MonetDB/DataCell: Online Analytics in a Streaming
Column-Store

Erietta Liarou, Stratos Idreos, Stefan Manegold, Martin Kersten

CWI, Amsterdam, The Netherlands
erietta@cwi.nl idreos@cwi.nl manegold@cwi.nl mk@cwi.nl

ABSTRACT

In DataCell, we design streaming functionalities in a mod-
ern relational database kernel which targets big data analyt-
ics. This includes exploitation of both its storage/execution
engine and its optimizer infrastructure. We investigate the
opportunities and challenges that arise with such a direction
and we show that it carries significant advantages for mod-
ern applications in need for online analytics such as web
logs, network monitoring and scientific data management.
The major challenge then becomes the efficient support for
specialized stream features, e.g., multi-query processing and
incremental window-based processing as well as exploiting
standard DBMS functionalities in a streaming environment
such as indexing.

This demo presents DataCell, an extension of the Mon-
etDB open-source column-store for online analytics. The
demo gives users the opportunity to experience the features
of DataCell such as processing both stream and persistent
data and performing window based processing. The demo
provides a visual interface to monitor the critical system
components, e.g., how query plans transform from typical
DBMS query plans to online query plans, how data flows
through the query plans as the streams evolve, how Da-
taCell maintains intermediate results in columnar form to
avoid repeated evaluation of the same stream portions, etc.
The demo also provides the ability to interactively set the
test scenarios and various DataCell knobs.

1. INTRODUCTION

Numerous applications nowadays require online analytics
over high rate streaming data. For example, emerging ap-
plications over mobile data can exploit the big mobile data
streams for advertising and traffic control. In addition, the
recent and continuously expanding massive cloud infrastruc-
tures require continuous monitoring to remain in good state
and prevent fraud attacks. Similarly, scientific databases
create data at massive rates daily or even hourly. In addi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 12

Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

1910

tion, web log analysis requires fast analysis of big streaming
data for decision support.

A new processing paradigm is born [16, 10, 12] where in-
coming streams of data need to quickly be analyzed and
possibly combined with existing data to discover trends and
patterns. Subsequently, the new data may also enter the
data warehouse and be stored as normal for further analy-
sis if necessary. This new paradigm requires scalable query
processing that can combine continuous querying for fast
reaction to incoming data with traditional querying for ac-
cess to the existing data. However, neither pure database
technology nor pure stream technology are designed for this
purpose. Database systems do not qualify for continuous
query processing, while data stream systems are not built
to scale for big data analysis.

DataCell Motivation. MonetDB/DataCell aims to pro-
vide scalable online analytics. We begin from a state of
the art column-store design for big data analytics, Mon-
etDB, and extend it with online functionality. The goal is
to fully exploit the generic storage and execution engine of
the DBMS as well as its complete optimizer stack. Stream
processing then becomes primarily a query scheduling task,
i.e., make the proper queries see the proper portion of stream
data at the proper time. A positive side-effect is that our
architecture supports SQL’03, which allows stream applica-
tions to exploit sophisticated query semantics. Numerous
research and technical questions immediately arise. The
most prominent issues are the ability to provide specialized
stream functionality and hindrances to guarantee real-time
constraints for event handling.

Contributions and Demo. Paper [16] illustrates the
basic DataCell architecture and sets the research path and
critical milestones. In addition, DataCell ships together
with the MonetDB open-source system. Here, we present
a demo based on MonetDB/DataCell. The demo showcases
several of the key aspects of the MonetDB/DataCell design
such as the ability to do both stream processing and normal
queries and the ability to provide window based processing.
Through a graphical user interface the user of the demo can
observe the query execution inside DataCell, e.g., how the
various columnar structures are populated, how intermedi-
ate results are kept around to avoid reevaluation for sliding
window queries and how the shape of a normal query plan
changes to a continuous query plan through the optimizer.
In addition, the user can interact with the system, posing
continuous or one-time queries or choosing some pre-defined
scenarios as well as varying both input parameters and Da-
taCell knobs.

Paper Organization. The rest of the paper is organized
as follows. Section 2 briefly discusses related work while
Section 3 gives an overview of the main design of DataCell.
Then, Section 4 presents the demonstration scenarios as well
as the ways the user can interact with the system and how
the demo visualizes query execution and system status. Fi-
nally, Section 5 concludes the paper.

2. RELATED WORK

DataCell fundamentally differs from existing stream ef-
forts [3, 4, 5, 8, 9, 11, 13, 21, 6, 2], etc. by building on top
of the storage and execution engine of a DBMS kernel. It
opens a very interesting path towards exploiting and merg-
ing technologies from both worlds.

Compared to even earlier efforts on active databases, e.g.,
[20], DataCell adds support for specialized stream function-
alities, such as incremental processing. Incremental process-
ing in a DBMS has been studied in the context of updat-
ing materialized views, e.g., [7, 14], but there the scenario is
very different given that it targets read-mostly environments
whereas an online scenario is by definition a write-only one.

Truviso Continuous Analytics system [12], a commercial
product of Truviso, is another recent example that follows
the same approach as DataCell. They extend the open
source PostgreSQL database [19] to enable continuous anal-
ysis of streaming data, tackling the problem of low latency
query evaluation over massive data volumes. TruCQ inte-
grates streaming and traditional relational query process-
ing in such a way that ends-up to a stream-relational da-
tabase architecture. It is able to run SQL queries continu-
ously and incrementally over data while they are still com-
ing and before they are stored in active database tables (if
they need to be stored). TruCQ’s query processing signif-
icantly outperforms traditional store-first-query-later data-
base technologies as the query evaluation has already been
initiated when the first tuples arrive. It allows evaluation
of one-time queries, continuous queries, as well as combina-
tions of both types.

Another recent work, coming from the HP Labs [10], also
confirms the strong research attraction for this trend. It
defines an extended SQL query model that unifies queries
over both static relations and dynamic streaming data, by
developing techniques to generalize the query engine. It also
extends the PostgreSQL database kernel [19], building an
engine that can process persistent and streaming data in
a uniform design. First, they convert the stream into a
sequence of chunks and then continuously call the query
over each sequential chunk. The query instance never shuts
down between the chunks, in such a way that a cycle-based
transaction model is formed.

The main difference of DataCell over the above two related
efforts lies in the underlying architecture. DataCell builds
over a column-store kernel using a columnar algebra instead
of a relational one, bulk processing instead of volcano and
vectorized query processing as opposed to tuple-based.

3. MONETDB/DATACELL

In this section, we discuss the DataCell architecture. We
build the DataCell on top of MonetDB [17], an open-source
column-oriented DBMS.

A Column-oriented DBMS. MonetDB is a full-fledged
column-store engine. Every relational table is represented

1911

Figure 1: The DataCell architecture.

as a collection of Binary Association Tables (BATs), one for
each attribute. Advanced column-stores process one column
at a time, using late tuple reconstruction, discussed in, e.g.,
[1, 15]. Intermediates are also in column format. This allows
the engine to exploit CPU- and cache-optimized vector-like
operator implementations throughout the whole query eval-
uation, using an efficient bulk processing model instead of
the typical tuple-at-a-time volcano approach. This way, a
select operator for example, operates on a single column, fil-
tering the qualifying values and producing an intermediate
that holds their tuple IDs. This intermediate can then be
used to retrieve the necessary values from a different column
for further actions, e.g., aggregations, further filtering, etc.
The key point is that in DataCell these intermediates can be
exploited for flexible incremental processing strategies, i.e.,
we can selectively keep around the proper intermediates at
the proper places of a plan for efficient future reuse.

DataCell. DataCell [16] is positioned between the SQL
compiler/optimizer and the DBMS kernel. The SQL com-
piler is extended with a few orthogonal language constructs
to recognize and process continuous queries. The query plan
as generated by the SQL optimizer is rewritten to a contin-
uous query plan and handed over to the DataCell scheduler.
In turn, the scheduler handles the execution of the plan.

Figure 1 shows a DataCell instance. It contains receptors
and emitters, i.e., a set of separate processes per stream and
per client, respectively, to listen for new data and to deliver
results. They form the edges of the architecture and the
bridges to the outside world, e.g., to sensor drivers.

Baskets/Columns. The key idea is that when an event
stream enters the system via a receptor, stream tuples are
immediately stored in a lightweight table, called basket. By
collecting event tuples into baskets, DataCell can evaluate
the continuous queries over the baskets as if they were nor-
mal one-time queries and thus it can reuse any kind of algo-
rithm and optimization designed for a DBMS. Once a tuple
has been seen by all relevant queries/operators, it is dropped
from its basket.

Factories/Queries. Continuous query plans are rep-
resented by factories, i.e., a kind of co-routine, whose se-
mantics are extended to align with table producing SQL
functions. Each factory encloses a (partial) query plan and
produces a partial result at each call. For this, a factory
continuously reads data from the input baskets, evaluates
its query plan and creates a result set, which it then places
in its output baskets. The factory remains active as long as
the continuous query remains in the system, and it is always
alert to consume incoming stream data when they arrive.

Scheduler. The execution of the factories is orchestrated
by the DataCell scheduler, which implements a Petri-net

800, DataCell

Query Network)

B> O Paused
@ Active

o |
| |-+

bekind bsktouts
.
. >
CearALL | [Pawse | [Resume

Control
Queries Baskets Adapters
Q v Opause bskiin v OPause [roceptor 1 v OPause
a5 OActivate oot + OActvate rocenors + OResume
Q2 ORemove bsktint OJRemove receptor 3
a3 v bsktoutt v emitter 1 v

Figure 2: The network of continuous queries.

model [18]. The firing condition is aligned to arrival of
events; once there are tuples that may be relevant to a
waiting query, we trigger its evaluation. Furthermore, the
scheduler manages the time constraints attached to event
handling, which leads to possibly delaying events in their
baskets for some time.

Two Query Paradigms. One important merit of the
DataCell architecture, is the natural integration of baskets
and tables within the same processing fabric. As we show in
Figure 1, a single factory can interact both with tables and
baskets. In this way, we can naturally support queries in-
terweaving the basic components of both processing models.
DataCell is shown to perform extremely well, easily meet-
ing the requirements of the Linear Road Benchmark in [16],
without also losing any database functionality.

Sliding Window Processing. Conceptually, DataCell
achieves incremental processing by partitioning a window
into n smaller parts, called basic windows. Each basic win-
dow is of equal size to the sliding step of the window and is
processed separately. The resulting partial results are then
merged to yield the complete window result. We design and
develop the incremental logic at the query plan level, leav-
ing the lower level intact and thus being able to reuse the
complete storage and execution engine of a DBMS kernel.
Proper optimizer rules, scheduling and intermediate result
caching and reuse, allow us to modify the DBMS query plans
for efficient incremental processing. In essence, query plans
are split such as as many operators as possible can run in-
dependently on each portion of a sliding window stream.
Then, when blocking operators occur, the plan merges in-
termediates from the active slides. A plan may split and
merge multiple times depending on the query type.

4. DEMONSTRATION

In this section, we describe the demonstration of the main
features of MonetDB/DataCell. We describe the main demon-
stration scenarios and the ways that the audience may in-
teract with the system.

High-level Description. The main scenario involves
one or more continuous queries waiting for incoming streams.
As data arrives, queries are triggered by possibly combining
and analyzing both stream data and persistent data. Fig-
ures 2, 3 and 4 depict part of the demo features.

Input Streams and Standing Queries. The audience
is able to select from a predefined set of queries and data

1912

no DataCell

Analysis
Selected scenario
a
Queries beltin2 bsitout2
Q v ® ‘
af a 2 &
Q@
) v
v
. >
— Input (bsktin2) — Query @2)
— Output (bsktout2)
g H
£ i)
r 2
3 2
2 =
Now-1min Now Now-1min Now
Rate [Unprocessedtuples M Reused tuples
Baskets B Processed tuples
bsktin2 v ;2 8
fbsktoutz & 2 El
£ K
H =
v £
Now-1min Now wi w2 ws w4

Figure 3: Analyzing performance.

800 DataCell
a
bsktin1 bsktout1
4
]
ES
v
. >
(Show Al
sQL query
Sample scenarios
S ™ | create table datacell.bsktin(d integer,tag integer,payload integer); B
scenario v| |create table datacell.bsktout (ike datacell.bsktin);
poonatel ¥
ooneron call datacell.receptor(datacell.bsktin', Tocalhost,50501);
scenariod v call datacell.emitter(datacell.bsktout ' Tocalhost',50601);

call datacell.query(datacell.Q1', ‘insert into datacell.bsktout select
datacell.bsktin.id, datacell.bsktin.tag, datacell.bsktin. payload from
datacell.bsktin,table1 where datacell.bsktin. payload==table1.payload;');

v
< >

[Clear | [Show | [Register

Figure 4: Posing queries.

streams or alternatively insert new queries using the SQL
extensions of MonetDB/DataCell. In addition, queries may
be removed at any time. The predefined scenarios include
the definition of several queries as well as the initialization
of streams and the appropriate baskets. The demo includes
various predefined data files which can be streamed in the
system at rates which are configurable by the interface. Fig-
ure 4 shows some examples of such DataCell scenarios and
how one can pose queries.

Query Network Characteristics. Once queries have
been posed and the streams have been initialized, the user
interface allows for visual inspection of the network of queries.
For example, we can monitor which query waits for which
stream, which baskets/columns it binds and how the vari-
ous queries relate to each other regarding their input/output
properties. Figure 2 shows some examples of such query net-
works in DataCell.

Pause and Resume. The audience may pause individ-
ual queries or even individual streams to inspect their status
and see how the system instantly reacts to those changes.
Resuming queries and/or streams is again possible at any
time via the user interface. Figure 2 shows part of the con-
trol functionalities.

Detailed Status Inspection. The interface allows for a
detailed inspection of the continuous query plan status, i.e.,
we can monitor where tuples live at any point in time, i.e.,
in which intermediate columns wait or which operators they

feed. By pausing and resuming execution we can observe
how tuples flow through the query network.

Simple Re-evaluation Scenarios. MonetDB/DataCell
supports two modes of execution. The audience may trig-
ger and experiment with both modes. With the first mode,
queries are evaluated fully every time new relevant data ar-
rive. In general, this is sufficient for non sliding window
queries, i.e., for queries that do not include any window
function or for simple tumbling window queries.

Sliding Window Processing. Using the second mode,
called Incremental, MonetDB/DataCell enables partial and
incremental computation of continuous queries. This is effi-
cient for sliding window queries. The audience will be able to
compare the two execution modes both in terms of elapsed
time and in terms of investigating where the benefits of in-
cremental processing come from. The user interface allows
for continuous monitoring of inputs sizes and intermediate
result sizes and consumption. The incremental mode con-
tinuously operates on smaller intermediates results by ap-
propriately caching and reusing intermediates during sliding
window queries.

Window Sizes. Users may define window sizes and
step sizes for sliding window queries and visually observe
how query plans and performance change with each change
in those parameters. For different kinds of windows, the
MonetDB/DataCell optimizer will produce different plans
to properly divide the data and processing and to avoid re-
computation as the windows slide.

Complex Queries. The audience will be able to see the
difference that results from complex operators (e.g., joins)
in continuous query plans with sliding windows as opposed
to simple select project aggregation queries.

Analysis. An analysis pane allows for aggregation of
performance metrics to observe elapsed time, incoming data
rate for given baskets and other parameters over a period of
time. Such parameters can be reported both for individual
queries as well as for the complete query network. Figure 3
shows an example of the possible analysis tracking features.

5. CONCLUSIONS

MonetDB/DataCell shows that online continuous query
processing can efficiently and elegantly be supported over
an extensible DBMS kernel. These results open the road
for scalable data processing that combines both stored and
streaming data in an integrated environment in modern data
warehouses. This is a topic with strong interest over the last
few years and with a great potential impact on data man-
agement, in particular for business intelligence and science.

In this paper, we present a demonstration of MonetDB /
DataCell, showcasing the main components and functional-
ities of the system such as the ability to perform online an-
alytics, the combination of streaming data with persistent
data and the ability for specialized stream functionalities
such as sliding window query processing. The graphical in-
terface of the demo provides both the means to monitor the
system and the data flow inside the DataCell engine as well
as the ability to interact and vary the scenarios tested.

6. REFERENCES

[1] D. Abadi, D. Myers, D. DeWitt, and S. Madden.
Materialization Strategies in a Column-Oriented
DBMS. In ICDE, pages 466—475, 2007.

1913

[2] M. H. Ali et al. Microsoft CEP Server and Online
Behavioral Targeting. PVLDB, 2(2):1558-1561, 2009.
A. Arasu et al. STREAM: The Stanford Stream Data
Manager. IEEE Data Eng. Bull., 26(1):19-26, 2003.
B. Babcock, S. Babu, M. Datar, R. Motwani, and

D. Thomas. Operator Scheduling in Data Stream
Systems. The VLDB Journal, 13(4):333-353, 2004.
H. Balakrishnan et al. Retrospective on Aurora. The
VLDB Journal, 13(4):370-383, 2004.

A. Biem, E. Bouillet, H. Feng, A. Ranganathan,

A. Riabov, O. Verscheure, H. Koutsopoulos, and

C. Moran. IBM Infosphere Streams for Scalable,
Real-time, Intelligent Transportation services. In
SIGMOD, pages 1093-1104, 2010.

J. A. Blakeley, P.-A. Larson, and F. W. Tompa.
Efficiently Updating Materialized Views. In SIGMOD,
pages 61-71, 1986.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. A. Shah. TelegraphCQ: Continuous Data- flow
Processing for an Uncertain World. In CIDR, 2003.

J. Chen, D. J. Dewitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In SIGMOD, pages 379-390, 2000.
Q. Chen and M. Hsu. Experience in Extending Query
Engine for Continuous Analytics. In DaWaK, pages
190-202, 2010.

C. D. Cranor, T. Johnson, O. Spatscheck, and

V. Shkapenyuk. Gigascope: A Stream Database for
Network Applications. In SIGMOD, pages 647-651,
2003.

M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li,
A. Russakovsky, and N. Thombre. Continuous
Analytics: Rethinking Query Processing in a
Network-Effect World. In CIDR, 2009.

L. Girod, Y. Mei, R. Newton, S. Rost,

A. Thiagarajan, H. Balakrishnan, and S. Madden. The
Case for a Signal-Oriented Data Stream Management
System. In CIDR, pages 397-406, 2007.

T. Griffin and L. Libkin. Incremental Maintenance of
Views with Duplicates. In SIGMOD, pages 328-339,
1995.

S. Idreos, M. Kersten, and S. Manegold.
Self-organizing Tuple-reconstruction in Column-stores.
In SIGMOD, pages 297-308, 2009.

E. Liarou, R. Goncalves, and S. Idreos. Exploiting the
Power of Relational Databases for Efficient Stream
Processing. In EDBT, pages 323-334, 2009.
MonetDB. http://www.monetdb.com.

J. L. Peterson. Petri Nets. ACM Comput. Surv.,
9(3):223-252, 1977.

PostgreSQL. http://www.postgresql.org/.

U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan.
Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS. In VLDB, pages
469-478, 1991.

M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and
K. Pruhs. Algorithms and Metrics for Processing
Multiple Heterogeneous Continuous Queries. ACM
TODS, 33(1):1-44, 2008.

(12]

(13]

(14]

(15]

