
Relational Approach for Shortest Path Discovery over
Large Graphs

Jun Gao† Ruoming Jin§ Jiashuai Zhou† Jeffrey Xu Yu‡ Xiao Jiang† Tengjiao Wang†

† Key Laboratory of High Confidence Software Technologies, EECS, Peking University
§ Department of Computer Science, Kent State University

‡ Department of Systems Engineering & Engineering Management, Chinese University of Hong Kong

{gaojun,zjiash,jiangxiao,tjwang}@pku.edu.cn, jin@cs.kent.edu, yu@se.cuhk.edu.hk

ABSTRACT

With the rapid growth of large graphs, we cannot assume that graphs

can still be fully loaded into memory, thus the disk-based graph

operation is inevitable. In this paper, we take the shortest path

discovery as an example to investigate the technique issues when

leveraging existing infrastructure of relational database (RDB) in

the graph data management.

Based on the observation that a variety of graph search queries

can be implemented by iterative operations including selecting fron-

tier nodes from visited nodes, making expansion from the selected

frontier nodes, and merging the expanded nodes into the visited

ones, we introduce a relational FEM framework with three corre-

sponding operators to implement graph search tasks in the RDB

context. We show new features such as window function and merge

statement introduced by recent SQL standards can not only sim-

plify the expression but also improve the performance of the FEM

framework. In addition, we propose two optimization strategies

specific to shortest path discovery inside the FEM framework. First,

we take a bi-directional set Dijkstra’s algorithm in the path finding.

The bi-directional strategy can reduce the search space, and set Di-

jkstra’s algorithm finds the shortest path in a set-at-a-time fashion.

Second, we introduce an index named SegTable to preserve the lo-

cal shortest segments, and exploit SegTable to further improve the

performance. The final extensive experimental results illustrate our

relational approach with the optimization strategies achieves high

scalability and performance.

1. INTRODUCTION
The rapid growth of graph data raises significant challenges to

graph management. Nowadays, the graph data are used in nu-

merous applications, e.g., web graphs, social networks, ontology

graphs, transportation networks. These graphs are always exceed-

ingly large and keep growing at a fast rate. When the graph cannot

fit into the memory, the existing in-memory graph operations have

to be re-examined. We need the buffer mechanism to load graph

blocks on demand, in which case the I/O cost becomes the key fac-

tor in the evaluation cost. We also require flexible approaches to

access nodes and edges. Moreover, the stability of graph manage-

ment system is another concern.

Graph search is an important and primitive requirement on the

graph management, which seeks a sub-graph(s) meeting the spe-

cific purposes, such as the shortest path between two nodes [12], the

minimal spanning tree [20], the path for traveling salesman [9], and

the like. This paper focuses on the shortest path discovery problem

due to two reasons. First, the shortest path discovery plays a key

role in many applications. For example, the shortest path discov-

ery in a social network between two individuals reveals how their

relationship is built [21]. Second, the shortest path discovery is a

representative graph search query, which has a similar evaluation

pattern to other queries [20, 9].

The current disk-based methods face limitations to support the

general graph search queries. The index on the external mem-

ory for shortest path discovery has been designed, but the method

is restricted to planar graphs [8]. We notice that the MapReduce

framework [16, 3] and its open source implementation Hadoop [1]

can process large graphs stored in the distributed file system over a

cluster of computers. However, due to the lack of schema and in-

dex mechanism, it is difficult to access graphs in a flexible way. In

addition, it is expensive to support the dynamic changes of the orig-

inal graph, at least in the current Hadoop distributed file system [1].

Some other graph operations, such as minimum-cut [5] and clique

computation [15], can be evaluated on the partially loaded graph

when the quality of results is assured theoretically or the approxi-

mate results are allowed [15, 5]. However, it is difficult to extend

these methods to other graph operations.

RDB provides a promising infrastructure to manage large graphs.

After more than 40 years’ development, RDB is mature enough and

plays a key role in the information system. We can notice that RDB

and the graph data management have many overlapping functional-

ities, including the data storage, the data buffer, the access methods,

and the like. Indeed, RDB provides a basic support to the graph

storage and the flexible access to the graph. In addition, RDB has

already shown its flexibility in managing other complex data types

and supporting novel applications. For example, RDB can support

the XML data management [17, 13], and can be used in reachabil-

ity query and breadth-first-search (BFS) in the graph management

[23, 22]. The statistical data analysis and data mining over RDB

have also been studied in [6, 7].

However, it is a challenging task to translate the graph search

methods and improve the performance in the RDB context due to

the semantic mismatch between relational operation and graph op-

eration. The data processing in the graph search is always complex.

We may need do logic and arithmetic computation, make choices

based on aggregate values, and record necessary information in the

searching [12, 20, 9]. At the same time, the graph and running time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 4
Copyright 2011 VLDB Endowment 2150-8097/11/12... $ 10.00.

358



data have to be stored in the tables in RDB first, and only restricted

operations, including, projection, selection, join, aggregation, etc,

are allowed to perform on tables [14].

In this paper, we investigate the techniques used in the shortest

path discovery in the RDB context. We wish our method can not

only deliver benefits to the shortest path computation, but also shed

lights on the SQL implementation for other graph search queries

and graph analysis. Specifically, the contributions of this paper can

be summarized as follows:

• Based on the observation that many graph search queries can

be evaluated by iterative operations including selecting fron-

tier nodes from visited nodes, making expansion from the

frontier nodes, and merging the expanded nodes into the vis-

ited nodes, we introduce a generic graph processing frame-

work FEM with three key operators F , E and M -operator.

We find new features, such as window function and merge

statement introduced by recent SQL standards can be used

to simplify the expression and improve the performance. We

also show how the shortest path is discovered using the FEM

framework. (Section 3)

• We propose two optimizations specific to the shortest path

discovery inside the FEM framework. First, we take a bi-

directional set Dijkstra’s method. The bi-directional search-

ing can find the path with less search space. Set Dijkstra’s

method allows all nodes with the same minimal distance to

be expanded in one operation, which is more suitable in RDB

context. Second, we introduce an index named SegTable

to preserve local shortest segments, and exploit SegTable to

further improve the performance by balancing reduction of

search space and promotion of set-at-a-time query evalua-

tion. (Section 4)

• We conduct extensive experiments over synthetic and real-

life data. The results show that our relational approach has

high scalability in handling large graphs. We also see that the

new features of SQL standard, as well as our optimizations

can improve the performance significantly. (Section 5)

2. PRELIMINARY
In this section, we first give the related notations and relational

representation of graph, and then show new SQL features used in

our path finding method.

2.1 Graph Notations
This paper studies weighted (directed or undirected) graphs. Let

G = (V,E) be a graph, where V is a node set and E is an edge set.

Each node v ∈ V has a unique node identifer. Each edge e ∈ E is

represented by e = (u, v), u, v ∈ V . For an edge e = (u, v), e is

u′s outgoing edge and v′s incoming edge. Each edge (u, v) ∈ E
has its non-negative weight w(u, v). The minimal edge weight in

a graph is denoted by wmin. A path p = u0 ; ux from u0 to ux

is a sequence of edges (u0, u1), (u1, u2), . . . , (ux−1, ux), where

ei = (ui, ui+1) ∈ E (0 ≤ i < x). The length of a path p, len(p),
is the sum of the weights of its constituent edges. The shortest

distance from u and v is denoted by δ(u, v).
We can store a graph into relational tables easily, which are il-

lustrated in Figure 1. Let G = (V,E) be a graph. We use TNodes

table to represent nodes V . The nid in the table is for the node’s

unique identifer. We use TEdges table to store edges E. For an

edge (u, v), the identifiers of nodes u and v, as well as the weight

of the edge, are recorded by fid, tid and cost field respectively.

2
1


s


b
c
d


e


f
 g


h


i
j

t


6


2

3


7


4


9


4


3


5


8


2


1


1


7

8


(a) Graph


nid


TNodes
 TEdges


fid
 tid
 cost


(b
) Relational Representation


s


b


......


s
 d
 6


d
 c
 1


s
 b
 2


...
 ...
...


Figure 1: Relational Representation of Graph

2.2 SQL Features
In this paper, in addition to utilize standard features in SQL state-

ments, we leverage two new SQL features, window function and

merge statement, which are now supported by Oracle, DB2, and

SQL server. These features are the “short-cut” for combinations of

some basic relational operators. In addition, they can improve the

performance of the statements.

Listing 1: Syntax for New Features
1 :Window function

<WindowFunction> : : = <Aggregation>

Over ( [ P a r t i t i o n By <expr>, . . . ]

[ Order By <expression> ] )

2 : Merge statement

Merge I nto tablename Using t a b l e On (condition )

When Matched Then

Update Se t col1 = val1 [ , col2 = val2 . . . ]

When Not Matched Then

I n s e r t (col1 [ ,col2 . . . ] ) Values (val1 [ , val2 . . . ] )

The window function 1, introduced by SQL 2003, returns ag-

gregate results. Compared to traditional aggregate functions which

return one value for one tuple set, window function obtains the ag-

gregate result for each tuple in the set, and then the non-aggregate

attributes are allowed to be along with the aggregate ones in the

select clause, even if they are not in the group by clause. In addi-

tion, window function supports the aggregate functions related to

the tuple position in a sorted tuple sub-set, such as rank, row num,

and the like. The syntax for window function can be described in

Listing 1(1).

The merge statement 2 adds new tuples or updates the existing

ones in a target table from a source ( SQL results, a view or a table).

It is officially introduced by SQL 2008, but is supported earlier by

different database vendors due to the need in loading data into data

warehouse. The main part of merge statement specifies actions, like

insert,delete and update under different relationships between the

source and target table. Compared to the general-purpose one up-

date statement followed by an insert statement, the merge statement

is more specific, which indicates that it can be evaluated faster than

two statements. The syntax for merge statement can be referred in

Listing 1(2).

3. RELATIONAL FEM FRAMEWORK FOR

SHORTEST PATH DISCOVERY
In this section, we introduce a generic graph search framework

FEM and leverage it to realize the classical Dijkstra’s shortest path

discovery algorithm on RDB. In the next section, we will explore

several new techniques to speed up the shortest path discovery un-

der the relational FEM framework.

1http://en.wikipedia.org/wiki/SQL:2003
2http://en.wikipedia.org/wiki/Merge (SQL)

359



3.1 A Generic Processing Framework for
Graph Search

Graph search queries seek the sub-graph(s) meeting the specific

requirements. For example, reachability query answers whether

there exists a path between two given nodes [11]. The shortest path

query locates the shortest path between two given nodes [19, 2].

The minimal spanning query returns a tree covering all nodes with

the minimal sum of edge weights [20]. The salesman path query

gets a shortest possible tour that visits each city exactly once [9].

The graph pattern match retrieves all sub-graphs, each of which is

isomorphic to the given graph pattern [25].

Many graph search algorithms show a common pattern. Due to

the large search space, they always utilize greedy ideas. In addi-

tion, we observe that most of these greedy algorithms can fit into

a generic iterative processing structure. A visited node set A1 is

initialized first according to different purposes. Then an iterative

searching starts. We illustrate the kth iteration in Figure 2. Let

the visited nodes Ak record all the nodes encountered in the graph

search so far; the frontier nodes F k are selected from the visited

nodes with the certain criteria (application dependent, F k ⊆ Ak);

the expanded nodes Ek are the next visited nodes from the frontier

nodes (generally neighboring subset of F k); and the next visited

ones Ak+1 are obtained by merging the newly expanded nodes Ek

and Ak. The iterations continue until the target sub-graph(s) can

be discovered. We refer to such a generic processing structure as a

FEM framework.

F
Select
 Expand
 Edges


E


k+1


k


k


Merge


Visited nodes


A


Expanded nodes


A
k


Visited nodes


A
k


Visited nodes
 Frontier nodes


Figure 2: Conversion Between Nodes in the kth Iteration

Before we proceed to the details of implementing the relational

operators for FEM framework, we first exploit it to briefly describe

three representative graph search algorithms: Dijkstra’s shortest

path algorithm, Prim’s minimal spanning tree algorithm, and graph

pattern matching. In the Dijkstra’s algorithm for shortest path dis-

covery [12] using the FEM framework, each node is annotated with

d2s to record the distance from the source node s, and a flag f in-

dicating whether the node is finalized or not. We initially add the

source node s into visited nodes with s.d2s = 0 and s.f = false.

We then start an iterative path expansion for the target node. In each

iteration, we select a non-finalized node u (u.f = false) from all

visited nodes with the minimal d2s as a frontier node, finalize u,

expand u (visiting its neighbors), and merge the newly expanded

nodes into the visited nodes.

Another case is to construct a minimal spanning tree T by Prim’s

algorithm [20]. Each node u is represented by u(p2s, w, f). Here

p2s is the parent of u, w is the edge weigh from u to p2s, if u
is in T . f is a flag for whether u is in T . The visited nodes are

initialized by any node u with u.f = false and u.w = 0. In each

iteration in building T , we select a node u with u.f = false and

the minimal edge weight, add u into T by changing u.f = true,

make further expansion from u, and merge the expanded nodes into

the visited nodes. In the merge operation, the expanded nodes can

be discarded directly if they have been included (f = true) in T .

The iterations repeat until all nodes have been in T .

Graph pattern matching [25] is a more complex case. Let q =
(Vq, Eq) be a graph pattern over a graph G = (V,E). Each query

node in Vq and data node in V have labels. Initially, we start from

any query node q0u, and obtain the visited nodes {(d0u)|d
0
u ∈ V and

q0u ∈ Vq have the same label }. We then handle the other query

nodes in Vq iteratively. During processing the query node qku, let

the visited nodes {(d0u, . . . , d
k−1
u )|d0u ∈ V, . . . , dk−1

u ∈ V have

the same labels to q0u ∈ Vq, . . . , q
k−1
u ∈ Vq correspondingly}. We

expand the visited nodes into {(d0u, . . . , d
k
u)|d

0
u ∈ V, . . . , dku ∈ V

have the same labels to q0u ∈ Vq, . . . , q
k
u ∈ Vq correspondingly,

and the relationships among d0u, . . . , d
k−1
u and dku meet the re-

quirements among q0u, . . . , q
k−1
u and qku}. After all query nodes

have been handled, each element in the visited node set represents

a sub-graph meeting the requirement.

Note that there are other operations besides the three basic opera-

tions (select, expand, and merge) in the graph search. For example,

the recovery of the shortest path or the minimal spanning tree, and

the termination detection, are also needed in the FEM framework.

However, these operations are generally auxiliary under the FEM

framework and their computational costs are quite minimal com-

pared to the three main operations. The exploration on the shortest

path search in the reminder of the paper will illustrate the details of

these additional operations, and also demonstrate the key function-

ality of the three operations.

3.2 Relational FEM Operators for Shortest
Path Discovery

To realize a graph search query using FEM framework on rela-

tional database, we need three operators which can be expressed

by relational algebra: i) F -operator to select frontier nodes from

the visited nodes; ii) E-operator to expand the frontier nodes; and

iii) M -operator to merge the newly expanded nodes into the visited

ones. As discussed above, the attributes on nodes and the oper-

ations may be different for different graph search tasks under the

FEM framework. In the reminder of the paper, we will focus on

efficiently realizing the shortest path discovery under FEM frame-

work. The new techniques we developed for shortest paths in the

FEM framework can be in general applied or extended to deal with

other graph search algorithms.

Now, we start with Dijkstra’s algorithm for the shortest path dis-

covery as an example to describe its F , E and M -operator. The

visited nodes for the shortest path discovery can be represented by

Ak, where k is the number of iterations. Let s be the source node.

For each node u ∈ Ak, u is represented by (nid, d2s, p2s, f),
where nid is for the node identifier, d2s is for the distance from

s to u, p2s is for the predecessor node of u in the path from s
to u, and f for the sign indicating whether u is finalized or not.

Take the shortest path discovery from s to t in the graph in Fig-

ure 1 as an example. We add s to A1 first. d, c, b will be added

into A2 next. Figure 3 shows the visited nodes, frontier nodes, and

expanded nodes in the 2-nd iteration of the shortest path discovery.

d2s
nid
 p2s


0
s
 s


6
d
 s


1
c
 s


2
b
 s


f


1


0


0


0


Visited

2


d2s
nid
 p2s


1
c
 s


Frontier

2


d2s
nid
 p2s


2
d
 c


4
e
 c


Expanded

2


d2s
nid
 p2s


0
s
 s


2
d
 c


1
c
 s


2
b
 s


f


1


0


1


0


Visited
3


F


4
e
 c
 0


E
 M


TEdges

Visited


2


f


0


0


f


1


Figure 3: F , E and M -operator in the 2-nd Iteration

Below we formally describe these operators based on the rela-

tional algebra.

DEFINITION 1. F -operator returns frontier nodes F k from vis-

ited nodes Ak in the kth expansion. F k ← σnid=midA
k.

360



In Dijkstra’s algorithm, we select the node with the minimal d2s
among all non-finalized nodes, and assign its identifier to mid.

Take Figure 3 as an example, mid is for node c with the mini-

mal d2s = 1. The computation of mid can be done by an auxiliary

operation before F -operator. In order to enhance the utility of our

framework, we assume that there may be multiple frontier nodes

after the F -operator. For example, the optimization strategy used

in the next section may produce multiple frontier nodes with the

revised predicate in the F -operator. After the F -operator, we use

another auxiliary operation to adjust f = 1 for the node identified

by mid.

DEFINITION 2. E-operator returns the expanded nodes Ek

based on frontier nodes F k and TEdges table in the kth expansion.

(1) minCost(x, c)←x Gmin(d2s+w)Π(x,d2s,w)(F
k(r, d2s,

p2s, f) ⊲⊳ TEdges(r,x,w));

(2) Ek ← Π(x,d2s+w,r,0)σc=d2s+wminCost(x, c) ⊲⊳

F k(r, d2s, p2s, f) ⊲⊳ TEdges(r,x,w);

The (r, x, w) in TEdges table is for the edge from r to x with the

weight w .

In the E-operator, minCost(x, c) preserves the newly visited

nodes with the minimal distances. Since the expanded nodes may

be reached by different paths, and only the ones with the minimal

distance (d2s + w) are needed, we use an aggregate function to

find them. Note that minCost(x, c) contains the newly expanded

nodes along with their costs, but lacks their parents p2s, which

are required in the recovery of the full path. However, we cannot

simply put the non-aggregate attribute p2s into the select clause in

minCost(x, c), due to the constraint on the aggregation function

in relational algebra. Thus, another join operation is required to

find the parent node p2s from TEdges under which the minimal

distance can be achieved. Take Figure 3 as an example, we make

the expansion from the frontier nodes {c}, and get the newly ex-

panded nodes d and e.

DEFINITION 3. M -operator returns visited nodes Ak+1 based

on the expanded nodes Ek and existing visited nodes Ak.

(1) Ak ← Ak − Πx,d2s1,p2s1,f1(σd2s0<d2s1

(Ek(x, d2s0, p2s0, f0) ⊲⊳ Ak(x, d2s1, p2s1, f1));

(2) Ek ← Ek − Πx,d2s0,p2s0,f0(σd2s0>d2s1

(Ek(x, d2s0, p2s0, f0) ⊲⊳ Ak(x, d2s1, p2s1, f1));

(3) Ak+1 ← Ak ∪Ek;

In the M -operator, we remove the visited nodes from Ak, whose

distances are larger than those of the corresponding newly expanded

nodes in Ek. Then we remove the newly expanded nodes from Ek,

whose distances are larger than those of the corresponding nodes in

Ak. Finally, we union Ak and Ek to get the next visited node set

Ak+1. Still use Figure 3 as an example, node d can be replaced by

the newly expanded one, and node e is newly added into the visited

nodes.

3.3 SQL Implementation for the Operators
Now, we discuss the SQL implementation for these operators.

We use a table TVisited to store all visited nodes. The attributes

nid, d2s, p2s, f in TVisited have the same meanings above. Since

F , E and M -operator are based on relational algebra, we can use

SQL to express them. However, the direct translation will result

in a poor performance, especially for E and M -operator. For ex-

ample, E-operator is implemented by an aggregate function over

the join results with group by clause. In addition, the location of

the parent node p2s of each expanded node still needs another join

operation. Moreover, when there are multiple paths with the same

minimal d2s to the expanded node x, we have to keep only one

due to the primary key constraint on nid in TVisited table. As for

M -operator, we have two different actions according to whether

the expanded nodes have been in the visited nodes or not. In the

SQL implementation, we might use an update statement followed

by an insert statement with a not exists sub-query. Such a kind of

expression is not only verbose but also inefficient.

Listing 2: SQL in Path Finding
1 : / / Initialize TVisited with source node

I n s e r t i n t o TVisited (nid , d2s , p2s , f )

v a l u e s (s , 0 , s , 0 ) ;

2 : / / Locate the next node to be expanded

S e l e c t top 1 nid from TVisited where f=0

and d2s=( s e l e c t min (d2s ) from TVisited where f=0) ;

3 : / / E−operator in the k−th forward expansion

c r e a t e view ek as

s e l e c t nid , p2s , cost

from ( s e l e c t out .tid , out . fid ,

out . cost+q .d2s , row_number ( ) over

( p a r t i t i o n by out . tid order by

out .cost+q .d2s as c ) as rownum

from TVisited q , TEdges out

where q . nid=out . fid and q .nid= mid )

tmp (nid , p2s , cost ,rownum )

where rownum=1

4 : / / M−operator in the k−th forward expansion

Merge TVisited as target us ing ek as source

on source . nid=target .nid

when matched and target . d2s>source . cost then

update s e t d2s=source . cost , p2s=source . p2s , f=0

when not matched by target then

i n s e r t (nid , d2s , p2s , f )

v a l u e s (source . nid , source .cost , source . p2s , 0 ) ;

Fortunately, we find the new features including window function

and merge statement introduced by recent SQL standards can sim-

plify the expression as well as improve the performance. Window

function can return non-aggregate attributes along with aggregate

results for the same tuple. As for our case, we can partition all oc-

currences of expanded nodes by the same identifer nid, sort them

with their d2s and select the tuple with the minimal d2s by using

an aggregate function row number. We see that the window func-

tion can avoid another extra join operation to locate the parent node

p2s of the currently expanded one. It also can handle the case when

the node can be reached by multiple paths with the same minimal

distances. As for the M -operator, we use one merge statement to

combine two separated insert and update statements.

The SQL statement used in the path expansion is illustrated in

Listing 2. The 1-st statement adds the source node s into TVisited

nodes initially, where f is set to 0 (non-finalized). The E-operator

can be expressed by the 3-rd statement. It makes a join operation

between the frontier nodes specified by nid = mid (F -operator)

and TEdges table, where mid is the identifer of the to-be-finalized

node which is discovered by the 2-nd statement. The tuples with

the minimal d2s+c among multiple occurrences for the same node

can be located by a window function row number = 1 over the

sorted tuples. In the 4-th SQL statement for M -operator, we use

one statement to merge the expanded nodes into TVisited table.

When the newly expanded nodes are new to existing visited nodes

in TVisited, we directly add them into TVisited. When the newly

expanded nodes have smaller distances from the source node, the

nodes in the TVisited are replaced by the newly expanded ones.

361



3.4 Shortest Path Discovery using FEM
Framework

Here, we present Dijkstra’s algorithm for shortest path discov-

ery in Algorithm 1 as a case to show the functionality of the FEM

framework. Besides the key SQLs in the path expansion, we also

need auxiliary SQLs in Listing 3. Such an algorithm can run on

the client side, which connects to the underlying RDB via JDBC

or ODBC. In the running time, only few variables are kept on the

client side, and the RDB carries out time-consuming tasks.

Algorithm 1: Shortest Path Discovery in FEM Framework

Input: source node s and target node t, Graph G = (V,E).
Output: The shortest path between s and t.
Initialize Tvisited with the SQL in Listing 2(1);1

while true do2

Locate mid for node u′s id with the SQL in Listing 2(2);3

Expand path with the SQLs in Listing 2(3,4) with mid;4

if the number of affected tuples is 0 then5

Break;6

u.f ← 1 for the finalized node with the SQL in Listing7

3(2) with mid;

if there exists result for the SQL in Listing 3(1) then8

Break;9

Iteratively find edges in the shortest path p along p2s link10

with the SQL in Listing 3(3);

Return p;11

We initialize TVisited table first with the source node. We then

start an iteration to find the shortest path from line 2 to line 9. mid
in line 3 is the node id for the to-be-finalized node, which can be

located by an SQL on TVisited table. We then use mid to com-

pose the SQL for F , E and M -operators in path expansion in line

4. After that, we detect the number of affected tuples from SQL

communication area of database (SQLCA) in line 5, and terminate

iterations when TVisited is not updated. Otherwise, we finalize the

node by its identifier mid. We then detect whether the target node

has been finalized or not. Once the iterations are terminated, we

recover the full path from the source node to the target node with

iterative SQLs along the p2s link.

Listing 3: Auxiliary SQLs in Path Finding
1 : / / Detect termination

S e l e c t ∗ from TVisited where f=1 and nid=t ;

2 : / / Finialize the frontier node

Update TVisited s e t f=1 where nid=mid

3 : / / Locate the predecessor node

S e l e c t p2s from TVisited where nid=xid ;

There are at most n iterations for the path finding in Algorithm

1 in the worst case, where n is the number of nodes in the graph.

In each iteration, we have 4 separate SQLs. Thus, we at most issue

4n SQLs in the shortest path discovery.

4. OPTIMIZATIONS FOR SHORTEST

PATH DISCOVERY
In the last section, we describe the Dijkstra’s shortest path algo-

rithm using the generic FEM framework on RDB. In this section,

we propose several techniques to further optimize the shortest path

discovery in the FEM framework.

In the typical shortest path discovery, the main optimization is to

reduce the search space [2, 24]. In the FEM framework, this corre-

sponds to minimize the number of total visited nodes. To address

this issue, the bi-directional search strategy is often employed [10]

and we show it can be adopted in the FEM framework easily (in

Section 4.1). Such an optimization can reduce the total computa-

tional cost contributed by relational operators, such as F , E, and

M -operator, as fewer nodes need to be visited.

Another important and unique aspect of relational shortest path

discovery is to optimize the query evaluation: in the RDB con-

text, the set-at-a-time evaluation is more suitable than the node-

at-a-time fashion for the same search space, since the former can

enable database to fully adopt the intelligent scheduling to access

disk and exploit the data loaded in the buffer, and thus to make a

better evaluation plan [14, 18]. For example, let us consider the

E-operator (the 3-rd SQL in Listing 2). If we have n iterations in

Algorithm 1, we will issue n SQL statements for loading the edges

of n nodes separately. Such a node-at-a-time operation is very inef-

ficient due to the redundant I/O cost for accessing edges of multiple

nodes when they are stored in one data block. Thus, a natural strat-

egy is to adopt batch processing for edge access, e.g., loading the

edges of multiple nodes altogether (set-at-a-time) in a single SQL

statement. In other words, we would like to reduce the number of

SQL statements to be issued in a shortest path discovery. How-

ever, the main issue is that the set-at-a-time fashion can easily lead

to increase search space. For instance, the BFS strategy, although

requires fewer SQL statements, can lead to a much larger search

space compared to Dijkstra’s algorithm.

We study optimization strategies to improve the performance for

shortest path discovery in the FEM framework. Specifically, two

(often-conflicting) goals need to be simultaneously achieved and

balanced: i) reducing search space, which is a generic optimization

criteria for shortest path discovery (and many other graph search

tasks); and ii) promoting set-at-a-time query evaluation (batch pro-

cessing) for the relational database operators. Two efficient tech-

niques, bi-directional set Dijkstra’s algorithm and SegTable index,

have been introduced to improve the performance.

4.1 Bi­directional Set Dijkstra’s Algorithm
The bi-directional set Dijkstra’s algorithm attempts to address

both batch data access and search space reduction in path finding.

The path can be found by both forward expansions from the source

node and backward expansions from the target node [10]. In addi-

tion, instead of selecting only one frontier node in each expansion,

we select all non-finalized nodes with the same minimal distance

as the frontier nodes. Such a strategy is RDB-friendly since more

nodes have been processed in one operation and thus the redundant

I/O cost for different nodes can be lowered by a better evaluation

plan.

The bi-directional set Dijkstra’s search can also be expressed in-

side the FEM framework with extensions to the existing approach

in Algorithm 1. First, we revise the F -operator to locate a set of

frontier nodes. Suppose that we can obtain mind2s for the mini-

mal d2s of all non-finalized nodes (with their f = 0) with an aux-

iliary SQL operation. The predicate for the F -operator can then be

changed to d2s = mind2s. Thus, the nodes with the same mini-

mal d2s will be selected by the F -operator. We also need another

auxiliary SQL operation to finalize all frontier nodes with the pred-

icate d2s = mind2s after the F -operator. It is easy to know that

such a batch node processing does not impact the correctness of

path finding.

Second, the TVisited table should be extended and the selection

of expansion direction is needed in the iterations. Besides p2s, d2s,

362



f used in the forward searching, we also keep p2t for the successor

node to the target node, d2t for the distance to the target node, and

b for the node finalization in the backward expansion similarly. As

for the selection of expansion direction, we take the direction with

fewer frontier nodes to reduce the intermediate nodes. The number

of frontier nodes can be computed by an extra SQL on TVisited, or

approximately represented by the number of affected tuples from

SQLCA after the SQL statement for M -operator is evaluated.

Third, the bi-directional searching poses a different termination

condition. Recall the bi-directional Dijkstra’s algorithm [10]. Let

s and t be source node and target node respectively, lf and lb be

the minimal distance discovered in the latest forward and back-

ward expansion respectively, minCost be the minimal distance

between s and t seen so far, minCost is the shortest distance when

minCost ≤ lf + lb. As for our case, we can compute minCost
as the minimal sum of d2s and d2t for nodes in TVisited table, lf
as the minimal d2s for the latest forward expansion, and lb as the

minimal d2t for the latest backward expansion. With these values

collected, we can determine whether the iterations can be termi-

nated or not.

The bi-directional searching also brings new optimization strat-

egy to prune search space, which can be depicted in the follow-

ing. Such a pruning rule begins to work once one path between the

source and the target node has been found.

THEOREM 1. Let lf and lb be the minimal distance discov-

ered in the latest forward and backward expansion respectively,

minCost be the minimal distance between s and t seen so far. Take

the forward expansion as an example. For a frontier node v, we

need not expand v to node x, if v.d2s+w(v, x)+ lb > minCost.

PROOF. We prove it by contradiction. Suppose that there exists

a path p′ = s ; t with len(p′) < minCost and p′ has the

prefix sub-path from s to x via v. Since v.d2s + w(v, x) + lb >
minCost, the distance from x to the target node t is less than lb
in p′ to achieve len(p′) < minCost. In other words, x has been

finalized in the backward expansion with its distance to t less than

lb. According to the same rule in the backward expansion, the path

p′ with len(p′) < minCost has been already discovered. This

contradicts that minCost is the minimal distance discovered yet.

Thus, x can be ignored safely in the bi-directional searching. 2.

Below, we analyze the number of iterations in bi-directional set

Dijkstra’s algorithm. We will see that the bi-directional set Dijk-

stra’s algorithm needs fewer iterations than Algorithm 1. Addition-

ally, the former incurs smaller search space than the latter. Both

factors make the former outperforms the latter significantly in the

RDB context.

THEOREM 2. Given two nodes s and t in a graph G, the itera-

tions in bi-directional set Dijkstra’s algorithm in finding the short-

est path from s to t are min(δ(s, t)/wmin, n) in the worst case,

where δ(s, t) is the shortest distance between s and t, wmin is the

minimal edge weight in G, n is the total number of nodes.

PROOF. In the bi-directional set Dijkstra’s algorithm, we finalize

at least one node in each iteration. Just as Dijkstra’s algorithm, the

total number of iterations is no more than n. In addition, all non-

finalized nodes with the same minimal distances can be finalized in

one iteration in set Dijkstra’s algorithm. Thus, the minimal distance

finalized is at least kwmin in the kth iteration, and then it takes

δ(s, t)/wmin iterations to find the shortest distance δ(s, t) from s
to t in the worst case. After that the iterations terminate since lf +
lb > minCost, where lf and lb are distance finalized in the latest

forward and backward expansion, and minCost is δ(s, t). Thus,

the number of iterations is no more than min(δ(s, t)/wmin, n). 2

4.2 Selective Path Expansion via SegTable
The bi-directional set Dijkstra’s algorithm finds the shortest path

in a set-at-a-time fashion. Although it requires far fewer operations

on RDB than the basic method, the total number of operations is

still very large, as shown in Theorem 2. Then, can we scan more

nodes in the path expansion to further lower the number of opera-

tions on RDB? If so, how to select these nodes?

An extreme approach is to take BFS in finding the shortest path

to reduce the number of operations. BFS expands all possible nodes

including newly expanded nodes or the nodes with the reduced dis-

tance in each iteration. For a shortest path p, BFS can find p with

e(p) iterations, where e(p) is the total number of edges in p. Cer-

tainly, BFS requires no more operations than other methods. How-

ever, BFS is not always effective since it scans larger search space

than Dijkstra’s algorithm. We can know that the nodes which have

been expanded still have high chances to be re-expanded in the fol-

lowing iterations in BFS.

In order to address these issues, we introduce an index named

SegTable to preserve pre-computed shortest segments. We then can

exploit these segments to select the partial nodes for further expan-

sion. We wish to reduce the total number of iterations while not

enlarging search space seriously.

SegTable. Intuitively, the edges with smaller weights have more

chances to be in shortest paths. Then, we can pre-compute the

shortest segments with their distances less than a given threshold,

and store the results into SegTable. Roughly speaking, SegTable

can be viewed as a shortest path index.

DEFINITION 4. SegTable. Let G = (V,E) be a graph, lthd
be a threshold. SegTable includes TOutSegs and TInSegs tables.

TOutSegs preserves the pre-computed segments in the outgoing di-

rection. Each tuple (fid, tid, pid, cost) in TOutSegs can be com-

posed by:

(1) (u, v, pre(v), δ(u, v)), for any node pair u, v ∈ V with

δ(u, v) ≤ lthd. Here δ(u, v) is the shortest distance between

u and v, and pre(v) is the predecessor of v in the shortest

path from u to v.

(2) (u, v, u, w(u, v)), for any (u, v) ∈ E and δ(u, v) > lthd.

Here w(u, v) is the weight of the edge (u, v).

TInSegs preserves the pre-computed segments in the incoming di-

rection in a similar way. lthd is called the index threshold.

SegTable is actually the representation for a graph G′ contain-

ing pre-computed segments and original edges in graph G. Figure

4(a) shows the graph G′ with segments on the original graph G in

Figure 1 with lthd = 6. The edge (s, e) with the weight 4 is a

pre-computed segment. If we start path searching from s, e can

be found in one expansion instead of two expansions. The edge

(s, d) with the weight 2 is also a pre-computed segment. The re-

fined edge weight can avoid unnecessary re-expanding from d on

the original graph. The edge (e, h) is the original edge in G with

δ(e, h) > lthd. The relational tables for SegTable graph are shown

in Figure 4(b).

Selective Path Expansion. Since SegTable contains the segments

which have more chances to be in shortest paths, we attempt to se-

lect the partial nodes from SegTable in the expansions. Let lthd
be the index threshold. Take the kth forward expansion as an ex-

ample. A node u is selected as a frontier node from visited nodes,

if u.d2s is no more than klthd or u.d2s is the minimal among all

nodes to be expanded. In other words, we prefer selecting nodes

363



(a) Graph with Segments


fid
 tid
 cost


TInSegs


fid
 tid
 pid


TOutSegs


pid


cost


e
 b
 2
e

e
 s
 4
b

e
 c
 3
e


(b
) Segments Table


...
 ...
 ...
...


e
 g
 3
e

e
 f
 7
e

e
 h
 8
e

...
 ...
 ...
...


2
1


s


b
c
d


e


f
 g


h


i
j


t


2


2

3


7


4


9


4


3


5


8


2


1


1


7

8


4


6

5


5


3


w
min

1-st expansion


w
min

2-nd expansion


l
thd


3-rd expansion

l
thd
w
min
 w
min


.......


(c) Minimal Distance after Expansions


6


Figure 4: SegTable with Index Threshold lthd = 6

with smaller u.d2s since a larger d2s indicates a higher chance in

unnecessary re-expansions.

We extend the two-value sign f for node finalization into three-

value sign to support the complex rule in selecting frontier nodes.

As that in Listing 2, f = 0 on a node u indicates u is a candi-

date frontier node, and f = 1 on a node u means u has been ex-

panded before. Here, we introduce f = 2 for the selected frontier

nodes. As discussed above, a node u is selected as a frontier node

when u.f = 0, and u.d2s ≤ klthd or u.d2s is the minimal among

all nodes with f = 0. In order to simplify the expression of F -

operator, we can select these frontier nodes and change their sign

f to 2 with an auxiliary SQL before F -operator. Hence, f = 2
is the only predicate in the F -operator. In addition, after the path

expansion, we still use f = 2 to distinguish the frontier nodes just

now, and changes their f to 1 indicating that these nodes have been

expanded.

The selective path expansion over SegTable can find the short-

est path with no more iterations than the set Dijkstra’s algorithm

on the original graph. We first present an intuitive idea in Fig-

ure 4(c) and will give a formal description in the following. Let

lthd be the index threshold, wmin for the minimal edge weight.

The minimal distance lf found in the 1-st forward expansion is

wmin in the worst case. lf will be lthd + wmin in the 2-nd ex-

pansion, since the distance less than lthd + wmin has been dis-

covered in the 1-st expansion. Similarly, lf in the 3-rd expansion

will be lthd + 2wmin . Inductively, lf in the kth
f expansion will

be ⌊kf/2⌋lthd + ⌈kf/2⌉wmin . Recall that lf in the kth
f expan-

sion will be kfwmin in the set Dijkstra’s algorithm on the original

graph in the worst case. lf increases faster in terms of the number

of expansions than before, which makes the termination condition

lb + lf > minCost satisfied earlier.

Construction of SegTable. Given an original graph G and an in-

dex threshold lthd, the construction of its SegTable needs to locate

all shortest segments with their distances no more than lthd, and to

find the other remaining necessary edges.

We can exploit the FEM framework to locate all required shortest

segments in the SegTable. Take the construction of TOutSegs as an

example. We can put all nodes in G into a visited node set initially.

Just like F -operator in the selective path searching over SegTable,

in the kth iteration, a node u is selected into frontier nodes when

u is a candidate frontier node, and u.d2s < kwmin or u.d2s is

the minimal among all candidate frontier nodes. Here, wmin is for

the minimal edge weight. The E-operator is revised to restrict the

maximal distance searched no more than lthd. We repeat expanding

until the minimal distance determined is more than lthd. It is easy

to know that the number of iterations in the first step is less than

lthd/wmin .

In the second step, we need to combine the remaining necessary

edges into the SegTable G′ generated after the first step. Such a task

can be implemented by a merge statement with G′ as the target and

the original graph G as the source. For an edge e = (u, v) with

its weight w(u, v) in G, e can be discarded when w(u, v) is no

less than δ(u, v) recorded in G′. In other cases, e with its weight

w(u, v) is added into G′.

4.3 Complete Algorithm of Bi­Directional Se­
lective Path Expansion on SegTable

Next, we give the complete algorithm of bi-directional selective

path searching on SegTable. We insert two given nodes into the

empty TVisited table in line 1. minCost is for the minimal dis-

tance currently discovered. The variable lf for the minimal dis-

tance in the latest expansion, nf for the number frontier nodes, and

fwd for the number of expansions in the forward expansion are all

initialized. The counterpart variables in the backward expansion

are also initialized in the same line.

Algorithm 2: Bi-directional Selective Searching on SegTable

Input: source node s and target node t, SegTable.

Output: The shortest path between s and t.
Initialize TVisited table with node s and t;1

minCost← +∞;2

lf ← 0, lb ← 0;3

nf ← 1, nb ← 1;4

fwd← 1, bwd← 1;5

while lb + lf ≤ minCost && nf > 0 && nb > 0 do6

if nf ≤ nb then7

Update signs for the frontier nodes with the SQL in8

Listing 4(1);

Expand paths with the SQL in Listing 4(2);9

nf ← the number of affected tuples from SQLCA;10

Reset signs for the frontier nodes with the SQL in11

Listing 4(3);

Locate lf with the SQL in Listing 4(4);12

fwd← fwd+ 1;13

else14

Similar actions from line 8 to line 13 for the15

backward expansion;

Locate minCost with the SQL in Listing 4(5);16

Locate a node xid in the shortest path with the SQL in Listing17

4(6);

Find the sub-path p0 from s to xid along p2s links;18

Find the sub-path p1 from xid to t along p2t links;19

Return p0 + p1;20

We make the path expansion in the iterations from line 6 to line

16. We select an expansion direction according to the number of

frontier nodes, and show the actions in the forward expansion from

line 8 to line 13. First, we set f = 2 on the selected frontier nodes

from all candidate frontier nodes (f = 0). We then implement

F , E, and M -operator with the 2-nd SQL in Listing 4. Compared

to the 3-rd and 4-th SQL in Listing 2, the 2-nd SQL in Listing 4

uses pre-computed segments TOutSegs instead of TEdges, speci-

fies frontier nodes with f = 2, and takes bi-directional pruning

rule out.cost+ q.d2s+ lb < minCost. Next, we update the sign

f = 1 on the frontier nodes just now (f = 2) to avoid the repeat ex-

pansion in the following. After the path expansion, we obtain lb for

the minimal d2s in the latest forward expansion and minCost for

the minimal distance currently discovered to determine whether the

iterations can be stopped. Once the iterations are terminated, we lo-

cate one node xid in the shortest path with minCost, and recover

the full shortest path along the p2s and p2t links from xid.

364



Listing 4: SQL in Expansion
1 : / / change signs for frontiers in fwd−th expansion

Update TVisited s e t f=2

where (d2s<=fwd∗lthd or

d2s=( s e l e c t min (d2s ) from TVisited where f=0) )

and f=0;

2 : / / Make fwd−th expansion with F , E , M−Operator

Merge TVisited as target

us ing ( s e l e c t nid , p2s , cost

from ( s e l e c t out .tid , out . pid ,

out . cost+q . d2s , row_number ( ) over

( p a r t i t i o n by out . tid order by

out .cost+q . d2s as c ) as rownum

from TVisited q , TOutSegs out

where q . nid=out . fid and q .f= 2 and

out .cost+q .d2s+lb<minCost )

tmp (nid , p2s , cost , rownum )

where rownum=1

) as source (nid , p2s , cost )

on source . nid=target .nid

when matched and target . d2s>source .cost then

update s e t d2s=source . cost ,

p2s=source .p2s , f=0

when not matched by target then

i n s e r t (nid , d2s , d2t , p2s , f )

v a l u e s ( source . nid , cost , Max , source . p2s , 0 ) ;

3 : / / Reset the sign that node has been expanded .

Update TVisited s e t f=1 where f=2;

4 : / / Locate the minimal distance in forward search

S e l e c t min (d2s ) from TVisited where f=0;

5 : / / Locate the minimal distance discovered

S e l e c t min (d2s+d2t ) from TVisited ;

6 : / / Locate a node in the shortest path

S e l e c t nid from TVisited where d2s+d2t=minCost ;

The shortest path finding in Algorithm 2 requires no more itera-

tions than the former methods, which can be illustrated as follows:

THEOREM 3. Given a source node s and a target node t, the

SegTable with the index threshold lthd, the number of iterations in

Algorithm 2 is less than min(n, 2(δ(u,v)+lthd)
lthd+wmin

).

PROOF. Algorithm 2 will terminate when lf + lb ≥ minCost,
where lf and lb are the minimal distance found in the latest for-

ward and backward expansions respectively, and minCost is the

minimal distance between s and t seen so far. Since each itera-

tion will finalize at least one node, the total iterations are no more

than n in the worst case. Let kf and kb be the number of for-

ward and backward expansions respectively. As illustrated in Fig-

ure 4(c), lf is no less than ⌊kf/2⌋lthd + ⌈kf/2⌉wmin , and lb
is no less than ⌊kb/2⌋lthd + ⌈kb/2⌉wmin . lb + lf > ((kb +
kf )/2)(lthd + wmin) − lthd. Thus, when the total number of

iterations, kb + kf , reaches
2(δ(u,v)+lthd)
lthd+wmin

, the iterations can be

terminated with lb + lf ≥ δ(u, v). 2

s


b
c
d


i


t


g
f


e


h


1-st
 forward


expansion


2-nd forward

expansion


1-st  backward

expansion


2
 2

1
 4


8


7


5


3
j


9


3


2


f


1


1


1


1


0


1


0


0


nid


b


s


d


c


f


e


h


g


j


i


t


p2s


s


s


s


s


e


s


e


e


d2s


2


0


2


1


11


4


12


7


b


0


0


0


1


d2t


3


9


2


0


p2t


t


t


t


t


Figure 5: TVisited in Bi-directional Searching on SegTable

The path finding via SegTable can be illustrated in Figure 5. Let

s be the source node and t be the target node. We make 2 for-

ward expansions and 1 backward expansion. TVisited table con-

tains the current intermediate results. The current shortest distance

minCost is 15, achieved on node h. We have to continue search-

ing, since lf = 12, lb = 2, and lf + lb < minCost at that time.

5. EXPERIMENTAL RESULTS
In this section, we experimentally evaluate the effectiveness and

efficiency of our relational approach on both real and synthetic

datasets extensively.

5.1 Experimental Setup

Experiment Design. We are interested in the following questions

in experiments: i) Can the FEM framework support Dijkstra’s im-

plementation in RDB? What is the most expensive phase in path

discovery? Do the new SQL features boost the performance re-

markably? ii) Does the set-at-a-time evaluation method, such as

set Dijkstra’s algorithm, really impact the performance? Will the

selective path expansion over SegTable index further improve the

performance? If so, what is the impact of index threshold lthd?

iii) Can our method scale well on different datasets varying graph

sizes, buffer sizes, different index strategies and different relational

database systems? If all optimization strategies are used, what is

the comparison between relational version and in-memory version?

Implementation Details and Competitors. We have implemented

7 approaches related to the paper. DJ is the relational version for

the single directional Dijkstra’s algorithm in Algorithm 1. BDJ

is for the bi-directional Dijkstra’s algorithm. BSDJ is for the bi-

directional set Dijkstra’s algorithm. BBFS is for the relational ver-

sion of bi-directional breadth-first-search method. BSEG is for the

selective path expansions on SegTable. These methods run on the

client side which connects to the underlying RDB via JDBC. The

competitors, MDJ and MBDJ are the in-memory versions for Di-

jkstra’s algorithm and bi-directional Dijkstra’s algorithm respec-

tively. We implement all methods in Java with JDK 1.6 and eval-

uate them on 1.8GHz AMD processor running Windows server

2003. The maximal runtime memory of JVM is set to 1.5G.

In order to show the applicability of our method, we conduct ex-

periments over two different relational database systems: one com-

mercial database system (denoted by DBMS-x) and another open

source database system PostgreSQL 9.0 (denoted by PostgreSQL).

We build indices over the relational tables for the graph, SegTable,

and intermediate results. Specifically, we build clustered indices on

TEdges(fid), and on TOutSegs(fid) (and on TInSegs similarly).

In addition, we build a unique index on TVisited(nid). fid and

nid have the same meaning discussed above.

Data Sets. We use 5 graph data sets in tests, including three real

graphs DBLP, GoogleWeb, LiveJournal, and two synthetic graphs

named Random and Power. DBLP is extracted from a recent snap-

shot of DBLP dataset3. GoogleWeb and LiveJournal are down-

loaded from Stanford’s data collection4. Random graphs are gen-

erated as follows. Let n and m be the number of nodes and edges

respectively, we randomly select the source and target node for m
times among n nodes. Power graph set is generated using Barabasi

Graph Generator v1.45. The weights of edges in all graphs are

assigned randomly in [1,100].

Some statistics of these graphs are summarized in Table 1. As

for any synthetic graph, we suffix xNyd to indicate that the graph

is with x nodes and the average degree y. For example, Ran-

dom5mN3d represents a Random graph with 5 million nodes and

an average degree 3.

3http://dblp.uni-trier.de/xml/
4http://snap.stanford.edu/data/
5http://www.cs.ucr.edu/ ddreier/barabasi.html

365



DataSet # Nodes # Edges

DBLP 312,967 1,149,663

GoogleWeb 855,802 5,066,842

LiveJournal 4,847,571 43,110,428

RandomxmNyd 5m-40m 5ym-40ym

PowerxkNyd 20k-500k 20yk-500yk

Table 1: Statistics of Graph Data Sets

DJ BDJ BSDJ

|V | Exps Time Exps Time Exps Time

20k 9601 425 182 6.75 68 2.90

40k > 600 252 9.27 78 3.20

60k > 600 313 11.5 82 3.43

80k > 600 356 13.2 88 3.75

100k > 600 414 15.1 85 3.62

Table 2: Exps(# Expansions), Time(Time:s) on Power Graphs

5.2 Query Evaluation
We study the issues related to the FEM framework and its opti-

mizations. The experiments will be divided into 3 sub-parts. We

first verify the effectiveness of FEM framework and set-at-a-time

optimization. We then study optimization strategies with SegTable.

Finally, we make extensive studies on our method with all opti-

mizations. In the following experiments, we randomly generate

100 shortest path queries, and report the average time cost.

FEM Framework and Set-at-a-time Fashion. In this sub-part, we

first compare the time cost used by the single directional (DJ), the

bi-directional (BDJ) and bi-directional set (BSDJ) Dijkstra’s ap-

proach, then study the cost used by different phases and operators,

and show the effectiveness of new features of SQL.

Figure 6(a) reports the results of DJ, BDJ, and BSDJ on Power

graphs varying size from 20k to 100k. Take the shortest path dis-

covery in a graph with 20k nodes as an example, DJ consumes

about 7 minutes, while BDJ consumes 6.75 seconds, and BSDJ

costs 2.25 seconds. In fact, we cannot use large graphs in this test,

since DJ shows a poor performance in the shortest path discovery.

Another observation in Figure 6(a) is that the time cost of BSDJ is

about 1/3 of that in BDJ.

In order to find the reasons behind the performance improve-

ment, we collect the total number of expansions in path finding and

the time cost consumed by DJ, BDJ, and BSDJ in Table 2. It clearly

shows that BSDJ takes the fewest expansions. The number of ex-

pansions in DJ is about 50 times bigger than that in BDJ, and 140

times bigger than that in BSDJ. Thus, the SQLs used by BSDJ is

fewest among three. The results verify our claim before. The set-

at-a-time evaluation fashion, which enables the RDB optimizer to

produce a better evaluation plan, can beat the node-at-a-time eval-

uation fashion easily, when they have the same search space.

Figure 6(b) plots the time cost used in different phases in the

path finding in Algorithm 1, including the path expansion (denoted

by PE), the statistics collection (denoted by SC), and the full path

recovery (denoted by FPR). We can see that the path expansion with

three operators consumes most of time. Next, we go deep into the

path expansion. We directly translate F , E, and M -operators into

separate SQLs, and collect their time cost. The results are presented

in Figure 6(c). We find E-operator takes about 75 percent time in

the shortest path discovery. It is because E-operator makes a join

with the graph table to find newly expanded nodes.

20
 40
 60
 80
 100

0


2


4


6


8


10


12


14


16


Dataset=PowerxkN3d


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 BDJ


 BSDJ


(a) Query time vs. graph scale

20
 40
 60
 80
 100

0


2


4


6


8


Dataset=PowerxkN3d


Method=BSDJ


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 PE


 SC


 FPR


(b) Query time vs. phases

20
 40
 60
 80
 100

0


2


4


6


8


Dataset=PowerxkN3d


Method=BSDJ


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 F-operator


 E-operator


 M-operator


(c) Query time vs. operators

20
 40
 60
 80
 100


3


4


5


6


7


8


Dataset=PowerxkN3d


Method=BSDJ


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 TSQL


 NSQL


(d) Query time vs. SQL

Figure 6: Experimental Results on FEM Framework

Figure 6(d) studies the query time cost affected by different SQL

features. We implement path discovery with the new features in-

cluding window function and merge statement (denoted by NSQL)

and the traditional features including aggregate functions and in-

sert/update for merge (denoted by TSQL). The results clearly show

that the NSQL method outperforms the TSQL method significantly.

We believe that the advance of RDB makes it more powerful in han-

dling the shortest path discovery and other complex operations.

Due to the fact that BSDJ outperforms DJ and BDJ thoroughly,

we report only the curve for BSDJ, and omit the curves for the

other two in the following. We will use new features of SQL in

path finding unless explicitly mentioned.

Optimizations using SegTable. Next, we analyze the performance

of the selective path expansion on SegTable (BSEG). The term

BSEG(x) is for BSEG with the index threshold lthd = x. In or-

der to see the trade-off between the search space and the evalu-

ation fashion clearly, we also implement BBFS for bi-directional

breadth-first-search.

Figure 7(a) and Figure 7(b) compare the time cost consumed by

BSDJ, BBFS and BSEG on two sets of large graphs. BSEG is

fastest among three. The time cost in BSEG is nearly 1/7 of that in

BBFS and 1/3 in BSDJ across LiveJournal4m graph, and the pro-

portion is about 1/2 or 1/3 on Random graphs. We make a deep

analysis on the time cost, the number of expansions and the size

of visited nodes in BSDJ, BBFS and BSEG. The results are listed

in Table 3. We can see that although the visited nodes in BSEG

are a little more than those in BSDJ, the number of expansions in

BSEG is just 1/3 of that in BSDJ. The reduction in the correspond-

ing SQLs at the cost of slightly enlarged search space makes BSEG

work best. As for BBFS, it takes fewest expansions in the tests.

However, BBFS is slower than other two methods in some cases

since BBFS incurs more visited nodes. By combining these ex-

periment results, we know that we cannot consider the evaluation

fashion (the number of operations) or the search space (the size of

intermediate nodes) separately, but strive to achieve a balance be-

tween them.

Figure 7(c) and Figure 7(d) illustrate the query evaluation time

cost varying the index threshold lthd of SegTable on both Power

graph and real data respectively. We observe that the performance

366



0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 3.5
 4.0

0


5


10


15


20


25


30


35


Dataset=LiveJournalxmn


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(m)


 BSDJ


 BBFS


 BSEG(3)


(a) Query time vs. graph scale

5m
 10m
 15m
 20m
 40m

0


10


20


30


40


50


60


70
 Dataset=RandomxmN3d


Database=DBMS-x


T
im

e
 C

o
s

t(
s

)


Data Set


 BBFS


 BSDJ


 BSEG(3)


 BSEG(5)


 BSEG(7)


(b) Query time vs.
graph scale

100
 200
 300
 400
 500

0.0


0.5


1.0


1.5


2.0


2.5
 Dataset=PowerxkN3d


Method=BSEG


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 l

thd


=10


 l

thd


=30


 l

thd


=40


 l

thd


=50


(c) Query time vs. lthd

GoogleWeb
 DBLP

0


1


2


3


4


5


6


Method=BSEG


Database=DBMS-x

T

im
e
 C

o
s
t(

s
)


Data Set


 l

thd


=2


 l

thd


=4


 l

thd


=6


 l

thd


=8


 l

thd


=10


(d) Query time vs. lthd

Figure 7: Experimental Results on SegTable

BSDJ BBFS BSEG(5)

|V | Time Exps Vst Time Exps Vst Time Exps Vst

5M 15.3 174 3.6k 13.5 30 129k 8.2 57 4.4k

10M 27.8 184 4.9k 24.7 32 222k 13.4 60 7.4k

15M 33.4 191 5.9k 44.0 33 283k 12.4 61 9.3k

20M 41.7 197 7.4k 62.4 34 358k 21.7 62 10.1k

Table 3: Time(Time:s), Exps(# expansions), and Vst (# visited

nodes) on Random Graphs

is improved first and then declines with the increase of the index

threshold lthd. We explain the reasons as follows: on the one hand,

according to our shortest path discovery algorithm, a larger lthd re-

sults in more segments in SegTable and fewer expansions to locate

the shortest path. On the other hand, more pre-computed segments

enlarge the search space, which cuts down the query performance.

In addition, as shown in Figure 7(c) and Figure 7(d), a relatively

large lthd (e.g., lthd=30) is appropriate for Power graph while a

smaller lthd (e.g., lthd=6 or 8) is more suitable on our real graphs.

How to find an optimal lthd for SegTable over different graphs will

be a future work of this paper.

Extensive Studies. In this sub-part, we study the impacts of dif-

ferent database engines, different buffer sizes and index strategies

on the query performance. Finally, we compare our RDB approach

with the in-memory ones.

Figure 8(a) compares the query time consumed by BBFS and

BSEG on PostgreSQL. Since PostgreSQL supports the window

function but cannot provide the merge statement, we use insert and

update statement for the M -operator instead. The results on Post-

greSQL are similar to those on the commercial database system,

which also shows that our method has good applicability.

Figure 8(b) illustrates the impact of different buffer sizes in RDB

on the query performance. It is not surprised that the increase of

the buffer size decreases the number of I/O operations, and then

improves the performance. For our case, the decrease of cost is

nearly linear to the increase of the buffer sizes. We also notice

that once the buffer size reaches a threshold, for example, 6G for

100
 200
 300
 400
 500


1.0


1.5


2.0


2.5


3.0


3.5

Dataset=PowerxkN3d


Database=PostgreSQL


T
im

e
 C

o
s

t(
s

)


# nodes(k)


 BBFS


 BSEG(20)


(a) Query time vs. database

1
 2
 3
 4
 5
 6
 7


4


6


8


10


12


14


Dataset=LiveJournal


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


Buffer Size(G)


 BSEG(3)


(b) Query time vs. buffer size

100
 200
 300
 400
 500

1


2


3


4


5


Dataset=PowerxkN3d


Method=BSEG(20)


Database=DBMS-x


T
im

e
 C

o
s

t(
s

)


# nodes(k)


 NoIndex


 Index


 CluIndex


(c) Query time vs. index

100
 200
 300
 400
 500

0


1


2


3


4


5


6


7


8

Dataset=PowerxkN3d


Database=DBMS-x


Buffer=1.5G


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 MDJ


 BSEG(20)


 MBDJ


(d) Query time vs.
in-memory methods

Figure 8: Experimental Results on Extensive Study

the shortest path discovery over LiveJournal, the evaluation time

stays almost stable. In such a setting, the graph can be fully loaded

into memory, and the former key factor in I/O operations is not as

important as before.

In Figure 8(c), we conduct studies on different index strategies,

including the clustered and unique index (denoted by CluIndex),

non-clustered unique index (denoted by Index), and no index (de-

noted by NoIndex) on TOutSegs(fid) (on TInSegs similarly), as

well as on TVisited(nid). We can see that CluIndex achieves the

best performance. We think that the unique index may improve the

performance of E-operator, which can support the index-join be-

tween the SegTable and TVisited table, and the clustered index can

reduce I/O cost in accessing edges for given nodes.

Last, we compare our relational approach with the in-memory

ones, including Dijkstra’s algorithm (MDJ) and bi-directional Di-

jkstra’s algorithm (MBDJ). We set both the buffer size of RDB and

the maximal memory used in in-memory approaches to 1.5G. In or-

der to make the comparison fair, the time reported for in-memory

approaches does not include the time in loading graph into memory,

and the time for relational approaches is collected after the database

buffer becomes hot. We can see our BSEG algorithm is not as fast

as MBDJ in Figure 8(d). It is expected as RDB is a general infras-

tructure to different information systems, and is not tailored for the

graph data management. In addition, the buffer of RDB also con-

tains other information such as system tables. We also notice that

BSEG can outperforms MDJ and shows better scalability. These

results also reveal that the proper evaluation strategy in the RDB

context still can gain a satisfactory performance. We stress here

that the main advantage of RDB lies in its scalability, stability and

easy programming in the graph management.

5.3 SegTable Construction
In this part, we study the construction of SegTable for two rea-

sons. One the one hand, SegTable is an important optimization

strategy in the path discovery. On the other hand, the construc-

tion of SegTable can be viewed as another application of the FEM

framework. These tests can be the supplement to the query evalua-

tion ones.

367



100
 200
 300
 400
 500

0


1


2


3


4


5


6


Dataset=PowerxkN3d


Database=DBMS-x


E
n

c
o

d
in

g
 N

u
m

b
e
r(

m
)


# nodes(k)


 l

thd


=10


 l

thd


=20


 l

thd


=30


 l

thd


=40


(a) Index size vs. lthd

GoogleWeb
 DBLP

0


4


8


12


16


20


24


Database=DBMS-x


E
n

c
o

d
in

g
 N

u
m

b
e
r(

m
)


Data Set


 l

thd


=2


 l

thd


=4


 l

thd


=6


 l

thd


=8


 l

thd


=10


(b) Index size vs. lthd

100
 200
 300
 400
 500

0


100


200


300


400


500


600
 Dataset=PowerxkN3d


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


# nodes(k)


 l

thd


=10


 l

thd


=20


 l

thd


=30


 l

thd


=40


(c) Construction time vs. lthd

GoogleWeb
 DBLP

0


200


400


600


800


1000


Database=DBMS-x


T
im

e
 C

o
s
t(

s
)


Data Set


 l

thd


=2


 l

thd


=4


 l

thd


=6


 l

thd


=8


(d) Construction timevs. lthd

100
 200
 300
 400
 500


1


2


3


4


5


6


7


Dataset=PowerxkN3d


Database=PostgreSQL


T
im

e
 C

o
s
t(

k
s
)


# nodes(k)


 l

thd


=10


 l

thd


=20


 l

thd


=30


(e) Construction time vs. lthd

100
 200
 300
 400
 500


50


100


150


200


250


300


350


Dataset=PowerxkN3d


l

thd


=20


Database=DBMS-x

T

im
e
 C

o
s
t(

s
)


# nodes(k)


 NSQL


 TSQL


(f) Construction time vs. SQL

600
 800
 1000
 1200
 1400
 1600


4


5


6


7


8


9


10


11


Dataset=LiveJournal


Database=DBMS-x


T
im

e
 C

o
s

t(
k

s
)


Buffer Size(M)


 l

thd


=3


(g) Construction time vs. buffer
size

0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 3.5
 4.0


0.5


1.0


1.5


2.0


2.5


3.0


3.5


4.0


Dataset=LiveJournalxmn


Database=DBMS-x
T
im

e
 C

o
s

t(
k

s
)


# nodes(m)


 l

thd


=3


(h) Construction time vs. graph
scale

Figure 9: Experimental Results on SegTable Construction

Index Size. Figure 9(a) and Figure 9(b) plot the index size varying

the index threshold lthd on Power graphs and real datasets respec-

tively. We can know that a larger lthd requires pre-computing more

segments, which results in a larger SegTable index. We also ob-

serve that, for different graphs, the impact of lthd on index size

varies. For example, GoogleWeb is more sensitive to lthd than

DBLP. It is partially due to that GoogleWeb has a skewed degree

distribution.

Construction Time. Figure 9(c) and Figure 9(d) summarize the

construction time cost varying the index threshold lthd across both

synthetic and real datasets on commercial database. The results and

reason are similar to those in the tests on the index size. A larger

lthd corresponds to longer shortest segments and then incurs more

indexing time.

Figure 9(e) shows the time results on open source database Post-

greSQL across Power graphs. The behavior on PostgreSQL is sim-

ilar to that on the commercial database DBMS-x, such as Figure

9(c) and Figure 9(d). This proves our SegTable based method can

be applied on different relational database platforms.

Figure 9(f) compares the construction time cost using the new

and traditional features of SQL on Power graphs. Since the inter-

mediate nodes in the index construction are also restricted by the

index threshold lthd, the advantage of the method using NSQL over

the method using TSQL is not as significant as that in the path find-

ing. However, we can see the method using NSQL still outperforms

the one using TSQL.

Figure 9(g) illustrates the impact of different buffer sizes used by

RDB on the index construction time cost. The results are similar

to those in the query evaluation. The increase of buffer size will

improve the indexing performance. For example, the indexing time

cost with a memory set to 0.6G is two times of that with memory

fixed to 1.6G. Moreover, when the buffer size exceeds 1.2G, the

maximal requirement on memory for indexing, the time curve is

almost horizonal.

Figure 9(h) shows the index construction time varying the size

of graphs. A larger graph needs more visited nodes in the construc-

tion, which consumes more indexing time. Additionally, we ob-

serve that our construction method has high scalability as graphs

grow larger, as the relationships between the index construction

time and graph size are almost linear. It is due to that our SegTable

index only encodes local shortest segments.

5.4 Summary
To sum up, from the experimental results, we can draw the fol-

lowing conclusions: i) Our FEM framework can be used to answer

the graph search queries such as the shortest path discovery. And

the new features introduced by recent SQL standards can improve

the performance of FEM greatly. ii) The set-at-a-time evaluation

method, such as BSDJ, can outperform the node-at-a-time evalua-

tion method, such as BDJ, significantly. iii) The index, SegTable,

can further improve the performance by reducing the number of

expansions at the cost of slightly enlarged search space, if the in-

dex threshold is properly set. iv) Our relational approach shows

high scalability in terms of graph sizes, buffer sizes, and different

database management systems.

6. RELATED WORK
Graph search queries are very basic and important graph opera-

tions. Due to the large search space, many proposed methods take

greedy approaches, including Dijkstra’s algorithm for the shortest

path [12], Prim’s algorithm for the minimal spanning tree [20], the

greedy salesman path discovery [9], and the like.

Shortest path discovery is a representative graph search opera-

tion. Dijkstra’s algorithm is a well-known online algorithm [12]

to solve a single-source shortest path problem in O(n2) time on

general graphs. The bi-directional search strategy [10] is an impor-

tant extension to reduce the search space. The shortest paths can

be pre-computed and stored by different forms, such as the land-

mark index [19, 2], 2-HOP related index [11], TEDI index [24],

etc. These indices can improve the performance in the running

time. However, these online shortest path discovery and shortest

index building methods do not consider the case when the graph

cannot be fully loaded into the memory.

The external graph operations are needed with the rapid growth

of graphs. An external shortest path index is proposed by [8] on pla-

nar graphs. MapReduce framework [16, 3] and its open source im-

plementation Hadoop [1] achieve high scalability in handling large

graphs. The current limitation of MapReduce framework lies in

368



its weak support to online query and expensive dynamic update of

graphs. We also notice specific graph operations in the external

memory. For example, the approximate minimum-cut [5] can be

computed on the sampled graph. The cliques can be found on the

partially loaded sub-graphs [15]. However, it is hard to extend them

to support general graph search queries.

The extension of RDB as a scalable platform to manage com-

plex data types or support sophisticated applications has been a hot

topic recently. The data mining tasks [4] and statistic data analy-

sis [6] can be evaluated on the top of RDB. When using RDB to

manage XML data [17, 13, 18], an XML query is always translated

into multiple SQLs, during which an important optimization is to

produce fewer SQLs and thus the optimizer in RDB can generate

better evaluation plans [18].

RDB based graph query processing is closely related to our work.

The reachability query is evaluated by a stored procedure [23]. The

SQL based graph data mining has been studied in [22, 7]. Differ-

ent from the existing methods, we attempt to design a generic graph

search framework in RDB, and improve its performance by exploit-

ing new features of SQL. We also design optimizations to further

improve the performance by balancing the search space reduction

and RDB-friendly evaluation fashion.

7. CONCLUSIONS AND FUTURE WORK
This paper focuses on the relational approach to discover the

shortest path on large graphs. We abstract a relational generic

graph search framework FEM with three new operators, and em-

ploy the new features of SQL such as window function and merge

statement to improve the performance of the framework. Addition-

ally, we design two optimizations for shortest path discovery inside

the framework, including the bi-directional set Dijkstra’s searching

and selective path expansion on SegTable containing pre-computed

shortest segments. The final experimental results show the scala-

bility and efficiency of our relational approach.

This work can be extended in several interesting directions. First,

we will study the evaluation of other graph search queries, such

as graph pattern match, using the FEM framework. Second, we

will exploit the distributed database to achieve higher scalability

in terms of graph sizes. The partition of the relational tables for

graphs and intermediate results among distributed database is an

interesting issue. Third, the relational approach to graph manage-

ment needs to consider the dynamic changes of the original graph.

The pre-computed results, such as SegTable in this paper, should

be maintained incrementally.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their helpful

comments. The NSFC supported Gao via 60873062 and 61073018,

and supported Jin via 61003167. The research grants Council of the

Hong Kong SAR supported Yu via 419008 and 419109. The NSF

supported Jin via IIS-0953950. National science and technology

major program supported Wang via 2010ZX01042-001-003-05 and

2010ZX01042-002-002-02.

8. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.

[2] A.Goldberg and C.Harrelson. Computing the shortest path:

search meets graph theory. In SODA, pages 156–165, 2005.

[3] B.Bahmani, K.Chakrabarti, and D.Xin. Fast personalized

pagerank on mapreduce. In SIGMOD, pages 973–984, 2011.
[4] B.Zou, X.Ma, B.Kemme, G.Newton, and D.Precup. Data

mining using relational database management systems. In

PAKDD, pages 657–667, 2006.

[5] C.Aggarwal, Y.Xie, and P.Yu. Gconnect: A connectivity

index for massive disk-resident graphs. PVLDB,

2(1):862–873, 2009.

[6] C.Mayfield, J.Neville, and S.Prabhakar. Eracer: a database

approach for statistical inference and data cleaning. In

SIGMOD, pages 75–86, 2010.

[7] C.Wang, W.Wang, J.Pei, Y.Zhu, and B.Shi. Scalable mining

of large disk-based graph databases. In SIGKDD, pages

316–325, 2004.

[8] D.Hutchinson, A.Maheshwari, and N.Zeh. An external

memory data structure for shortest path queries. Discrete

Applied Mathematics, 126(1):55–82, 2003.

[9] D.Johnson and L.McGeoch. The traveling salesman

problem: A case study in local optimization. Local search in

combinatorial optimization, 215-310, 1997.

[10] D.Wagner and T.Willhalm. Speed-up techniques for

shortest-path computations. In STACS, pages 23–36, 2007.

[11] E.Cohen, E.Halperin, H.Kaplan, and U.Zwick. Reachability

and distance queries via 2-hop labels. In SODA, pages

937–946, 2002.

[12] E.Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, pages 269–271, 1959.

[13] F.Tian, B.Reinwald, H.Pirahesh, T.Mayr, and J.Myllymaki.

Implementing a scalable xml publish/subscribe system using

a relational database system. In SIGMOD, pages 479–490,

2004.

[14] H.Garcia-Molina, J.Ullman, and J.Widom. Database

Systems: The Complete Book. Prentice Hall Press, 2008.

[15] J.Cheng, Y.Ke, A.W.Fu, J.X.Yu, and L.Zhu. Finding

maximal cliques in massive networks by h*-graph. In

SIGMOD, pages 447–458, 2010.

[16] J.Dean and S.Ghemawat. Mapreduce: Simplified data

processing on large clusters. In OSDI, pages 137–150, 2004.

[17] J.Shanmugasundaram, K.Tufte, C.Zhang, G.He, D.DeWitt,

and J.Naughton. Relational databases for querying xml

documents: Limitations and opportunities. In VLDB, pages

302–314, 1999.

[18] M.Benedikt, C.Chan, W.Fan, R.Rastogi, S.Zheng, and

A.Zhou. Dtd-directed publishing with attribute translation

grammars. In VLDB, pages 838–849, 2002.

[19] M.Potamias, F.Bonchi, C.Castillo, and A.Gionis. Fast

shortest path distance estimation in large networks. In CIKM,

pages 453–470, 2009.

[20] R.Prim. Shortest connection networks and some

generalizations. Bell System Technical Journal,

36:1389–1401, 1957.

[21] R.Ronen and O.Shmueli. Soql: A language for querying and

creating data in social networks. In ICDE, pages 1595–1602,

2009.

[22] S.Srihari, S.Chandrashekar, and S.Parthasarathy. A

framework for sql-based mining of large graphs on relational

databases. In PAKDD, pages 160–167, 2010.

[23] S.Trißl and U.Leser. Fast and practical indexing and querying

of very large graphs. In SIGMOD, pages 845–856, 2007.

[24] F. Wei. Tedi: efficient shortest path query answering on

graphs. In SIGMOD, pages 99–110, 2010.

[25] W.Fan, J.Li, S.Ma, N.Tang, Y.Wu, and Y.Wu. Graph pattern

matching: From intractable to polynomial time. PVLDB,

3(1):264-275, 2010.

369


