join. As expected, the high-end workstations

exhibit the best performance (lowest response time). However,

the workstations are not the best when we consider the energy

consumption. The energy consumption of Laptop B is 800 Joules

while the energy consumption of Workstation A is near 1300 Joules,

even though it takes significantly longer to perform the in-memory

join on the laptop. As this experiment suggests, low-power systems

can reduce the average power that they draw more than they reduce

performance, thereby reducing the energy consumption of running

a database query. Since “Laptop B” consumed the least energy,

we use it to represent a “Wimpy” server node when considering

architectural designs of heterogeneous clusters.

Combining these results with the scalability and bottleneck obser-

vations (from Section 4.2), next we explore energy-efficient cluster

design points, starting with experimental evidence of potential de-

sign opportunities.

5.2 Heterogeneous Clusters Design
We prototyped two different four node clusters and measured the

energy efficiency for dual shuffle hash joins (see Section 4.3), using

P-store. Each cluster node has a 1Gbs network card and is connected

through a 10/100/1000 SMCGS5 switch. Node power was measured

using the WattsUp power meters as described in Section 5.1. The

cluster specifications are as follows.

Beefy Cluster: This cluster has four HP ProLiant SE326M1R2

servers with dual low-power quad-core Nehalem-class Xeon L5630

processors. Each node also has 32GB of memory and dual Crucial

C300 256GB SSDs (only one was used for data storage). During

our experiments, the average node power was 154W.

2 Beefy/2 Wimpy: This cluster has two “beefy” nodes from the

Beefy cluster above, and two Laptop Bs (from Section 5.1), with

i7 620m CPUs, 8GB of memory, and a Crucial C300 256GB SSD.

During our experiments, the average laptop power was 37W.

Before we continue with the experimental results, there are two

important notes to make. First, P-store does not support out-of-

1690

memory joins (2-pass joins), and therefore we either run in-memory

joins across all the nodes (homogeneous execution), or we only

perform the join on the nodes that have enough memory while the

other nodes simply scan and filter data (heterogeneous execution).

Since energy is a function of time and average power, in-memory

join processing dramatically reduces the response time (as well as

maintains high CPU utilization) and hence provides a substantial

decrease in energy consumption per query. Second, our network has

a peak capacity of 1Gbps, and therefore is typically the bottleneck

for non-selective (where a high percentage of input tuples satisfy

the selection predicates) queries. While a faster network could be

used, as we discussed in Section 4.1, the network-CPU performance

gap is likely to persist into the near future.

Using P-store, we ran the same hash join necessary for TPC-H

Q3 between the LINEITEM and the ORDERS tables (as was done in

the experiment described in Section 4.3), but with a scale factor

of 400. The working sets (after projection) for the LINEITEM and

the ORDERS tables are 48GB and 12GB respectively. We warmed

our memory cache with as much of the working set as possible.

The hash join is partition-incompatible on both the tables just as in

Section 4.3 (i.e., dual shuffle is needed). We varied the selectivity

on the LINEITEM table to 1%, 10%, 50%, and 100%. The ORDERS

table had a selectivity of 1% and 10%. This gave us 8 different hash

join workloads.

The Beefy cluster can run all of the 8 hash join workloads by first

repartitioning ORDERS on the join key O ORDERKEY, and building

the hash table on each node as tuples arrive over the network. The

LINEITEM table is then repartitioned on the L ORDERKEY attribute,

and each node probes their hash table on-the-fly as tuples arrive

over the network. The beefy nodes have enough memory to cache

the working set and build the in-memory hash table for the ORDERS

table for both the 1% and 10% ORDERS selectivity values.

The hash join parameters cause the need for the 2 Beefy/2 Wimpy

cluster to alternate between homogeneous and heterogeneous execu-

tion. The wimpy nodes only have 8GB of memory, and hence can

only cache the 3GB ORDERS table partition and some of the 12GB

LINEITEM table partition. Thus, for the 2 Beefy/2 Wimpy cluster, a

1% selectivity on ORDERS allows the hash table to fit in the laptop

memory, and we can execute the join in the same way as the Beefy

cluster – homogeneous execution. However, if the selectivity on

ORDERS is low (i.e., the predicate matches ≥ 10% of the input tu-

ples), then we can only leverage the wimpy nodes to scan and filter

their partitions, and have them send all the qualifying data to the

beefy nodes where the actual hash tables are built – heterogeneous

execution. Similarly, the wimpy nodes scan and filter the LINEITEM

(probe) tuples and repartition the data to the beefy nodes.

Therefore, in our study, we consider two “wimpy” aspects of our

mobile nodes: (1) their lower power and performance due to low-

end CPUs, and (2) their lower memory capacity which constrains

the execution strategies for evaluating a query.

5.2.1 Small Hash Tables – Homogeneous Execution

Homogeneous parallel execution of a hash join requires a highly

selective predicate that produces a small ORDERS hash table that can

be stored in memory on all the nodes. We measured the response

time (seconds) and the energy consumed (Joules) of both our cluster

designs when running the hash join where the selectivity of the predi-

cate on the ORDERS table was 1%. Figure 7 (a) shows the comparison

of the all Beefy (AB) cluster to the 2 Beefy/2 Wimpy (BW) cluster

when we vary the LINEITEM table selectivity (L1,L10,L50,L100) for

a 1% selectivity on the ORDERS table (O1). We notice that for the 1%

and 10% LINEITEM selectivity cases (the circle and square markers

respectively), the AB cluster consumed less energy than the BW

AB-O1/L100

AB-O1/L50

AB-O1/L10

AB-O1/L1

BW-O1/L100

BW-O1/L50

BW-O1/L10

BW-O1/L1

0

25

50

75

100

0 50 100 150E
n

e
rg

y
 C

o
n

su
m

e
d

 b
y

 S
ys

te
m

 (
k
J)

Join Response Time (s)

(a) all nodes build hash tables

AB-O10/L100

AB-O10/L50

AB-O10/L10

AB-010/L1

BW-O10/L100

BW-O10/L50

BW-O10/L10

BW-O10/L1

0

25

50

75

100

125

0 50 100 150 200 250 300E
n

e
rg

y
 C

o
n

su
m

e
d

 b
y

 S
ys

te
m

 (
k
J)

Join Response Time (s)

(b) beefy nodes build hash tables, wimpy nodes scan/filter data

Figure 7: P-store dual-shuffle hash join between LINEITEM (L)

and ORDERS (O) tables at various selectivities (e.g., O10 means

10% selectivity on the ORDERS table). Empirical hash join en-

ergy efficiency of the all Beefy (AB) versus the 2 Beefy/2 Wimpy

clusters (BW).

cluster. However, for the 50% LINEITEM selectivity case (triangle),

the BW cluster saves 43% of the energy consumed over the AB

cluster. When the LINEITEM table has no predicate (diamond), the

BW cluster saves 56% of the energy consumed by the AB cluster.

Here we illustrate one of the bottlenecks we discussed above in

Section 4: namely the network/disk. With 100% LINEITEM selectiv-

ity, the bottleneck is network bandwidth: the bottleneck response

time of the AB cluster is 155s, while the response time of the BW

cluster is 168s. With 1% LINEITEM selectivity, we are bound by

the scan/filter limits of the wimpy, mobile nodes: the AB cluster

finishes executing this join in 8s while the BW cluster takes 50s.

5.2.2 Large Hash Tables – Heterogeneous Execution

As mentioned above, in the cases where the hash tables are larger

than the available memory in the wimpy, mobile nodes, the wimpy

nodes of the mixed node cluster simply scan and filter the data for

the Beefy nodes. Figure 7 (b) shows the comparison of the AB

cluster to the BW cluster in terms of energy efficiency, similar to

Figure 7 (a). Like our previous result for the 1% ORDERS selectivity

case, the BW cluster consumes less energy than the AB cluster

at a low LINEITEM selectivity (50% and 100%). The BW cluster

consumes 7% and 13% less energy than the AB cluster at 50% and

100% LINEITEM selectivity respectively.

Thus, we see that in both situations, a heterogeneous cluster

can offer improved energy efficiency at reduced performance. To

further explore the full spectrum of available cluster and workload

parameters that are important for cluster design, we built a model

of P-store’s performance and energy consumption. Our model is

1691

Tbld Build phase time (s) Tprb Probe phase time (s)

Ebld Build phase energy (J) Eprb Probe phase energy (J)

NB # Beefy nodes NW # Wimpy nodes

MB Beefy memory size (MB) MW Wimpy memory size (MB)

I Disk bandwidth (MB/s) L Network bandwidth (MB/s)

Bld Hash join build table size (MB) Prb Hash join probe table size (MB)

Sbld Build table predicate selectivity Sprb Probe table predicate selectivity

RWbld Rate at which a Wimpy node builds its hash table (MB/s)

RBbld Rate at which a Beefy node builds its hash table (MB/s)

UWbld Wimpy node CPU bandwidth during the build phase

UBbld Beefy node CPU bandwidth during the build phase

RWprb Rate at which the Wimpy node probes its hash table (MB/s)

RBprb Rate at which the Beefy node probes its hash table (MB/s)

UWprb Wimpy node CPU bandwidth during the probe phase

UBprb Beefy node CPU bandwidth during the probe phase

CB = 5037 Maximum CPU bandwidth of a Beefy node (MB/s)

CW = 1129 Maximum CPU bandwidth of a Wimpy node (MB/s)

GB = 0.25 Beefy CPU utilization constants for P-store

GW = 0.13 Wimpy CPU utilization constants for P-store

fB(c) = 130.03 × (100c)0.2369 (c=CPU util.) Beefy node power model

fW (c) = 10.994 × (100c)0.2875 (c=CPU util.) Wimpy node power model

H = MW ≥ (Bld ∗ Bldsel)/(NB + NW) Wimpy can build the hash table

Table 3: List of Model Variables

validated against these results in Figure 7. This model enables us to

freely explore the cluster and query parameters that are important

for cluster design.

5.3 Modeling P-store and Bottlenecks
Our model of P-store’s performance and energy consumption

behavior is aimed at understanding the nature of query parameters

and scalability bottlenecks affecting performance and system energy

consumption. The model predicts the performance and energy con-

sumption of various different ways to execute a hash join. The input

parameters that we consider are listed in Table 3.

From Table 3, note that our model makes a few simplifying

assumptions. First, the disk configuration for both the Wimpy nodes

and the Beefy nodes are the same and have the same bandwidth.

Second, the same uniformity assumption has been made about the

network capability of both node types. These assumptions matched

our hardware setup, but we can easily extend our model to account

for separate Wimpy and Beefy I/O bandwidths.

First, let us look at when the Wimpy nodes can build hash tables

because they have enough memory to hold the hash tables (i.e., we

do not have to run a 2-pass hash join). This is the case when H is

true (see Table 3).

Homogeneous Execution: In this case, all the nodes execute the

same operator tree. We can divide the hash join into the build phase

and the probe phase. During the build phase, we are either bound

by (1) the effects of the disk bandwidth and the selectivity on the

build table ; or (2) the network bandwidth:

RBbld = RWbld =







ISbld if ISbld < L
(NB + NW)L

(NB + NW − 1)
otherwise

These two variables RBbld and RWbld give us the rates at which

the build phase is proceeding (in MB/s). We also need to model the

build phase CPU utilization to determine the power drawn by each

node type. This is done by determining the amount of data that the

Beefy CPU and the Wimpy CPU is processing per second, UBbld

and UWbld, and then dividing each of these values by the maximum

measured rates for the CPU, CB and CW respectively. Finally, we

need to add CPU constants that are inherent to P-store, which are

EB and EW for the Beefy and Wimpy nodes respectively. This

CPU utilization is the input for our server power functions, fB and

fW , for the Beefy and Wimpy nodes respectively (see Table 3).

UBbld = UWbld =







I if ISbld < L
(NB + NW)L

(NB + NW − 1)
÷ Sbld otherwise

0.00

0.25

0.50

0.75

1.00

O 1%,

L 1%

O 1%,

L 10%

O 1%,

L 50%

O 1%,

L 100%

N
o

rm
a

li
ze

d
 R

e
sp

o
n

se
 T

im
e

Table Selectivities

Obs RT Ratio Model RT Ratio

0.00

0.25

0.50

0.75

1.00

O 1%,

L 1%

O 1%,

L 10%

O 1%,

L 50%

O 1%,

L 100%

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

Table Selectivities

Obs Energy Ratio Model Energy Ratio

(a) (b)

Figure 8: Performance and Energy model validation for the 2

Beefy/2 Wimpy case with 1% ORDERS selectivity and varying

LINEITEM selectivity against observed data from Figure 7(a)

Therefore, we can now calculate the build phase response time

and the build phase cluster energy consumption.

Tbld =
Bld × Sbld

(NBRBbld) + (NWRWbld)

Ebld = Tbld × (NBfB(GB +
UBbld

CB

) + NW fW (GW +
UWbld

CW

))

Since this is homogeneous execution, the probe phase can be

modeled in the same way as the build phase but now using the probe

table variables.

RBprb = RWprb =







ISprb if ISprb < L
(NB + NW)L

(NB + NW − 1)
otherwise

And similarly, the CPU bandwidth during the probe phase is:

UBprb = UWprb =







I if ISprb < L
(NB + NW)L

(NB + NW − 1)
÷ Sprb otherwise

Like the build phase, we can now calculate the probe phase re-

sponse time and the probe phase cluster energy consumption.

Tprb =
Prb × Sprb

(NBRBprb) + (NWRWprb)

Eprb = Tprb × (NBfB(GB +
UBprb

CB

) + NW fW (GW +
UWprb

CW

))

With these two phases modeled, the total response time is simply

Tbld + Tprb, and the total energy consumed is Ebld + Eprb.

Heterogeneous Execution: When the Wimpy nodes can not

store the hash join hash table in memory (H is false), P-store uses

the Wimpy nodes as scan and filter nodes and only the Beefy nodes

build the hash tables. Our model accounts for this by calculating the

rates at which predicate-passing tuples are delivered to the Beefy

nodes. In the same spirit as the above model for the homogeneous

execution, the key factors are whether or not we are disk bound

or network bound. However, since a smaller set of Beefy nodes

need to receive the data from the entire cluster, in addition to out-

bound network limitations from nodes sending data, there is an

ingestion network limitation at the Beefy nodes, which becomes

a performance bottleneck first. That is, the Beefy nodes that are

building the hash tables can only receive data at the network’s

capacity even though there may be many Wimpy nodes trying to

send data to them at a higher rate. For heterogeneous execution, we

take this problem into account in our model. In the interest of space,

we omit this model from this paper.

5.3.1 Model Validation

Next, we present validation of our P-store model using the real

observed data of the 2 Beefy/2 Wimpy cluster in Section 5.2. Since

1692

0.00

0.25

0.50

0.75

1.00

O 10%,

L 1%

O 10%,

L 10%

O 10%,

L 50%

O 10%,

L 100%

N
o

rm
a

li
ze

d
 R

e
sp

o
n

se
 T

im
e

Table Selectivities

Obs RT Ratio Model RT Ratio

0.00

0.25

0.50

0.75

1.00

O 10%,

L 1%

O 10%,

L 10%

O 10%,

L 50%

O 10%,

L 100%

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

Table Selectivities

Obs Energy Ratio Model Energy Ratio

(a) (b)

Figure 9: Performance and Energy model validation for the 2

Beefy/2 Wimpy case with 10% ORDERS selectivity and varying

LINEITEM selectivity against observed data from Figure 7(b)

the results in Section 5.2 were from warm-cache (some of the table

data resides in memory and disk I/O may be necessary) hash joins,

we changed the input parameters of our model to account for such

behavior. For example, we changed the scan rate of the build phase

to that of the maximum CPU bandwidth CW and CB . In this way,

the time it takes to finish the build phase is equal to the time it takes

the CPU to process the build table at maximum speed plus the time

to send the filter qualifying tuples over the network.

For our model, we used the following hardware parameter set-

tings: MB = 31000, MW = 7000, NB = NW = 2, I = 270, L = 95.

Since our experiments used a different Beefy node (based on 2

L5630 Xeon CPUs) than the cluster-V nodes, the fB function for

node power is given by 79.006× (100 ∗ u)0.2451 and CB = 4034.

Our validation results of our model against the 2 Beefy/2 Wimpy

cluster results from Section 5.2 are shown in Figures 8 and 9. In

Figure 8(a) and (b), we validate the response time and energy con-

sumption results of our model against the 1% ORDERS table selec-

tivity joins presented in Figure 7(a). The execution plans for the

1% ORDERS selectivity were homogeneous across all the nodes. In

Figure 8, our model provided relative response time behavior and rel-

ative energy consumption behavior to the 100% LINEITEM selectivity

result within 5% error compared to the observed data. Similarly,

in Figure 9(a) and (b), we validated the relative response time and

energy consumption results from our model for the 10% ORDERS

selectivity joins from Figure 7(b). Here the error rate was within

10% compared to the observed data. The execution plans here were

heterogeneous, with the Wimpy nodes only scanning and filtering

data for the Beefy nodes.

With our model validated, we now explore a wider range of cluster

designs beyond four nodes while also varying the query parame-

ters, such as predicate selectivity. Our results reveal interesting

opportunities for energy-efficient cluster design.

5.4 Exploring Query and Cluster Parameters
In this section, we explore what happens to query performance

and energy consumption as we change the cluster design (the ratio

of Beefy to Wimpy nodes) and query characteristics (the selectivity

of build and probe tables), while executing the hash join query on

P-store. This hash join is between a 700GB TPC-H ORDERS table

and 2.8TB TPC-H LINEITEM table. We join these tables on their

join attribute ORDERKEY. For our model, we used the following

hardware parameter settings: MB = 47000, MW = 7000, I = 1200,

L = 100. The memory settings correspond to those of our cluster-V

nodes (Table 1, Section 3) and Laptop B (Table 2). We model the

IO subsystem of our nodes as if they each had four of the Crucial

256GB SSDs that we used in Section 5.2, as well as the 1Gbps

8B,0W

7B,1W

6B,2W

5B,3W

4B,4W

3B,5W

2B,6W

1B,7W

0B,8W

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.700.800.901.00

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 C

o
n

su
m

p
ti

o
n

Normalized Performance

ORDERS 1%, LINEITEM 10%

8B,0W

7B,1W

6B,2W

5B,3W

4B,4W

3B,5W

2B,6W

0.9

1.0

0.250.500.751.00

N
o

rm
a

li
ze

d
 E

n
e

rg
y
 C

o
n

su
m

p
ti

o
n

Normalized Performance

ORDERS 10%, LINEITEM 10%

(a) (b)

Figure 10: Modeled P-store dual-shuffle hash join performance

and energy efficiency of an 8 node cluster made of various Beefy

and Wimpy nodes. (a) Parallel execution is homogeneous: the

Wimpy and Beefy nodes can build in-memory hash tables. (b)

Parallel execution is heterogeneous: Wimpy nodes scan and fil-

ter their local data before shuffling it to the Beefy nodes for

further processing. A constant EDP relative to the all Beefy

cluster is shown by the dotted line.

network interconnect of that experiment. We kept the remaining

CPU parameters the same as those listed in Table 3.

We have already presented one of these results in Section 1. In

Figure 1(b), we showed that increasing the ratio of Wimpy to Beefy

nodes results in more energy-efficient configurations compared to

the homogeneous cluster design consisting of only beefy nodes. In

that figure, we used the model that we described in Section 5.3 to

compare the energy consumption vs. performance trade-off for the

hash join between the TPC-H ORDERS table and the LINEITEM table

at 10% and 1% selectivity respectively.

In Figure 10(a), we show that the best cluster design point, when

executing a hash join between an ORDERS table with 1% selectivity

and a LINEITEM table with 10% selectivity, is to use all Wimpy

nodes. In this case, since a 1% selectivity on the hash join build

table means that each node only needs at least 875MB of memory to

build in-memory hash tables, the parallel execution across all nodes

is homogeneous. Since we have modeled the Wimpy and the Beefy

nodes to have the same IO and network capabilities, we should not

expect any performance degradation as we replace Beefy nodes

with Wimpy nodes (i.e., the network and disk bottlenecks mask the

performance limitations of the Wimpy nodes). This is shown in

Figure 10(a) as the performance ratio remains 1.0 throughout all the

configurations. Consequently, since performance does not degrade,

we see that the energy consumed by the hash join drops by almost

90% because a Wimpy node power footprint is almost 10% of the

Beefy node power footprint. In the interest of space, we omit the

similar results for 1% ORDERS and 1% LINEITEM selectivity.

In Figure 10(b), the best cluster configuration for a hash join when

the ORDERS table has the same 10% selectivity as in Figure 1(b) and

the LINEITEM table also has 10% selectivity is to use all Beefy nodes.

The Wimpy nodes do not have the 8.8GB of main memory that is

needed to build the in-memory hash table, so we model them to scan

and filter data for the Beefy nodes; i.e., we have a heterogeneous

parallel execution. We varied the cluster design from the all Beefy

to 2 Beefy and 6 Wimpy cases, after which, the aggregate Beefy

memory cannot store the in-memory hash table. Here the results

stand in stark contrast to the results shown in Figure 10(a), because

there is not a significant energy savings when we use Wimpy nodes

in the cluster. The reason is because with a 10% selectivity predicate

on the tables, the server’s IO subsystem has enough bandwidth to

saturate the network interconnect, and the network becomes the

1693

EDP

7B,1W

6B,2W

5B,3W

4B,4W

3B,5W
2B,6W

 LI 10%

LI 8%

LI 6%

LI 4%

8B,0W

LI 2%
0.4

0.6

0.8

1.0

0.20.61.0

Normalized Performance

Hash Join: Orders 10% Sel.

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

Figure 11: Modeled P-store dual-shuffle hash join performance

and energy efficiency of an 8 node cluster made of Beefy and

Wimpy nodes. The join is between the TPC-H ORDERS table

(10% sel.) and LINEITEM table (2-10% sel.). Parallel execution

is heterogeneous across cluster nodes. A constant EDP relative

to the all Beefy cluster is shown by the straight dotted line.

bottleneck. Specifically, as we decrease the number of Beefy nodes –

they are responsible for building and probing the hash tables – each

Beefy node becomes more network bottlenecked ingesting data

from all the other nodes in the cluster. Consequently, we see that

the performance degrades severely, while the energy consumption

does not drop below 95% of the 8B,0W cluster reference point.

This last result is interesting because we saw that for another

heterogeneous execution plan in Figure 1(b), a 1% LINEITEM se-

lectivity, saw significant wins in trading performance for energy

savings. Naturally, we wanted to understand why we saw these dif-

ferent results when we only change the selectivities of the predicate

on the LINEITEM table.

In Figure 11, we show that as we increase the selectivities of the

predicate on the LINEITEM table from 10% to 2% (in 2% increments),

given a 10% selectivity predicate on the ORDERS table, we begin

to trade less performance for greater energy savings. Each curve

represents a different LINEITEM selectivity, and as the curve moves

to the right, each dot indicates more Wimpy nodes in the 8 node

cluster. Again, we do not use fewer than 2 Beefy nodes because

1 Beefy node cannot build the entire hash table in memory. The

dashed line indicates the constant EDP metric.

We notice that as we gradually decrease the number of LINEITEM

tuples passing the selection filter (i.e., increase the LINEITEM table

selectivity from 10% to 2%), the results start to trend downward be-

low the EDP line. More interestingly, we notice that the results start

to trend downward in a way such that the knee in the curves moves

lower towards the cluster designs with more Wimpy nodes (right

ends of the result curves). To the right of the knee, the heterogeneous

parallel plans saturate the Beefy node network ingestion during the

probe phase. To the left of the knee, the nodes delivering data to the

Beefy nodes are sending data as fast as their IO subsystem (and table

selectivity) can sustain. As the amount of probe (LINEITEM) data

passing the selection filter decreases (the gradually lighter-shaded

curves in Figure 11), the number of Wimpy nodes that are needed

to saturate the inbound network port at the Beefy nodes increases,

so the knee moves to the right end with more Wimpy nodes.

5.5 Summary
In this section, we have shown that there is an interesting inter-

play between the most energy-efficient cluster design (the ratio of

Wimpy to Beefy nodes) and the query parameters such as predicate

selectivity (Figure 11) for a simple parallel hash join query. Further-

more, heterogeneous cluster designs can trade proportionally less

Normalized Performance

N
o

rm
a

li
ze

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

(a)

8N 6N 4N 2N

Normalized Performance

(b)

8N 6N 4N 2N

8B,0W

6B,2W

4B,4W

2B,6W

6B,0W 4B,0W

2B,0W

0.2

0.4

0.6

0.8

1.0

0.20.61.0

N
o

rm
a

li
ze

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Normalized Performance

Hash Join: Orders 10% Lineitem 2% (c)

1.0 0.2 1.0 0.2
0.2

1.0

0.2

1.0

0.6 0.6

Best Design

Point

Best Design

Point

Homogeneous

Best Design Point

Heterogeneous

Best Design Point

N
o

rm
a

li
ze

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Figure 12: Query scalability characterizations and energy-

efficient design points when the target query performance is

40% of an eight Beefy node configuration, i.e., the target nor-

malized performance is 0.6: (a) A highly scalable parallel work-

load: Use all available nodes, since the highest performing de-

sign point is also the most energy efficient. (b) A parallel work-

load with some scalability bottleneck (e.g., network I/O): Use

the fewest nodes such that performance limits are still met.

(c) Using fewer nodes reduces energy consumption on bottle-

necked hash join but adding Wimpy nodes to supplement Beefy

nodes can provide a more energy-efficient design point. The

dashed EDP curve provides a reference for equal performance

vs energy trade-offs.

performance for greater energy savings (i.e., they lie below the EDP

line) compared to a homogeneous cluster design.

6. CLUSTER DESIGN PRINCIPLES
In this section we summarize guiding principles for building

energy-efficient data processing clusters. Figure 12 outlines the

summary of our findings, which we discuss in this section.

First, consider a query that is being run on a parallel data pro-

cessing system. Using initial hardware calibration data and query

optimizer information, consider the case when the query is deemed

to be highly scalable. That is, the energy/performance model for

the query looks like Figure 12(a). (We have seen empirical results

like this, in Figures 2(a) and (b).) For such queries, the best cluster

design point is to use the most resources (nodes) to finish the query

as soon as possible. So, in Figure 12(a), we find that the largest

cluster is the best design point.

However, if the query is not scalable (potentially due to bottle-

necks), then the highest performing cluster design may not be the

most energy-efficient design. (The results shown in Figures 1(a), 3,

and 4 are examples of this case.) For such queries, reducing the

cluster size decreases the query energy consumption, although at

the cost of performance. In such situations, one should reduce the

performance to meet any required target (e.g., performance targets

specified in SLAs in cloud environments). Then, the system can

reduce the server resource allocation accordingly. Thus, as we show

in Figure 12(b), if the acceptable performance loss is 40%, then

using 4 nodes is the best cluster design point for this query.

Finally, these previous design principles assume a homogeneous

cluster. For queries that are not scalable, a heterogeneous cluster

1694

may provide an interesting design point. As before, in this case,

to pick a good cluster design point, we start with an acceptable

target performance. Then, heterogeneous cluster configurations may

provide a better cluster design point compared to the best homoge-

neous cluster configuration. As an example, consider the P-store

dual-shuffle hash join query in Figure 12(c), and an acceptable

performance loss of 40% relative to an eight “Beefy” node homo-

geneous cluster design (labeled as 8B in the Figure). Here, the 5B

configuration is the best homogeneous cluster design point. But if

we substitute some of the Beefy nodes with lower-powered “Wimpy”

nodes then with two Beefy nodes and six Wimpy nodes we consume

less energy than the 5B case and also have better query performance.

Notice that the heterogeneous design points are below the EDP

curve, which means that in these designs one proportionally saved

more energy than the proportional performance loss (compared

to the 8B case). Thus, for non-scalable queries, a heterogeneous

cluster configuration may provide a better design point, both from

the energy efficiency and performance perspective, compared to

homogeneous cluster designs.

Note, the work in this paper has focused on single queries. We

acknowledge that to make these results more meaningful, we need

to expand the study to include entire workloads, and to consider

the overall cost of using only part of a cluster for a portion of the

workload. In other words, we acknowledge that additional work is

needed to produce a complete practical solution. But, we hope the

insights in this paper provide a good starting point to seed future

research in this area.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the trade-offs between the per-

formance and the energy consumption characteristics of analytical

queries, for various cluster designs. We have found that the query

scalability properties have a key impact in determining the interac-

tion between the query performance and its energy consumption

characteristics. We have summarized our findings (in Section 6) as

initial guiding principles for building energy-efficient data process-

ing clusters.

There are a number of directions for future work, including ex-

panding this work to consider entire workloads, exploring heteroge-

neous execution plans to take advantage of heterogeneous clusters,

examining the impact of data skew, and investigating the impact of

dynamically varying multi-user workloads.

8. ACKNOWLEDGEMENTS
We thank David DeWitt, Jeffrey Naughton, Alan Halverson, Spy-

ros Blanas, and Avrilia Floratou for their valuable input on this

work. Part of this work was completed while Willis Lang, Stavros

Harizopoulos, and Mehul Shah worked at HP Labs. This research

was supported in part by a grant from the Microsoft Jim Gray Sys-

tems Lab and by the National Science Foundation under grant IIS-

0963993.

9. REFERENCES
[1] http://www.oracle.com/us/products/database/

exadata-database-machine/overview/index.html.

[2] http://www.netezza.com.

[3] http://www.vertica.com.

[4] http://www.actian.com/products/vectorwise.

[5] http://h18013.www1.hp.com/products/servers/

management/remotemgmt.html.

[6] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.

Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for

analytical workloads. In VLDB, pages 922–933, 2009.

[7] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan.

Robust and flexible power-proportional storage. In SoCC, pages 217–228, 2010.
[8] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and

V. Vasudevan. Fawn: a fast array of wimpy nodes. In SOSP, pages 1–14, 2009.

[9] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing.

IEEE Computer, 40(12):33–37, 2007.

[10] L. A. Barroso and U. Holzle. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Synthesis Lectures on Computer

Architecture, 2009.

[11] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy efficiency for

large-scale mapreduce workloads with significant interactive analysis. In

EuroSys, pages 45–56, 2012.

[12] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High

Performance Database Processing. CACM, 35(6):85–98, 1992.

[13] Google Inc. Efficiency measurements - Google Datacenters.

http://www.google.com/corporate/datacenter/

efficiency-measurements.html.

[14] G. Graefe. Database Servers Tailored to Improve Energy Efficiency. In Software

Engineering for Tailor-made Data Management, 2008.

[15] J. Hamilton. Where Does the Power go in DCs & How to get it Back. In Foo

Camp, http://www.mvdirona.com/jrh/TalksAndPapers/

JamesRH_DCPowerSavingsFooCamp08.ppt, 2008.

[16] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance tradeoffs

in read-optimized databases. In VLDB, pages 487–498, 2006.

[17] S. Harizopoulos and S. Papadimitriou. A Case for Micro-cellstores:

Energy-Efficient Data Management on Recycled Smartphones. In DaMoN,

pages 50–55, 2011.

[18] S. Harizopoulos, M. A. Shah, J. Meza, and P. Ranganathan. Energy Efficiency:

The New Holy Grail of Database Management Systems Research. In CIDR,

2009.

[19] J. G. Koomey. Growth in Data Center Electricity Use 2005 to 2010.

http://www.mediafire.com/file/zzqna34282frr2f/

koomeydatacenterelectuse2011finalversion.pdf, 2011.

[20] A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. E. Culler, and R. H. Katz.

Integrating renewable energy using data analytics systems: Challenges and

opportunities. IEEE Data Eng. Bull., 34(1):3–11, 2011.

[21] W. Lang, R. Kandhan, and J. M. Patel. Rethinking Query Processing for Energy

Efficiency: Slowing Down to Win the Race. IEEE Data Eng. Bull., 34(1):12–23,

2011.

[22] W. Lang and J. M. Patel. Towards Eco-friendly Database Management Systems.

In CIDR, 2009.

[23] W. Lang and J. M. Patel. Energy Management for MapReduce Clusters. In

VLDB, pages 129–139, 2010.

[24] W. Lang, J. M. Patel, and J. F. Naughton. On Energy Management, Load

Balancing and Replication. SIGMOD Record, 38(4):35–42, 2009.

[25] W. Lang, J. M. Patel, and S. Shankar. Wimpy Node Clusters: What About

Non-Wimpy Workloads? In DaMoN, pages 47–55, 2010.

[26] J. Larkby-Lahet, G. Santhanakrishnan, A. Amer, and P. K. Chrysanthis. Step:

Self-tuning energy-safe predictors. In MDM, pages 125–133, 2005.

[27] J. Leverich and C. Kozyrakis. On the energy (in)efficiency of hadoop clusters.

SIGOPS Oper. Syst. Rev., 44(1):61–65, 2010.

[28] J. Meza, M. A. Shah, P. Ranganathan, M. Fitzner, and J. Veazay. Tracking the

power in an enterprise decision support system. In ISLPED, pages 261–266,

2009.

[29] R. Mueller, J. Teubner, and G. Alonso. Data Processing on FPGAs. In VLDB,

pages 910–921, 2009.

[30] D. A. Patteron. Latency Lags Bandwidth. CACM, 47(10):71–75, 2004.

[31] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and

M. Stonebraker. A Comparison of Approaches to Large-Scale Data Analysis. In

SIGMOD, pages 165–178, 2009.

[32] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No ”power”

struggles: coordinated multi-level power management for the data center.

SIGOPS Oper. Syst. Rev., 42(2):48–59, 2008.

[33] A. S. Szalay, G. Bell, H. H. Huang, A. Terzis, and A. White. Low-Power

Amdahl-Balanced Blades for Data Intensive Computing. SIGOPS Oper. Syst.

Rev., 44(1):71–75, 2010.

[34] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.

Delivering Energy Proportionality with Non Energy-Proportional Systems -

Optimizing the Ensemble. In HotPower, 2008.

[35] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy

efficiency of a database server. In SIGMOD, pages 231–242, 2010.

[36] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and I. Moraru.

Energy-efficient cluster computing with fawn: workloads and implications. In

e-Energy, pages 195–204, 2010.

[37] V. Vasudevan, J. Franklin, D. Andersen, A. Phanishayee, L. Tan, M. Kaminsky,

and I. Moraru. FAWNdamentally Power-efficient Clusters. In HotOS, 2009.

[38] Z. Xu, Y.-C. Tu, and X. Wang. Exploring Power-Performance Tradeoffs in

Database Systems. In ICDE, pages 485–496, 2010.

1695

